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Abstract— We study congestion control in a communication
network that is supporting remote estimation of multiple
processes. A stochastic rate control protocol is developed
using the network utility maximization (NUM) framework.
The decentralized protocol avoids congestion by regulating
the transmission probabilities of the sources. The presence
of estimation costs poses new challenges; however, for low
congestion, the form of rate controller resembles that of the
standard TCP rate controller.

I. INTRODUCTION

Networked control systems (e.g., [2], [17] and the refer-

ences therein) consist of spatially distributed components -

processes, sensors, controllers, and actuators - that coordinate

among each other through information exchange over a com-

munication network to achieve a desired control objective.

The communication network, thus, plays an important role

in determining the stability and performance of a networked

control system. Physical networks introduce various imper-

fections like packet drops, delays, scheduling constraints, and

so on. The effect of these imperfections on the performance

of such systems has been widely studied. For a survey of

such results, see, e.g., [3], [9] and the references therein.

However, most of the research has focused on analyzing

and designing a single networked control system in isolation.

While this has led to important foundational results, it has

ignored the new problems that may arise when multiple such

systems operate over a common communication network.

As an example, networked communication may give rise

to congestion or MAC delays. Such effects will impact

the performance of every networked control system and in

fact, will couple their performance even though the systems

may not be dynamically coupled. It is, thus, of interest to

study the impact of communication network protocols on the

performance of multiple networked control systems sharing

a common network, and in fact, design network protocols

that are suitable for estimation and control applications [7],

[14].

In this paper, we focus on the rate control protocol

suitable for an estimation oriented cost function. We consider

multiple systems, each of which consists of an estimator

that remotely estimates the state of an associated process.

A sensor collocated with each process transmits information

over a shared communication network to the estimator. The

network has capacity constraints for every link which may

result in congestion when the network load increases. Con-

gestion results in packet losses and delays, which adversely
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Fig. 1. The problem setup considered in the paper. Multiple processes are
remotely estimated across a shared communication network.

affect the estimation performance. We show that traditional

rate control protocols may not be suitable, and propose a

distributed rate control protocol for optimizing the estimation

performance.

The problem of congestion control [10] has been well

studied for communication networks and TCP [16] is the

most widely used congestion control protocol in the internet.

While originally an engineering heuristic, TCP has been

reverse engineered to show that it is a distributed solution

that optimizes a particular utility function [11]. The chief tool

in this regard is the Network Utility Maximization (NUM)

framework [12]. We use a cost minimization framework that

is analogous to the standard NUM framework. The total cost

that the rate control protocol aims to minimize includes both

an estimation performance cost and a congestion cost. The

work closest to ours is that of [1] which presents a bandwidth

allocation scheme by using a dual form of NUM problem.

However, our solution is in the primal form and is similar

to the structure of the standard TCP protocol. Moreover, we

present a stochastic transmission scheme as opposed to the

deterministic transmission scheme in [1].

II. PROBLEM FORMULATION

A. Network and Process Setting

Consider the problem set up shown in Figure 1. Let all

the sources form a source set S . With each source s ∈ S ,

associate a unique destination d and denote the destination

set by D. Let each source be connected to its corresponding

destination through the capacity constrained network N . We

model the network as a graph whose nodes correspond to
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sources, destinations and routers, while the edges correspond

to the communication channels in the network. Let L be the

set of links in the network and L(s) be the set of links that

are used by source s to communicate with its corresponding

destination d. Further, denote the route between source s and

destination d by Rs. Each link l ∈ L has a limited capacity

cl in terms of “packets per time slot” on an average. Any

individual link may be shared by one or more sources.

Each source s comprises of a process Ps, a sensor SRs,

an encoder ENCs and a rate controller PCs. The process

evolves according to the discrete-time linear model

Ps : xs(k + 1) = Asxs(k) +Ws(k), k ≥ 0 (1)

where xs(k)∈R
ns (ns ∈ N+) is the process state and Ws(k)

is the process noise. The initial condition xs(0) and the white

process noise Ws(k) are assumed to be Gaussian with zero

mean and variance Xs > 0 and Qs > 0, respectively. The

output of the process Ps is sensed by the sensor SRs which

generates noisy measurements according to

SRs : ys(k) = Csxs(k) + Vs(k), k ≥ 0 (2)

where ys(k) ∈ R
ms (ms ∈ N+) is the process output,

Vs(k) is the measurement noise that is assumed to be white,

Gaussian with zero mean and variance Σs > 0. The initial

state and the noises {xs(0),Ws(k), Vs(k)} are assumed to be

mutually independent ∀ s∈S and ∀ k. Further, these random

variables are assumed to be mutually independent among

all sources. Finally, we assume that each pair (As, Cs) is

observable.

