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On the Optimality of Sequential Test with Multiple Sensors

Vaibhav Katewa and Vijay Gupta

Abstract— We study the problem of sequential detection for
binary hypothesis testing using multiple sensors. We consider
a randomized sensor selection strategy in which one sensor
can be active at any given time step. We obtain an optimal
sequential test using dynamic programming and show that it
corresponds to the Sequential Probability Ratio Test (SPRT)
when the sensor selection process is stationary. Further, we
prove that Wald-Wolfowitz theorem holds true for sequential
test with multiple sensors.

I. INTRODUCTION

With the advance in communication and processing tech-
nology, networks with distributed components are being pro-
posed widely. The different components of such distributed
systems work in cooperation to achieve a particular objective.
The class of hypothesis testing problems is one such appli-
cation [5] where multiple sensors collect information from
the environment. This collective information is used by the
system to infer the true hypothesis. Using multiple sensors
for detection may be desired as different sensors may provide
different “views of the world”. For example, a wireless
sensor network can perform an object detection using the
collective information from multiple sensors distributed over
a geographical area. Presence of multiple sensors increases
reliability, survivability and coverage of the system.

The use of multiple sensors introduces new challenges
like sensor management, sensor scheduling, sensor selection
and sensor fusion. Many works have focused on sensor
management. The problem of sensor management for linear
estimation has been widely considered (see, e.g. [1], [3], [4]
and the references therein). In [2], [5], the authors study
a decentralized detection problem where the fusion center
implements an optimal policy to combine information from
different sensors.

In the present work, we use a sequential detection rule to
perform a simple binary hypothesis testing using multiple
sensors. Sequential tests are the class of tests where the
number of observations are not fixed, but can vary from one
experiment to another. More accurate decisions can be made
by taking large number of observations. However, there is a
cost associated with taking observations and sequential tests
resolve the trade-off between accuracy and experiment cost.
A well known example is the Sequential Probability Ratio
Test (SPRT) [8] developed by Wald. SPRT is optimal in the
sense that for a given error performance, it requires minimal
number of observations on an average [9]. We extend the
conventional SPRT to the case when multiple sensors are
used for taking observations.
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There seem to be two main approaches in the literature
to solve sequential detection problems. One approach is
to formulate the sequential test as a solution to Bayesian
optimization problem [10], [11]. Dynamic programming is
applied to minimize the Bayesian cost. The dynamic pro-
gramming introduces complexity in the solution, but the
solution is optimal. SPRT is an example of tests obtained
through this approach. Another approach is to analyze the
sequential detection problem in asymptotic regime, where the
cost of taking observations is very small [11], [6]. Although
this approach results in tractable solutions, the asymptotically
optimal results may not be optimal outside the asymptotic
regime. Further, there may be situations in which there
are limits on the average number of observations from the
sensors. In such a scenario, the asymptotic approach cannot
be applied. Therefore, we take the dynamic programming
approach to solve the sequential detection problem.

Many works ([3], [14], [13] and references therein) have
focused on sensor selection and management for detection
purposes. To manage the sensors, we choose a probabilistic
sensor selection strategy in which one sensor is chosen
randomly among multiple sensors at each time step. Further,
for tractability, the sensor selection probability distribution
is assumed to be stationary throughout the experiment. The
sensors have different costs of taking an observation that are
constant throughout the experiment.

We formulate a Bayesian optimization problem and obtain
SPRT as an optimal solution to the problem. The closest
work to ours seems to be [7], where the authors present
a sensor selection strategy for multiple hypothesis testing.
However, they perform an asymptotic analysis and obtain
SPRT as a asymptotically optimal sequential test. An impor-
tant contribution of our work is that we show that SPRT is
optimal outside the asymptotic regime also using dynamic
programing.

II. PROBLEM FORMULATION

We now formally define the problem setup. The notations
used here are motived from [10].

