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a b s t r a c t

We study the problem of congestion control in a communication network that is supporting remote
estimation of multiple processes. A stochastic rate control protocol is developed using the network
utility maximization (NUM) framework. This decentralized protocol avoids congestion by regulating
the transmission probabilities of the sources. The presence of estimation costs poses new challenges;
however, for low congestion levels, the form of rate controller resembles that of the standard TCP rate
controller. Stability of the protocol is analyzed in the presence of fixed network delays.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The architecture and protocols in a communication network
should ideally depend on the objectives of the end users. Tradi-
tionally, such networks were used with the sole goal of reliable
data transfer. More recently, such networks have been proposed
to be used in control and estimation applications in the so-called
Networked Control Systems (see, e.g., the special issue Antsaklis &
Baillieul, 2007 and the references therein). In such applications, the
performance metric is a complicated function of delay, through-
put, and reliability; hence, traditional network protocols may not
be suitable. For both the caseswhen the communication network is
designed specifically for estimation or control, and when the com-
munication network is shared with data unrelated to such appli-
cations, it is of interest to design network protocols that optimize
the performance relevant to these applications.

However, most of the research in Networked Control Systems
so far has focused on analyzing and designing a single networked
control system in isolation. While this has led to important foun-
dational results, it has ignored the new problems that may arise
when multiple such systems operate over a common communi-
cation network. As an example, networked communication may
give rise to congestion or MAC delays. Such effects will impact the
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performance of every networked control system and in fact, will
couple their performance even though the systemsmay not be dy-
namically coupled. It is, thus, of interest to study the impact of
communication network protocols on the performance ofmultiple
control systems sharing a common network, and further, de-
sign network protocols more suitable for estimation and control
(Garone et al., 2007; Schenato et al., 2007).

In this paper, we focus on a rate control protocol suitable for an
estimation oriented cost function. We consider multiple systems,
each of which consists of an estimator that remotely estimates the
state of an associated process. A sensor collocated with each pro-
cess transmits information over a shared communication network
to the estimator. The network has capacity constraints for every
link. Such a capacity constrained network may result in conges-
tionwhen the network load increases. Congestion results in packet
losses and delays, which adversely affect the estimation perfor-
mance.We show that traditional rate control protocols such as TCP
may not be suitable for optimizing estimation performance, and
propose a new distributed rate control protocol that can co-exist
with existing rate control protocols.

The problem of congestion control has been well studied for
communication networks (see, e.g., Jacobson, 1988). TCP (RFC,
1981) is the most widely used congestion control protocol on the
Internet. While originally an engineering heuristic, TCP has now
been reverse engineered to show that it is a distributed solution
that optimizes a particular utility function (Kelly, 2001). The chief
tool in this regard is the Network Utility Maximization (NUM)
framework (Kelly et al., 1998) which transforms the end objective
to an optimization problem with constraints. The communication
protocols are the distributed solutions to these optimization prob-
lems (Chiang et al., 2007).
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The primary aim of traditional TCP is reliable transfer of data,
even at the expense of delays. For estimation and control, it
may be more useful to have a lower reliability, but a higher
throughput. Moreover, not all processes need to transmit data at
the same rate to achieve the same estimation error covariance.
Thus, issues such as fairness relevant to traditional TCPmay not be
applicable. In fact, using TCP for estimation purposes may result
in instability of the estimation error covariance. Because of these
reasons, designing an estimation oriented rate control protocol is
not simply amatter of substituting the estimation error covariance
as a cost function instead of the throughput. Our proposedprotocol,
while sharing the formal structure of TCP protocols, considers
these issues directly. The proposed protocol is implemented at the
transport layer of the standard OSI layer stack, and thus, preserves
the layered structure of the network.

To ensure that the proposed protocol can coexist with the
standard TCP, we use a cost minimization framework that is
analogous to the standard NUM framework. The total cost that the
rate control protocol aims tominimize includes both an estimation
performance cost and a congestion cost. The work closest to ours
is that of Al-Hammouri et al. (2006) which presents a bandwidth
allocation scheme by using a dual form of NUMproblem. However,
our solution is in the primal form and is similar to the structure
of the standard TCP protocol. Moreover, we present a stochastic
transmission scheme as opposed to the deterministic transmission
scheme in Al-Hammouri et al. (2006).

We also come up with conditions on network delay and system
parameters for which the original protocol remains stable. The
delays can be time varying in realistic networks. However, we
analyze the stability of the systemwith fixed delays for tractability.
Although it is a special case, fixed delay analysis is important and
has a rich history for standard TCP (Chiang et al., 2007; Johari &
Tan, 2001; Low & Lapsley, 1999; Vinnicombe, 2002).

The main contributions of the paper are as follows
• Wepropose a probabilistic rate control strategy and evaluate an

estimation error measure.
• Using the NUM framework, we obtain a scalable rate control

protocol that allocates rates optimally such that an estimation
error metric is minimized.

• The protocol is developed in primal form and we show that
under low network congestion, it resembles the structure of the
standard TCP protocol.

The rest of the paper is organized as follows. In the next section, we
describe the problem setting with random delays and formulate
an optimization problem. In Section 3, we propose a distributed
solution to the problemusing the NUM framework and present our
analysis results. In Section 4, we obtain conditions underwhich the
network is stable for fixed delays and present simulation results.
We conclude in Section 5.