The encoder ENCs uses the noisy measurements to gener-

ate data that is transmitted it to its corresponding destination

using constant size packets. The packet size is assumed to

be large enough to represent a real number with negligible

quantization error. Therefore, we ignore any quantization

effects in this study. Each destination comprises of a decoder

DECd, which generates a state estimate using the received

data that is optimal in the minimum mean squared error

(MMSE) sense. We employ the encoder and decoder scheme

described in [8]. At source s, denote the local estimate of

state xs(k) given the measurements {ys(j)}
k−1
j=0 by x̂s(k).

Further, denote the state estimate produced by DECd at the

corresponding destination d, by x̂rs(k). The encoder and the

decoder are given by

• ENCs:

– At each time slot k, calculate x̂s(k) using (say) a

Kalman Filter.

• DECd:

– If DECd receives a packet (local state estimate) in

time slot k, x̂rs(k) = x̂s(k).
– If DECd does not receive a packet in time slot k,

x̂rs(k) = Asx̂rs(k − 1).

As discussed in [8], such an encoder-decoder structure is

optimal amongst all other causal structures.

B. Communication Scheme

We assume a stop-and-wait type communication protocol.

In time slot k, the source s transmits the local estimate

x̂s(k) to the corresponding destination d. The transmission

is stochastic with transmission probability ps(k) at time slot

k. Transmission events at different time slots are assumed to

be mutually independent. The transmission probability ps(k)
can be viewed as the effective transmit rate of the source s in

terms of “packets per time slot” on average. Hence, the rate

controller PCs is implemented as a probability controller.

We use the term ‘rate’ and ‘transmission probability’ inter-

changeably.

As the total rate on a link approaches the link capacity,

congestion in the link increases, which may result in packets

being dropped by routers in the network. The probability

controllers control the congestion level by varying the trans-

mission probabilities. Let ds(k) be the probability that a

packet is dropped by the network on route Rs at time slot

k. The packet drop events on route Rs at different time slots

are assumed to be mutually independent. Further, the packet

drop and packet transmission events on route Rs are assumed

to be independent for every time slot.

When a destination receives a packet, it sends back an

acknowledgment (ACK) to the corresponding source. We

assume that an ACK is received in the same time slot as the

packet was transmitted. Further, we assume that ACKs are

never lost in the network. We also assume no retransmissions

in case of packet loss. Retransmissions increase delay and

delayed information is expected to be less useful to the

estimator [13]. Finally, we assume synchronization between

each source-destination pair.

In contrast to deterministic schemes, the proposed stochas-

tic transmission scheme controls the source rate by vary-

ing the transmission probability. A stochastic transmission

scheme is a natural choice since a congested network drops

packets stochastically. Due to the stochastic rate control,

there may be instants when many sources may not transmit

resulting in instantaneous network underutilization or, many

sources may transmit at the same time resulting in instanta-

neous increase in congestion. However, due to the feedback

implicit in rate control, such instants will be few and on an

average, the network is utilized in an optimal manner.

Let the packet drop probability on a link l ∈ L at time

slot k be denoted by dl(k). The drop probability on a link

depends on both the link capacity and the total rate on the

link. As the total rate approaches link capacity, the queue

in the corresponding router becomes full and the network

becomes unstable. In such a situation, all the packets are

dropped by the router with a probability approaching 1.

To avoid such instances, routers use queue management

protocols such as Random Early Detection (RED) [6]. In

RED, routers increase the drop probability as the queue size

increases. The packet drops serve as a feedback mechanism

to rate control protocols such as TCP, which reduces the

source rate in response to congestion. In standard RED, the

link drop probability is a pre-specified increasing and convex
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function of the total rate (assuming, say, a M/M/1 queue

model).