Notation: Random variables are denoted by uppercase
letters (eg. Z) and their realizations are denoted by low-
ercase letters (eg. 2). Let Z! = (Z;,Zi1, -+ ,Z;) for
0 < 4 < j denote a sequence of random variables and
z] = (zi,2it1, -+ ,zj) denote a realization of this random
sequence. Let Ez[.] and Ez[.|y] denotes unconditional ex-
pectation w.r.t. Z and conditional expectation w.r.t. Z given
Y = y, respectively. Further, R™ denotes the non-negative
real line.



Hypothesis Space: Let ® = {6p,01} denote the binary
hypothesis space or a set of all possible states of nature.
Let © denote the random binary hypothesis and 6 denote a
realization of the random hypothesis. Let hypothesis {6, 61 }
be denoted by {Hy, Hy}. Let the a-priori probabilities of Hy
and H; be 1 — 7 and 7, respectively.

Action Space: Let A denote the action space or the set
of all possible decisions available when the test is stopped.
Let a € A denote a general state of nature. For the given
problem, A = & = {6y, 6 }.

Sensor Selection Space: Let K be the total number
of sensors available for taking measurements. Let S/
(Si; Sit1,---,8;) for 0 < i < j denote a random sensor
selection sequence, where S; denotes the random sensor
selected at time step j. The sample space of S; is the set
S = {1,2,---,K} for all j > 0. At each time step, a
single sensor is chosen with the stationa}r{y probability mass

distribution p = (p1,p2, -+ ,px) with > p; = 1, where p;

is the probability of selecting sensor ¢ glt_;ny time step.

Observation Space: Let Xij = (Xi, Xit1, -+, X;) for
0 < ¢ < j denote a random observation sequence. The
sample space of X; is denoted by X for all j > 0.
At each time step, the observation can be taken by any
one sensor with the probability distribution define above.
Each observation is assumed to be i.i.d. conditioned on
the hypothesis and selected sensor. Let f/(z)) denote the
probability density of X}, under hypothesis H; and sensor j
fort=0,1and j =1,2,--- | K.

Loss Function: Let L(0,a) : ® x A — RT denote the
finite, non-negative loss function when the true state of nature
is 6 and the terminal decision is a. For simplicity, we assume
a finite non-negative loss function

L(6y,00) =0,
L(Bo,61) = wor,

L(6,,61) =0,
L(61,00) = wro.

Observation Cost: Let the cost of measurement from
sensor j be d; for 1 < j < K. Each d; is constant,
finite, and non-negative. Let C] = (C;, Cit1,---,C;) for
0 < ¢ < j denote a random observation cost sequence.
The random variable C; is distributed on the sample space
C ={dy,ds, - ,dg} with the distribution p for all j > 0.

K
Let the mean observation cost be denoted by d= > pid;.
i=1

Stopping Rule: Let the stopping rule be denoted by a
sequence of functions ¢ = (g, v1(x1,51), pa(27,57), )
where ¢; : X xS = {0,1}. Thus, at time step j, the
rule ¢; decides to stop or continue based on the obser-
vations collected and the sensors used till that time step.
If ;(z],s]) = 1, then the test is stopped, otherwise we
continue to take one more observation. The stopping rule
can be defined alternatively by a sequence of functions ) =
(Yo, V1 (21, 81),2(23, 83),--+), where ¢; : X7 x &7 —
{0,1} is the stopping rule at time step j, given that the test
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is not stopped till time step j — 1. Formally,

¥i(x],8]) =(1— o) (1 — g1 (21, 51))(1 — pa(a?, s7))
(1)
T (1 - @j—l(l’{_l, Sjl'_l))wj(x]L Sjl)

Stopping Time: The stopping time N can be define as
N =min{k : pp(a¥, s%) =1} = {k : ¢ (aF,s5) = 1.}

Terminal Decision Rule: When the test is stopped
by applying the stopping rule, a decision between the
available hypothesis is made by the terminal decision
rule(TDR) based on the available observations and the sen-
sors used. It is denoted by a sequence of functions & =
(80,01(21,51), 62(2%,8%),--+) where §; : X7 x 8§ — A
The sequential detection rule is defined by the pair (¢, ).

