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Abstract—Wireless sensor networks gained a lot of attention
in recent years due to their widespread applications. Reliability
of data communication and power saving are paramount for
applications which use wireless sensor network technology. We
propose two classes of short quasi-cyclic LDPC codes suitable for
implementation on a resource constrained system. The codes we
propose are easy to encode and their decoding performance com-
pares well with random LDPC codes with the same parameters.
We implement our codes on a 25mm mote platform provided by
Tyndall and compare them with Viterbi coding schemes.

I. INTRODUCTION

Wireless Sensor Networks gained a lot of attention in recent
years due to their applications, ranging from automotive,
avionics, agriculture, security and medicine. The sensor mote
platforms are characterized by heavily constrained resource
usage such as memory, processing power and cost. Many
applications for sensor networks require that data have to
be sent reliably over the wireless channel. The reliability
of communication can be dramatically improved by using
efficient block coding. Traditionally, Viterbi coding schemes
are used on this kind of applications due to their relative
simplicity of encoding and decoding. A viable alternative
would be the celebrated LDPC codes [1]. LDPC codes can
be decoded either with hard-decision or with soft-decision
algorithms. When decoded with soft-decision algorithms, they
are known to outperform equivalent Viterbi coding systems.
However, the best-performing LDPC codes are constructed via
random-walk processes, which are time and memory consum-
ing. Furthermore, a random LDPC code has a computationally
costly encoding.

In this paper we propose two families of short LDPC codes
that do not suffer from the limitations of random LDPC
codes, but which have a similar performance. Moreover, these
families enjoy an algebraic structure that allows an efficient
hardware/software implementation on resource constrained
systems. Also, when decoded via soft-decoding, their perfor-
mance is superior to an equivalent Viterbi scheme.

A. LDPC Codes

Any parity-check matrix H for a binary linear block code
can be represented graphically, with a graph called a Tanner
Graph [3]. The Tanner graph is formed by two disjoint subsets
of nodes, called check nodes and bit nodes, and interconnec-
tions placed between them. Each bit node represents a column

in the H matrix. The interconnections represent the ones in
H , in such a way that check node i is connected to bit node
j if and only if entry hi,j = 1. To decode, any bit node
is assigned a probability, based on the information received
from the channel. The information is passed and updated from
the bit nodes to the check nodes, and vice-versa (via the
connections) by way of a belief-propagation algorithm [5].

A low-density parity-check (LDPC) code is a linear block
code where the parity-check matrix is sparsely populated with
non-zero entries. A regular LDPC code has a constant amount
of non-zero entries per row and a constant amount per column.
A parity-check matrix of an LDPC code has very few con-
nections. This benefits decoding since each node has less
information coming in, calculations are quicker, and the lack
of connections means less complex hardware to implement.

LDPC codes have superior decoding performance with
respect to other codes, however there is a trade-off since their
generator matrix is densely populated with non-zero entries.
Generally speaking, LDPC codes have an inefficient encoding
system for both hardware and software implementations.

The decoding performance of LDPC codes is strongly
related to the length of the cycles present in the corresponding
Tanner graph. The length of the shortest cycle that can be
found is called the girth of the code. Since short cycles heavily
hinder the decoding performance of the LDPC code, the girth
becomes a key parameters in describing the efficiency of the
decoding process.

B. Quasi-Cyclic LDPC Codes

Quasi-Cyclic LDPC codes form a large class of codes,
which have been extensively studied and which possess a nice
encoding and decoding, in the sense that their hardware is
both cheap and easy to fabricate. This structure has many
benefits for hardware and software implementations, due to
reduced memory requirements in both decoding and encoding.
The memory benefit is provided by being able to describe the
matrices using a series of short polynomials.

A circulant matrix is a square matrix, such that each row
is obtained by a cyclic shift of the previous. The parity-check
matrix of a QC code is broken up into m × m blocks of
circulant matrices, so that its dimensions are αm×βm, where
β is the number of circulants in a (submatrix) column and α is
the number of circulants in a (submatrix) row. When creating

1-4244-1342-7/07/$25.00 ©2007 IEEE 703



a QC-LDPC matrix there are four types of circulant that can
be used: a weight t ≥ 3 circulant, a weight-two circulant, a
weight-one circulant and a zero circulant. Since any circulant
with weight t ≥ 3 contains internal cycles of length six, they
are not used and in the sequel we will consider only identities
(with weight one) and weight-2 circulants.
Any circulant matrix can be described in polynomial form, by
denoting the positions of the 1’s in the first row of the circulant
(the first row clearly defines the whole matrix). In the case
when the weight is 2, the polynomial form of a circulant is:

P (x) = xa + xb .