Using the standard assumption [4] that the drop events on

various links are mutually independent, the drop probability

ds(k) on route Rs can be expressed as

ds(k) = 1−
∏

l∈L(s)

(1− dl(k)). (3)

Thus, ds(k) depends on the rates of the sources that share

the links with source s. This introduces a coupling to the

networked estimation problem. Note that ds may not be a

convex function of the source rates.

For source s and its corresponding destination d, denote

the estimation error covariances of the local estimate x̂s(k)
and the remote estimate x̂rs(k) by Ms(k) and Fs(k). Thus,

Ms(k) = E
[

(xs(k)− x̂s(k))(xs(k)− x̂s(k))
T
]

Fs(k) = E
[

(xs(k)− x̂rs(k))(xs(k)− x̂rs(k))
T
]

,

where the expectation is taken with respect to the process

noise {Ws(k)}, the measurement noise {Vs(k)} and the

initial condition xs(0). Since the pair (As, Cs) is observable,

the local estimation error covariance Ms(k) converges to a

steady state value, denoted by Ms with a slight abuse of

notation. Further, according to the decoder structure DECs,

the remote estimation error covariance Fs(k) evolves as

Fs(k) =

{

Ms(k), if a packet is received

AsFs(k − 1)AT
s +Qs, otherwise.

Thus, Fs(k) is a random variable. As a performance metric,

we consider its expected value, that evolves as

E[Fs(k)] = ps(k)(1− ds(k))Ms(k)

+ (1− ps(k)(1− ds(k))) (AsE[Fs(k − 1)]AT
s +Qs), (4)

where ps(k)(1 − ds(k)) is the packet reception probability

and the expectation is further taken with respect to the packet

transmission process and packet drop process. A necessary

and sufficient condition for the convergence of E[Fs(k)]
as (4) evolves is given by [8]

ps(1− ds) ≥ 1−
1

ρ2(As)
, pmin

s , (5)

where ps and ds are the steady state values of ps(k) and

ds(k), respectively, and ρ(X) denotes the spectral radius

of matrix X . Thus, the steady state remote estimation error

covariance satisfies the discrete algebraic Lyapunov equation

Fs(ps, ds) = ps(1− ds)Ms

+ (1− ps(1− ds))(AsFs(ps, ds)A
T
s +Qs),

where Fs(ps, ds) denotes the steady state value of E[Fs(k)].

C. Problem Statement

Let p denote the vector of all steady state transmission

probabilities, i.e. p = (p1, p2, · · · , p|S|)
T , where |S| denotes

the cardinality of set S . We consider the estimation cost

incurred for the source s as cs = tr(Fs(ps, ds)), where

tr denotes the trace. Lower value of this cost implies

better estimation performance and vice-versa. Further, the

total cost of the system Csys(p) is chosen to be the

sum of individual costs. Other choices of individual and

system costs are also possible. For ease of notation, we

will denote {tr(Fs(ps, ds)), tr(Ms), tr(AsA
T
s ), tr(Qs)} by

{fs(ps, ds),ms, as, qs}, respectively. Thus,

Csys(p) =
∑

s∈S

fs(ps, ds)

fs(ps, ds) = ps(1− ds)ms

+ (1− ps(1− ds))(tr(AsFs(ps, ds)A
T
s ) + qs). (6)

The problem is to find the optimal value of p which

minimizes the cost function Csys(p). This problem can also

be viewed as a resource (rate) allocation problem with an

objective to minimize a system cost. We are particularly

interested in decentralized solutions that scale to large net-

works.

III. ANALYSIS AND RESULTS

A. Cost Function

The cost from equation (6) is not amenable to analysis.

We begin by obtaining a closed form upper bound on it.

Lemma 3.1: The steady state value fs(ps, ds) is upper

bounded by fu
s (ps, ds) where

fu
s (ps, ds) ,

ps(1− ds)ms + (1− ps(1− ds))qs
1− tr(AsAT

s )(1− ps(1− ds))
. (7)

In particular, for scalar processes (i.e., when the state

xs(k) is a scalar), the upper bound in (7) is satisfied with

equality. For analytical tractability, we replace fs by its upper

bound fu
s in the system cost. Thus, we approximate

Csys(p) ≈ C(p) ,
∑

s∈S

fu
s (ps, ds),

where ps is the transmission probability allotted to source s.