Risk Function: As discussed before, there exists a trade-
off between the detection accuracy and the observation cost
as we take more observations. To incorporate this trade-off,
we define the risk function as

Rir (£,8) =3 Fe x [%(XL s1) @

(L(©,8;0x7, 80) + i Ci(5i>>] '

Problem Statement: The goal is to find a sequential
detection rule (y,d) with the structure defined above, that
minimizes the overall risk R(m, (p,0)) of the experiment.
This solution is referred to optimal/Bayes w.r.t. the risk R.

III. OPTIMAL SOLUTION VIA DYNAMIC PROGRAMMING

In this section, we solve the above optimization problem
through dynamic programming and derive an optimal se-
quential test. We first proceed by finding the optimal terminal
decision rule. o

Theorem 3.1: Let 6;(x],s]) denote the Bayes rule (op-
timal rule that minimizes the Bayes risk) for the bi-
nary hypothesis testing problem w.r.t. hypothesis space &,
the action space .4, the observation space X, the sensor
space S and the loss function L based on observations
2] and selected sensors s]. Then, for any fixed stop-
ping rule ¢, the risk R(m,(¢,d)) is minimized by 6 =
(507 51(1‘1, 51)’ 52(‘@%’ S%)’ e )

Proof: See [10](section 7.2, theorem 1) for details. W

We observe that the optimal terminal decision rule is a
fixed sample size rule and is independent of the stopping
rule. Now we find the optimal stopping rule. We truncate
the test at some finite time step .J in the sense that at most
J observations are available for the test. Mathematically, it
can be stated as

(i) =1 (27) =1,

> v

Jj=0

where the superscript indicates that the test is truncated
at time step J. We use dynamic programming to find the



optimal truncated stopping rule. Then, we let J — oo and
obtain the optimal non-truncated stopping rule.

We minimize the truncated risk using backward recursion
which is described as follows. Suppose we have taken J
measurements. Then, no more measurements can be taken
and we incur a risk by using the Bayes terminal decision
rule based on (z{,s{). If we reach J — 1 step, then we
continue if the current risk incurred based on (:17‘] 1 ) is
more than the expected risk incurred given (ac] 1, 71), of
taking one more measurement and then stopping; otherwise
we stop at J — 1 steps. Based on this comparison, we
have found the optimal ch‘Ll. Now suppose that using this
recursion, we have found (¢, 1, -+, ¢7). If we have taken i
measurements, then we continue if the current risk incurred
based on (z%,si) is more than the expected risk given
(x%,s%), of taking one more observation and then using the
stopping rule (7, -+ ,¢7) from there on. In this way,
we can find ] recursively. We now present the analysis
formally.

The posteriori probability that ¢ is the true state of nature
given (29, s7) is denoted by 7 ol s and is given by

w1 £

3)

T J =
zl,sl

T lfll fii(@i) + (L —m) _1%[1 fo' (i)

As stated in Theorem 3.1, the optimal terminal decision
rule when the test is stopped is a fixed sample size Bayes
rule. For binary hypothesis testing, it can be stated as [10]

. Wo1
0o if Mg g < —————,
U D71 wor 4&]1010
JooJy — . 01
0;(x1,81) = § any if Tgg=—"7" ®
D1 wey + Wi
01 otherwise.

Further, let the conditional minimum risk of stopping at time
step j and using the Bayes decision rule in (4) based on
(1, 5)) be denoted by U;(z],s); 7 ) It can be defined as

. . wo1
U1, s15m) = lf Trmi,s{ wo1 + Wio
wer (1 — Ty Sjl-) + Z ci(s;) otherwise.
’ i=1

&)

Note that the minimum risk depends explicitly on the a-
priori probability 7. Further, let VJ (:cl,sjl, m) denote the
conditional minimum risk based on (ml, s7) and using the op-
timal stopping rules (ap] ,gpj FEPREEIN o p7) for a test truncated
at time step J. We use dynamic programming to compute the
stopping rule and the conditional minimum risk recursively.
If we have obtained J measurements, then we stop
taking new measurements and clearly Vi (z{,s{;7) =
Uj(z{,s{;m). If we are at step J — 1, then we can
either stop or continue. If we stop, we incur a risk
Us_1(x{™" {71 7). If we continue, the expected risk will