When creating our parity-check matrices we need to choose
the values a and b in order to remove short cycles and
hence to make the decoding as efficient as possible. This is
accomplished by identifying a list of rules. These rules involve
two variables S(p) and ε(p), which are immediately computed
from the exponents a, b, and the circulant dimension m ([6]).
The separation S(p) is defined by S(p) = min{(b−a), m−
(b−a)}. The value ε(p) is used in some logical statements to
express simultaneously a and b. To be more precise, let f be
any function f : N�−→ Z, let ≡ denote equivalence modulo
m, then we write

f(ε(p)) ≡ l ⇐⇒ f(a) ≡ l or f(b) ≡ l

and also

f(ε(p)) �≡ l ⇐⇒ f(a) �≡ l and f(b) �≡ l

Letting p1(x) = xa1 +xb1 , p2(x) = xa2 +xb2 , we also write

f(ε(p1), ε(p2)) ≡ l

meaning

f(a1, a2) ≡ l or f(a1,b2) ≡ l or f(b1, a2) ≡ l or f(b1,b2) ≡ l .

Similarly, we write

f(ε(p1), ε(p2)) �≡ l

for

f(a1, a2) �≡ l and f(a1, b2) �≡ l and f(b1, a2) �≡ l and f(b1, b2) �≡ l .

For example, a circulant matrix may have a polynomial form
P (x) = x1 + x4, so that a = 1 and b = 4. The matrix
dimension may be m = 7 and in this case the separation is
S(p) = 3 (ε(p) = 1, 4).

C. Proposed code constructions

We propose two new families of QC LDPC codes, as
follows. The first is constituted by 0.5 rate codes, as in Fig. 1.
The second is constituted by 0.66 rate codes, as in Fig. 2. Both
are similar to the Bresnan codes [4], but slightly denser and
more flexible ([6]). Any parity-check matrix has 5 non-zero
entries per column, but the 1/2 rate matrix has 10 non-zero
entries per row and the 2/3 rate matrix has 15 non-zero entries
per row.




I 0 H6 H7

H1 I 0 H8

H2 H3 I 0
0 H4 H5 I

∣∣∣∣∣∣∣∣
I H12 0 H15

H9 I H14 0
0 H11 I H16

H10 0 H13 I




Fig. 1. A 1/2 rate parity-check matrix using the proposed construction

II. THEORETICAL AND SIMULATION RESULTS

We have formally identified conditions on the parity-check
matrix to ensure girth at least 6. The rules to describe
these conditions are divided into categories, depending on the
placement of the circulant in relation to the others. As for the
Bresnan codes, the following rules involve either S(p) or ε(p).
Individual circulants
This rule is applied to all circulants regardless of their position:
no circulant can have a separation equal to half its dimension.

S(p) �= m

2
Circulants on the same Row or Column
This rule applies to any two circulants on the same row or
column: their separations cannot be equal.

S(p) �= S(p′)

Circulants related Diagonally
These rules involve four circulants, which may include iden-
tities, forming the corners of a ’square’ or ’rectangle’.

• Four weight-two circulants.



Hi,j · · · Hi,j+y

.

.

.

.

.

.
Hi+x,j · · · Hi+x,j+y




ε(pi,j) − ε(pi,j+y) + ε(pi+x,j+y) − ε(pi+x,j) ≡ 0

• Two identities not on the same row or column.[
Hi,j · · · Ii,j+y

.

.

.

.

.

.
Ii+x,j · · · Hi+x,j+y

]

ε(pi,j) + ε(pi+x,j+y) ≡ 0

• Two identities on the same row or column.[
Hi,j · · · Ii,j+y

.

.

.

.

.

.
Hi+x,j · · · Ii+x,j+y

]

ε(pi,j) − ε(pi,j+y) ≡ 0

• One identity.



Hi,j · · · Hi,j+y

.

.

.

.

.

.
Ii+x,j · · · Hi+x,j+y




ε(pi,j) + ε(pi+x,j+y) − ε(pi+x,j) ≡ 0

The following graphs show the AWGN simulation results
of two code groups, each containing 25 QC-LDPC codes and
5 random codes. The codes in the first group(Fig. 3, Fig. 5)
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I 0 H6 H7 I H12 0 H15 I H20 H21 0
H1 I 0 H8 H9 I H14 0 0 I H22 H23

H2 H3 I 0 0 H11 I H16 H17 0 I H24

0 H4 H5 I H10 0 H13 I H18 H19 0 I




Fig. 2. A 2/3 rate parity-check matrix using the proposed construction

Fig. 3. Results for 1/2 LDPC rate using soft decoding

have rate of 1/2, the others(Fig. 4, Fig. 6) have a rate of 2/3,
but all have girth at least 6. Also, the code length for the
1/2 rate is 192 bits and 288 bits for the 2/3 rate code. The
algorithms used to generate the random matrix were “optimal
permutation” for the 1/2 rate and “McKay 2B” for the 2/3 rate.
The QC-LDPC codes were generated one circulant at a time,
the first being completely random and the following according
to the presented rules.