Thus, we have the following optimization problem

SY STEM : min
p

∑

s∈S

fu
s (ps, ds(p)),

s. t.
∑

s:l∈Rs

ps ≤ cl, ∀ l ∈ L,

ps(1− ds(p)) ≥ pmin
s , ∀ s ∈ S,

where the notation ds(p) denotes the explicit relation be-

tween the drop probability and transmission probabilities.

Assuming that a feasible region exists, we can use standard

optimization techniques to obtain a globally optimal solution.

However, there are many difficulties with this approach:

1) If the drop probability ds is not a convex function of

p, then the system cost C(p) may not be convex, thus

making the problem difficult.

2) It is not scalable since each source requires informa-

tion about the transmission probabilities and process

parameters of all the other sources.

3) It requires the functional relation between {ds : s ∈
(S)} and {ps : s ∈ (S)}, which may be unavailable in

a practical scenario.
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We now proceed to transform the problem into convex form

and obtain a distributed solution.

B. Posing the Problem in the NUM Framework

To obtain a scalable solution in a distributed form, we

employ a network cost minimization framework that is

analogous to the primal formulation of the Network Utility

Maximization (NUM) framework [15]. In the minimization

framework, the transmission probabilities {ps : s ∈ S} are

regarded as resources and {fu
s (ps, ds) : s∈S} are regarded

as costs associated with utilizing the resources. Then, the

optimization problem is to distribute the resources such that

the sum of the costs is minimized.

Remark 3.2 (Advantage of the primal form): Although

the NUM framework can be applied in both primal and dual

forms, we use the primal form due to the following reasons:

• Since the communication network may be used for data

unrelated to estimation / control, the dynamics of the

distributed solution should be at the sources and not at

the links. This is important especially in heterogeneous

networks, where different sources may have different

interpretations of link prices. Thus, a single link price

controller may not be suitable for all the sources.

• The primal solution requires changes to the standard

TCP only at sources and not in the network. Thus, our

solution is practically useful since implementation of

the rate controllers can be done at the source node.

The NUM framework imposes some requirements on the

costs. First, the costs should be separable among various

sources. In other words, the cost associated with source s

should depend only on the resource ps. Second, the cost

should be positive, monotonically decreasing and convex. To

satisfy these requirements, we proceed as follows.

The costs {fu
s (ps, ds) : s ∈ S} in (7) are coupled

through the drop probabilities ds and hence are non-convex.

Therefore, we eliminate ds from the costs to make them

separable and convex. Denote by fu
s (ps, 0) the separable

cost, i.e.

fu
s (ps, 0) = fu

s (ps|ds = 0).

To include the effect of the drop probabilities, we define a

barrier of the form Bl

(

∑

s:l∈Rs

ps

)

corresponding to each link

l, and add it to the total cost. The barrier maps the congestion

level in the link to an additional additive cost to the system.

We obtain following relaxation of the SY STEM problem

USER : min
p

∑

s∈S

fu
s (ps, 0) +

∑

l∈L

Bl

(

∑

s:l∈Rs

ps

)

,

s.t. ps ≥ pmin
s , ∀ s ∈ S.

The choice of the barrier function requires some care. It

should be a monotonically increasing function of the total

rate on a link. This ensures that as the congestion increases,

the total system cost also increases. Thus, congestion control

can be achieved by minimizing the system cost. By ensuring

a steep increase in the barrier function as the rates approach

capacity of the links, the capacity constraints can be explic-

itly incorporated in the system cost. Note that the different

choices of the barrier function may change the way in which

congestion control is handled. For example, in a conservative

approach, the barrier may be high for low link rates. Thus,

the system cost is high for even low levels of congestion.

Once we have satisfied the separability requirement, we

can prove that the cost used in the USER problem satisfies

the remaining constraints. There are two terms in the cost

function, that we consider one by one.

Proposition 3.3: The cost function fu
s (ps, 0) is positive,

monotonically decreasing and convex in ps.

To ensure the convexity of the barrier function, we assume

that Bl is differentiable and denote

Bl

(

∑

s:l∈Rs

ps

)

,

∑

s:l∈Rs

ps

∫

0

tl(x)dx,

where tl is the penalty function corresponding to link l. If tl
is a monotonically increasing function of the total rate on the

link l, then Bl is convex. We will ensure this by choosing

an appropriate penalty function in Section III-D. Finally, we

note that the constraints on minimum transmission rate are

automatically satisfied.