Ty 55
be Ex, s, [UJ(X1 LS m)|(xf 71 s{71)]. Thus, comparing

)
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these two quantities, the stopping rule and minimum con-
ditional risk can be calculated. Continuing the recursion, if
we have taken J — 2 measurements, then $7 , and Vi ,
can be obtained by comparing Ujs_o(z]™? 51‘] 2.7) with
Ex, s, V7 (X{7 877 m)|a! 72, s{7%]. In general,
the dynamic programming recursion can be described as

1 if U], s
@3](‘1‘]1’5]1) = SEX;‘+1, J+1[V (Xﬁ_l Sj+l )|l’1,81]
0 otherwise,
(6)
Vj‘](x{,s{;ﬂ) :min{U-(x{,s{; ), @)
EX]'+1, 3+1[V]+1(X]+1 SJ—H )le’sl]}
with Vi (z{,s{;7) = Us(x{,s{; ). Thus, Vi’ (r) denotes

the minimum risk of a sequential detection test that is
truncated at time step J.

We have found an optimal sequential test for a truncated
problem. Now, we intend to increase the truncation step J
and obtain the result for an non-truncated problem. First,
we show that the minimum unconditional risk sequence
{V5 (7)}52, converges to a finite value.

Lemma 3.2: Vg () is a non increasing function of .J

V() = Vi (m) = V2 (r) = V() - ®)
Proof: The theorem can be proved using an induction
on V¥ and is omitted due to space constraints. ]

Since Vj/ (7) > 0, the sequence in (8) converges to a finite
value Vi ().

Theorem 3.3: If the loss function L(6, a) is bounded, then
lim Vg (7) = V© (7).

J—o0
Proof: The proof is similar as stated in [11] (theorem
5, chapter 7) and is omitted due to space constraints. [ ]

We showed that truncated Bayes risk converges to a finite
value. Thus, we know that a non-truncated Bayes test exists.
Now, we state an important property of the Bayes risk.

Lemma 3.4: The functions Vi (7), V®(7)
R(m, (¢”,6)) are concave functions of 7 € [0, 1].

Proof: The proof follows from the fact that each of
these functions is a infimum over a class of functions that
are linear in 7 and the definition of concave functions. H

The sequential stopping rule in (6) has an abstract structure
and is not implementable. Note that the pair (X%, Sy) are
i.i.d. give the hypothesis ¢ with probability density ps f (zy).
In remaining section, we show how to use this conditional
independence property to reduce the general test to a more
tractable sequential test structure. We start by stating the
independence property.

Lemma 3.5: If (X7, S7) are ii.d. with density p,f;(x)
and 7 is the a-priori probability that 6 is the true state of na-
ture, then the distribution of (X7, S7,,) given (X7, 5{) =
(1, s]) is iid. with density psf;(z) and 7, _; being the
a-posteriori probability that 6 is the true state of1 nature.

Proof: The proof follows from Bayes theorem and is
omitted due to space constraints. [ ]
The lemma states that when we have obtained the measure-
ments 2 from sensors s7, the only thing that changes about

and



the distribution of future observations is that the a-priori
hypothesis probability changes from 7 to 7, i sl . It suggests
that 7 sl should be the sufficient StatIStICS for the stopping
rule. We "have already shown in (4) that this is indeed a
sufficient statistics for the terminal decision rule.

As shown in (6), the stopping rule depends upon the
the risks U and V. To show that 7 s is a sufficient

statistic for stopping rule, we show that U (:El,s17 ) and
V"(xl,s17 ) depend on (7, s7) only through T, and a
common cost term. Following lemma states this result and
is a generalization of the corresponding lemma in [10].

Lemma 3.6: 1) w o s |(z* y =
. . J+177 J+1
2) Uj(wjlvsjl; ) - UJ 1_(:62782’7%1,81) + 01(81) =
J
L= U0(7rmi SJl) + ;ci(si).
3) V/(af, s VJ_I(JU;S%;?Tm,sl) + ci(s1) =

(7r3 J)"'Zcz( i)

= T .k (k.
Ty,87

77T)

VOJ

Proof:

1) Follows using the definition of a-posteriori probability
in (3).