The first two graphs(Fig. 3 and Fig. 4) show the results
for the ’Soft’ decoding and the final two(Fig. 5 and Fig. 6)
show the results for the ’Hard’ decoding. For each simulation
the SNR range was 0 - 10db for soft decoding and 0-9dB
for hard decoding. The soft decoding simulations had an SNR
increment of 0.5dB while the hard decoding simulations had
an increment of 1dB. At each value of SNR 50,000 simulations
were performed and an average recorded (while decoding the
maximum allowed number of passes was 40). Each of the
graphs has seven trend lines, one trend line represents the
channel or undecoded data, the remaining six are placed into
two set of three. One set represents the simulated random
code while the other set represents the simulated QC-LDPC
code. Each trend line in both sets represents the best, worst
and average performance. Figure 3 shows that random codes
outperform the QC-LDPC codes by roughly 0.5 − 1dB when
using soft decoding at a rate of 1/2. Simulations for both
random and QC-LDPC start to show different performances
at roughly 6dB in SNR. Signals with SNR of 8dB and above
can be fully recovered using both codes and 7.5dB and above
for random.

Figure 4 reveals random outperforming QC-LDPC by ap-
proximately 0.5dB with using soft decoding and a rate of 2/3.

Fig. 4. Results for 2/3 rate LDPC using soft decoding

The difference in performance start to show at roughly 5dB but
are not significant until about 6dB for both random and QC.
Signals can be fully recovered for both at 7.5dB and above,
and 7dB for the random only.

Fig. 5. Results for 1/2 rate LDPC using hard decoding

Figure 5 shows QC-LDPC outperforming random by 0.5-
1dB when hard decoding is used and the rate is 1/2. Differ-
ences between the decoding for both become apparent at 6dB
but not significantly until roughly 7.5dB. Due to 9dB being
the maximum SNR, we cannot tell for sure where error free
decoding begins on average, however best case is 7dB and
8dB for QC and random, respectively.

Figure 6 also demonstrates QC-LDPC outperforming ran-
dom at 2/3 rate, while using hard decoding. Compared with
1/2 rate, the margin of difference is significantly larger, which
can be over 1dB. Like in the rate-1/2 case, for signals with low
SNR errors are induced rather the recovered, although unlike
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Fig. 6. Results for 2/3 rate LDPC using hard decoding

1/2 rate the QC-LDPC starts recovering errors at a lower SNR
compared to random. Also unlike 1/2 rate, which has both code
families performing relatively equally until 6dB, at 2/3 rate the
QC-LDPC code outperforms the random code at all values of
SNR.

III. IMPLEMENTATION RESULTS AND CONCLUSION

Implementation of the codes was done on the Tyndall 25mm
mote [2]. The mote imposes some constraints on the codes to
become implementable. One of these constraints was that soft
information about the received symbols from the channel is
not readily available to the decoder implemented on the 8 bit
microcontroller. This forced us to look at various different
solutions to the decoding problem.

The three codes that we decided to investigate were:

1) Hard Decision LDPC: This uses Gallagher’s Hard Deci-
sion Decoding algorithm, which although fairly simple,
it is only effective at rates far below the capacity of
the channel. If the parity-check sets are small, then the
decoding process is reasonable.

2) Soft Simulated LDPC: This algorithm uses the standard
LDPC evaluation platform, with some minor modifica-
tions. The main modification is that, rather to input the
floating point representation of the received symbols into
the decoder, to use hard information. In this case, the
probabilities of 0.1 and 0.9 are passed to the decoder,
when a 0 and a 1 are received, respectively.

3) Hard Viterbi: For the purposes of this comparison,
the platform for evaluating the Viterbi Hard Decoding
algorithm used a constraint length of 7. In the previous
version, this would have entailed increasing the look-up
tables (26 states in decoder trellis) by a large margin,
cluttering up and slowing down the application. Instead,
shift registers were used to manage both addressing for
connections between nodes and state transitions between
nodes, when finding the Most Likely Path during the
Traceback process.

Simulations were carried out in software before a decision
was made on which code to implement in hardware. Figure
7 shows a comparison between a hard LDPC, hard Viterbi

Fig. 7. Viterbi Vs. LDPC at 2/3 rate

and soft LDPC. Due to the limited available memory on the
mote, it is impossible to store the whole of either of the G
and H matrices in the flash memory. The solution to this is
to generate the rows and columns dynamically. To generate
any row of these matrices, all we need to store is simply the
position of the 1s in the first row of each circulant. Then, we
just iterate through the rows, right shifting any circulant one
bit at a time. The matrix columns can be directly recovered
from the rows.

Another limitation of our setup is the maximum data packet
that can be transmitted by the transceiver, which is only 24
Bytes long. Thus, only codes of very short length can be used.
We implemented a length 192 code on the platform and com-
pared it with a punctured Viterbi code with similar parameters.
The mesured results show that LDPC decoding consumes
307mW while the Viterbi decoding consumes 485mW. The
encoding of quasi-cyclic LDPC codes compares well with
the encoding of Viterbi codes and consumes 260mW. These
results show that it is feasible to implement short QC-LDPC
codes with good performance on resource constrained sensor
networks platforms.
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