Lemma 3.4: The cost used in the problem USER implic-

itly guarantees the constraints ps > 1− 1
ρ2(As)

.

Proof: This result is true since the cost fu
s (ps, 0)

becomes infinite when ps approaches pmin
s . This can be seen

as follows. By examining the denominator of cost fu
s (ps, 0),

we can see that it is positive and finite iff ps > 1 − 1
as

.

But the quantity as = tr(AsA
T
s ) is simply the square of

the Frobenius norm of As, which is greater that the square

of spectral norm (spectral radius) of As, i.e. as ≥ ρ2(As).
Thus, fu

s (ps, 0) is positive and finite only for ps > 1− 1
as

≥

1− 1
ρ2(As)

.

C. Solution of the Optimization Problem

We have shown that if we choose the penalty function ap-

propriately, then the total system cost in the USER problem

is positive and convex. Moreover, the problem constraints

are implicitly included in the system cost. Thus, a gradient

descent algorithm can be used to minimize the total system

cost. We propose a rate (probability) controller of the form

PCs : ps(k + 1) = ps(k)

−K
( d

dps
fu
s (ps, 0) +

∑

l:l∈L(s)

tl

(

∑

s:l∈Rs

ps

))

, (8)

where K > 0 is a sufficiently small step size. The quantity

qRs
,

∑

l:l∈L(s)

tl

(

∑

s:l∈Rs

ps

)

can be viewed as the price of using the route Rs, which is

the aggregate of prices of all the links on the route.

Remark 3.5 (Scalability): The proposed rate control pro-

tocol is scalable to large networks. The values of process
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parameters and transmission probabilities of other sources

are not required to implement the algorithm. The only

information that a source needs is the route price. This can

be implicitly or explicitly provided by the network through

the ACKs from the destination to the source.

Proposition 3.6: Let p∗ be the unique optimal point of the

unconstrained strictly convex optimization problem USER.

Then p
∗ is an asymptotically stable equilibrium point of the

probability controllers {PCs : s ∈ S}.

D. Penalty Function

Besides being monotone increasing in the rates, the

penalty functions tl should be chosen such that the problem

USER closely approximates the problem SY STEM . The

congestion in the network affects the system performance

through the drop probabilities. Accordingly, we choose a

penalty function that depends on drop probabilities. In turn,

since the drop probability dl on a link l depends on the total

rate on the link, the penalty function also depends on the total

rate on the link, as required by the optimization framework.

In particular, we choose

tl

(

∑

s:l∈Rs

ps

)

= − log
(

1− dl

(

∑

s:l∈Rs

ps

))

, (9)

where the notation dl

(

∑

s:l∈Rs

ps

)

explicitly denotes that link

drop probability depends on the total rate on the link. Note

that tl is positive and monotonically increases to infinity;

thus the barrier function is indeed convex as required. In

fact, the barrier function is given by

Bl

(

∑

s:l∈Rs

ps

)

=

∑

s:l∈Rs

ps

∫

0

− log(1− dl(x))dx.

Also, the route price is given by

qRs
=

∑

l:l∈L(s)

− log(1− dl),

= − log
(

∏

l:l∈L(s)

(1− dl)
)

,

= − log(1− ds).

Remark 3.7 (Estimating the route price): The advantage

of choosing a logarithmic penalty function is visible from

the preceding calculation. To calculate the route price, the

probability controllers PCs require only the route drop

probability ds. They do not require the prices of individual

links along the route. Thus, no explicit field in the ACKs

is required to collect price information from the links. The

route drop probability can be estimated just based on whether

ACKs are received or not.

The barrier Bl is the integral of a logarithmic function

between the interval [0,1]. Therefore, it does not diverge as

the congestion increases. Ideally, when the network conges-

tion is large, the barrier should be large as compared to the

estimation cost. Thus, we scale down the cost (analogous to

increasing the barrier function) fu
s (ps, 0) by a constant βs to

satisfy this property. We choose βs = Ns(qs −ms(1− as)),
where Ns is a large positive constant. The constant βs is

large when the process is more unstable or the process

and measurement noises are large. Thus, it acts like a

normalization factor to the estimation error covariance.