2) This part follows directly by using the definition of
U;(z9, s];m) in (5) and the result of part 1.

3) The result can be proved using induction on the
variable k = J — j. For details, see [10](section 7.5,
lemma 2)

|
The following lemma presents a recursive expression to
calculate Vj'.

Lemma 3.7:

VE]JJrl(ﬂ-) = min{Uo(ﬂ'), &+ EXLSI [‘/E)J(FXI;SI )]}
Proof: The lemma can be proved using the definition
of V;/ in (7) and part 3 of lemma 3.6.

Vi (1) = min{Uy(n),Ex, s, [Vi T (X1, S1; 7))}
= min{Up(7),Ex, s, [Vo (mx,,5,) + C1(S1)]}
= min{Uy(7),d + Ex, s, [V§ (7x,.5,)]}-

|
We now use these results to present an alternate form of
stopping rule that explicitly depends on the a-posteriori
probability 7 SE
Let Q7 denote the set of all prior distributions 7 for which
the test is stopped without taking any observations. Using
lemma 3.7, we have

Q& {1V (7) = Up(n)}.

stopping rule @7
-, @7z, s{)) for a problem

©))

Theorem 3.8: The optimum
(41257 (,51‘](331, 31)7 (ﬁg(ﬂf%, S%)
truncated at J is given by

. J—7j
1 if Tyi i € Q77
0 otherwise.
Proof: From (6) and (7), the test is stopped at j if

J
Vi

(10)

(z],8];7m) = U;(a], s1; 7).
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From lemma 3.6 the above condition is equivalent to
J—j R o
VO (Trm:]l,sjl) - Uo(ﬂ-mjl,s{ )7

and the theorem follows from definition (9). |
Thus, we see that the truncated stopping rule depends only
on ;i i Now we generalize this result to obtain a non-
truncated stopping rule. Since V() are non-decreasing
(lemma 3.2), the sets 7 satisfy

Qo0 o

Further, since Jlim Vi (m) = V§e(r), from definition (9)
hde el

we have
Jli_)rr;OQJ =0 ={7:V°(n) =Uo(m)}. (1)
Also, lemma 3.7 can be generalized as
Vo® () = min{Up(n),d + Ex, s, [V5* (7x,.5,)]}.  (12)

Equation (12) represents the fundamental equation of dy-
namic programming for the sequential detection problem for
the randomized sensor selection.

As a result, the non-truncated stopping rule becomes

{

As we expected, the stopping rule depends only on whether
the posteriori probability e is in the fixed set Q*° o
not. For a rigorous treatment of the limiting stopping rule
see [10].

Although we have presented the optimal stopping rule
explicitly in terms of o ], we only have an abstract
characterization of the set Q in (11). To implement the
sequential test, we need to explicitly find this set of prior
distributions. In the next section, we show that the set Q>
can be characterized by two thresholds and the optimal
Bayesian sequential test corresponds to an SPRT.

1
0

if

otherwise.

. N oo
Tyi o <2y

) (13)

Pj(x1,81) =

IV. OPTIMAL SEQUENTIAL TEST AS AN SPRT

In this section, we show that the optimal sequential test
developed in the previous section can be reduced to SPRT
which can be easily implemented. We proceed by finding the
set 2°° explicitly. Let the term

W(r) 2 d+Ex, s [V5(rx,,s,)]

represent the minimum risk over all the sequential tests that
take at least one observation. Using this definition and (12),
the set {2°° can be equivalently defined as

O ={r: Up(r) < W(m)}.

To characterize this set, we need to first characterize the
functions Uy () and W (). The function Up(7) can be easily
obtained through (5) and consists of two linear parts

. Wo1
w1 if < —,
Ug(m) = wo1 + Wio (14)
wor(1l —7) otherwise.

Next, we proceed by stating some properties of W (7).



Lemma 4.1: The function W (r) is continuous and con-
cave in [0,1] and W(0) = W (1) = d.

Proof: The proof of concavity of W () is similar
to that of lemma 3.4. Continuity of W (x) follows from
its concavity. Further, from (12) and (14) we have 0 <
V5o (m) < Up(m) < wyon. Using this relation, we obtain

0<Ex,s[Vi(rx,.s) =W(r) —d

<wioEx, s [7x,,5,] = wor.

Thus, as 7 — 0, W(m) — d. By symmetry, same arguments
can be made for T — 1. |

Since, W () is concave, continuous and W (0) > Up(0),
the equation W (m) = wiom has at most one solution in
the interval [0, ;=L —]. Denote 7, as the solution of this
equation if it exists. It a solution does not exist, then define
wp as —2L— Similarly, 7ry; is defined as the solution of the

wo1+w
equatioﬁ) W(;?) = wg1 (1—m) in the interval [—*0L— 1] if it
. From the preceding

. R w wo1+wio’
exists, otherwise it is defined as 01
A wo1+wio
arguments, it follows that

Wo1

O<mp, < ———m—
wWo1 + W10

<my <1, (15)

and the set 2°° can be specified by the two thresholds as

Q> = [O,WL]U[’/TU,l]. (16)

A. Sequential Probability Ratio Test

We define the standard Sequential Probability Ratio Test
(SPRT)([8] as a particular class of sequential decision tests.

Let the likelihood ratio based on measurements x and sensor
s7 be defined as

ps z f z
. Aan
H p‘z, Zj H z'
Then, SPRT with thresholds A and B, denoted by
SPRT(A,B) with 0 < A <1 < B < oo is defined by

the stopping rule ¢ and terminal decision rule ¢

{0 if A<Lals)<B
.‘T‘],SJ = ! v 7 18
SDJ( 1,51) {1 otherwise. o
o\ Jon it Ljads) > B
5i(adsT) — 1) 91 ’ 19
i (21, 51) {00 if Lj(a],s]) <A "

Thus, the test continues till the likelihood ratio stays between
the two thresholds. When the test is stopped, H; is accepted
if L; > B and H) is accepted if L; < A. We now show the
equivalence between the optimal sequential Bayes test and
SPRT.

Theorem 4.2: [10] The optimal sequential detection rule
(@, 5) as given in (13) and (4) for 7, < w < 7y is equivalent
to SPRT(A, B), where

(1—m)my

(1 —m)mg
A= 7l —7y)’

— = d B=
(1l —7g) an

(20)
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Proof: If mp, < m < my, then (A, B) satisfy 0 < A <
1 < B < oo. Using (16), the stopping rule in (13) can be
written as

PR 0 if
@(wi,s{):{ '

1 otherwise.

T < T i < 7Ty,

Further, (3) can be rewritten as

L, (xlvsl) .
wLj(x], ) + (1 —7)

Using the above relations and (20) , it is easy to see that
the relation n; < Tyd s < my is equivalent to A <
Lj(x{,s{) < B. Thus the stopping rules in (13) and (18)
are identical.

Further, using the relation in (15), it is easy to see that the
terminal decision rules in (4) and (19) are identical. |

The equivalence of the optimal sequential detection rule
(¢,6) and SPRT(A, B) allows a simple tractable form of
the test in terms of the thresholds. The thresholds 7 (A)
and 7y (B) depend upon the woi,wip, the sensor costs
d = (di, - ,dk) and the sensor selection probabilities
p = (p1, - ,pK ). However, the closed form expression of
7wz, and 7y in terms of these quantities is not tractable. To
overcome this problem, we observe that the standard Wald’s
approximations that approximate the thresholds in terms of
the error probabilities, also hold true for the randomized
sensor selection sequential test. Thus, we have

Moi o =
1°°1

o 11—y
and B = .
1-— (67 (67}

A=

21

where, ag = P(accept Hq|Hj is true) denote the probability
of false detection and oy = P(accept Hy|H; is true) denote
the probability of miss. It has been shown that for large
number of observations (low error probabilities), the above
approximations are good.