With this relaxation, the optimization problem becomes

USER : min
p

∑

s∈S

1

βs

fu
s (ps, 0) +

∑

l∈L

Bl

(

∑

s:l∈Rs

ps

)

,

and the probability controller becomes

PCs : ps(k + 1) = ps(k)

+K

(

1

(1− as(1− ps(k)))2
+Ns log(1− ds(k))

)

. (10)

E. Modified TCP-like Probability Controller

As a final step, we show how to implement the probability

controller structure in (10) using a TCP-like structure under

low network congestion conditions. In this regime, the route

drop probabilities are also low, {ds ≪ 1, s ∈ S}. In this

case, − log(1 − ds) ≈ ds and the route drop probability

becomes the route price. Under this condition, the probability

controller in (10) becomes

PCs : ps(k + 1) = ps(k)

+K

(

1

(1− as(1− ps(k)))2
−Nsds(k)

)

. (11)

We propose a stochastic counterpart of (11) that varies

the transmission probability based on whether ACKs are

received or not. Consider the following TCP-like probability

controller, denoted by PCTCP
s

• If a packet is not transmitted in time slot k, then set

ps(k + 1) = ps(k).

• If a packet is transmitted and ACK is received, then

set

ps(k + 1) = ps(k) +K.

• If a packet is transmitted and ACK is not received,

then set

ps(k + 1) = ps(k)−K(Ns(1− as(1− ps(k)))
2 − 1).

The actions of the probability controller PCTCP
s are intu-

itive. The transmission probability is varied only if a packet

is sent. If a packet is successfully transmitted (i.e an ACK

received), then the transmission probability is increased by a

small constant amount. However, if the transmission fails

(no ACK is received), this indicates congestion and the

probability is reduced. Note that no explicit estimation of

the drop probability is required.

Proposition 3.8: The mean rate achieved by the TCP-

like probability controller PCTCP
s is upper bounded by the

steady state rate of probability controller PCs in (11).

The modified probability controller is similar in structure

to the standard TCP controller, which also regulates the rate

based on the received ACKs. For rate control, the TCP
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Fig. 2. The network model used for simulation.
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Fig. 3. Estimation costs achieved by various rate controllers.

controller changes the window size whereas the proposed

probability controller changes transmission probabilities. The

proposed probability controller performs an additive increase

in the probability similar to the additive increase of window

size in the congestion avoidance phase of TCP. The rate

decrease schemes on detecting a packet loss are different

in the two cases. The TCP-like form of the probability

controller can be easily implemented in current networks due

to its resemblance to the TCP controller.

A key difference between the two rate controllers is that

TCP involves retransmissions as opposed to no retransmis-

sions in the proposed protocol. This can be attributed to

the different end-objectives, i.e. reliability for TCP and esti-

mation performance for the proposed probability controller.

Nevertheless, both work in a distributed manner to solve an

overall network optimization problem.

F. Simulation Results

Simulations were performed in Matlab to test the protocol

performance for the network shown in Fig. 2. There are four

source destination pairs and five links in the network. Vector

processes evolve at sources S1 and S2 and scalar processes

evolve at sources S3 and S4.

For simulating the packet drops, we use a crude form of

the standard RED [6] protocol. In RED protocol, the drop

probability on a link is a linear function of the queue size,

which depends on the link utilization factor. We assume a

M/M/1 queuing model to calculate the queue size.

Fig. 3 shows the temporal variation of the total cost

C(p(k)) for the original probability controller PCs, the

TCP-like probability controller PCTCP
s and the standard

TCP rate controller. We observe that original controller

achieves a steady state minimum cost. The cost achieved

by PCTCP
s fluctuates with its mean coinciding with the

steady state cost of the original controller. Further, there a big

performance margin between probability controllers and the

TCP controller. For many choices of system parameters, it

was observed that the TCP controller results in an unstable

system and the cost becomes infinite while our controller

maintained stability. Thus, standard TCP protocol is not well

suited for networked estimation and the proposed controller

achieves a better performance.

IV. CONCLUSIONS

We studied the problem of rate control for networked

estimation in presence of congestion. A stochastic rate con-

trol protocol was proposed that optimizes the estimation

performance of the network by varying the source trans-

mission probabilities. The protocol was developed using a

minimization framework analogous to NUM framework and

is scalable for large networks. An approximated controller

analogous to the standard TCP controller was also developed.
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