We now show that the standard Wald-Wolfowitz inequality
[9], which establishes the optimality of SPRT also holds true
for the proposed randomized sensor selection sequential test.
We extend the ideas presented in [10] to establish this result.
We rewrite the conditional risks as

R(0;,(2,8)) = E [L(6;, 65 (X7, )]

N
E > Ci(S
i=1

where N is the random stopping time. Since C;(S;) is
an i.i.d. random sequence and N depends on CY(S7) and is

independent of C%5,(55%;), we have [12]

@)]7 J=01

N
E |3 Ci(SOI(H;, ¢)| = BIC((S)EIN|(H;, )]
i=1
= d E[N|(H;,®)] j=0,1
Thus, the conditional risks can be rewritten as
R(907 (@a 8)) = w01a0(¢7 8) + JE[Nl(HOv @)]7 (22)
R(01,($,0)) = wioan (¢,6) + d E[N|(H1,9)].  (23)



Now we state the Wald-Wolfowitz theorem.

Theorem 4.3: Let ($,6) be SPRT(A, B) and (i, §) be any
other sequential rule with random sensor selection for which
ao(p,8) < ag(p,6) and o (p,8) < a1(,8). Then,

E[NKHOv 90)] 2 E[NKHO; 95)]7

E[N|(Hy, )] > E[N|(H:, $)).

This result is intuitive and follows from the Bayesian
optimality of the (3, ) which is equivalent to SPRT(A, B)
as shown in theorem 4.2. To formally prove the statement,
we denote the explicit dependence of the thresholds and
W(r) on w = (wp1,w1p),p,d by 7r(w,p,d), my(w,p,d)
and W (m;w,p,d). To prove the theorem, we first prove the
following properties of the thresholds. These results are the
same as presented in [10].

Lemma 4.4: For fixed w and p, 7p(w,p,d) and
7 (w, p, d) are continuous functions of d, and 7, (w, p,d) —
0 and 7y (w,p,d) — 1 as d — 0.

Proof: The proof is similar to that presented in
[10](section 7.6, lemma 3 ) and is omitted due to space
constraints. [ ]
Using the properties in the above lemma, we state the relation
between the thresholds and the test parameters 7, w, p, d.

Lemma 4.5: Foragivene >0and0 < A <1< B < o0,
there exist

1) 7w, w,p,d with 0 < 7 < € such that (20) holds true,
2) 7, w,p,dwith 1 —e <7 <1 s.t (20) holds true.
Proof: See [10](section 7.6, lemma 4) for details.

We now state the proof of theorem 4.3.

Proof: (of Theorem 4.3) Using lemma 4.5, we can find
m,w and d such that (20) is satisfied and 7 < e. Since (¢, 5)
is equivalent to SPRT(A, B) (from theorem 4.2) and is the
optimal sequential rule, we have

and

0 < R(r, (¢,0)) — R(m, (¢,9))
= mwio(e1 (¢, 6) — o1 ($,9))
+ (1 = m)wor (ea (¢, 8) — a1 ($,9))
+ 7d(E[N|(Hy, ¢)] — E[N|(H1, $)])
+ (1 — m)d(E[N|(Ho, )] — E[N|(Ho, ¢)])
< nd(E[N|(Hy, )] — E[N|(Hy1,9)])
+ (1 = m)d(E[N|(Ho, ¢)] — E[N|(Ho, $)])-

Since the above statement is valid for 7 arbitrarily close to
zero, we have E[N|(Hy, ¢)] > E[N|(Hy, ¢)]. Further, using
symmetry and part 2 of lemma 4.5, we have E[N|(H1, )] >
E[N|(H1, ¢)], thus completing the proof. [ |

Thus, the stationarity of the probabilistic sensor selection
process results in SPRT being the optimal test, as it was the
case with single sensor case. With multiple sensors, we have
more degree of freedom to choose the sensors and improve
the test performance.

V. CONCLUSION

We have obtained an optimal test for binary hypothe-
sis testing using multiple sensors. When a single sensor
is chosen randomly at each time step with a stationary

287

distribution, the optimal test reduces to SPRT. Further, we
prove that Wald-Wolfowitz theorem can be extended for
the test involving multiple sensors. We plan to extend the
study by characterizing the average stopping time and the
experiment cost of the sequential test and optimizing it over
the sensor selection distribution. Thus, we plan to obtain a
sensor selection strategy that optimally balances the trade-off
between the sensor costs and the sensor performance.
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