2. Problem formulation

Network and process setting: Consider the problem set up shown
in Fig. 1. Let all the sources form the source setS.With every source
s 2 S, associate a unique destination d and denote the destination
set by D . Let every source be connected to its corresponding
destination through a shared capacity constrained network N .
We model the network as a graph, wherein the end-nodes are
the sources and the destinations, the intermediate nodes are
routers that forward packets and the edges correspond to the
communication channels in the network. LetL be the set of links in
the network and L(s) be the set of links that are used by source s to
communicatewith its corresponding destination d. Further, denote
the route between source s and destination d by Rs. Each link l 2 L
has a limited capacity cl in terms of ‘‘packets per time slot’’ on
average. Any individual linkmaybe shared by one ormore sources.

Fig. 1. The problem setup considered. Multiple processes are remotely estimated
across a shared communication network.

Each source s comprises of a process Ps, a sensor SRs, an encoder
ENCs, and a rate controller PCs. The process Ps evolves according to
the discrete-time linear model

Ps : xs(k + 1) = Asxs(k) + Ws(k), k � 0 (1)

where xs(k) 2 Rns (ns 2 N+) is the process state and Ws(k) is
the process noise. The initial condition xs(0) and the white process
noise Ws(k) are assumed to be Gaussian with zero mean and
variance Xs > 0 andQs > 0, respectively. The output of the process
Ps is sensed by the sensor SRs which generates noisymeasurements
according to the relation

SRs : ys(k) = Csxs(k) + Vs(k), k � 0 (2)

where ys(k) 2 Rms (ms 2 N+) is the process output, Vs(k) is the
measurement noise that is assumed to be white, Gaussian with
zero mean and variance ⌃s > 0. The initial state and the noises
{xs(0),Ws(k), Vs(k)} are assumed to bemutually independent8s 2
S and 8k. Further, these random variables are assumed to be
mutually independent among all sources. Finally, we assume that
each pair (As, Cs) is observable.

The encoder ENCs uses the noisy measurements to generate
transmission data and sends it to its corresponding destination
using constant size packets. The packet size is assumed to be large
enough to represent a real number with negligible quantization
error. The data from ENCs is received at the corresponding
destination possibly with a stochastic delay ⌧sd which models
the transmission delay. Each destination comprises of a decoder
DECd, that uses the received data to generate a state estimate that
is optimal in the minimum mean squared error (MMSE) sense.
We ignore any queuing delays in the network and assume the
existence of a time stamp for every transmitted packet. When a
destination receives a packet, it sends back an acknowledgment
(ACK ) to the corresponding source.We assume that ACKs are never
lost in the network.

Weemploy the encoder anddecoder schemedescribed inGupta
et al. (2009). At source s, denote the local estimate of state xs(k)
given the measurements {ys(j)}kj=1 by x̂s(k). Further, denote the
remote state estimate, produced by DECd at the corresponding
destination d, by x̂rs(k). The encoder and the decoder are given by

• ENCs:· At each time slot k, calculate x̂s(k) using (say) a Kalman Filter.
· Transmit x̂s(k) along with the time stamp k.

• DECd:· If k = 0, set the stored time stamp td = �1.
· If DECd receives a packet in time slot k, extract the time stamp
k0 from the packet.
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(1) If k0  td, ignore the old packet and set x̂rs(k) = Asx̂rs
(k � 1).

(2) If k0 > td, set x̂rs(k) = Ak�k0
s x̂s(k0) and set td = k0.

· If DECd does not receive a packet in time slot k, set x̂rs(k) =
Asx̂rs(k � 1).

As discussed in Gupta et al. (2009), this encoder–decoder structure
is optimal amongst all causal structures.
Communication scheme: We consider a stop-and-wait type com-
munication protocol. In any time slot k, the source s transmits the
local estimate x̂s(k) to the corresponding destination d. The trans-
mission is stochastic with the transmission probability ps(k) at
time slot k. The transmission events at different time slots are as-
sumed to be independent. The transmission probability ps(k) can
be viewed as the effective transmit rate of the source s in terms
of ‘‘packets per time slot’’ on average. Hence, the rate controller
PCs is implemented as a probability controller, which controls the
source rate. We use the term ‘rate’ and ‘transmission probability’
interchangeably.

As the total rate on a link approaches the link capacity, con-
gestion in the link increases, which may result in packets being
dropped by the routers in the network. Let the packet drop prob-
ability on a link l 2 L at time slot k be denoted by dl(k). The drop
probability on a link depends on both the link capacity and the to-
tal rate on the link. As the total rate approaches link capacity, the
queue in the corresponding router becomes full. In such a situa-
tion, all the packets are dropped by the router with a probability
approaching 1. To avoid such instances, the routers use queueman-
agement protocols such as Random Early Detection (RED) proto-
col (Floyd & Jacobson, 1993). In RED, the routers increase the drop
probability as the queue size increases. The packet drops serve as a
feedback mechanism to rate control protocols such as TCP, which
reduces the source rate in response to congestion. In standard RED
protocol, the link drop probability is a pre-specified increasing and
convex function of the total rate (assuming, say, a M/M/1 queue
model).

Let ds(k) be the probability that a packet is dropped by the
network on route Rs at time slot k. The packet drop events on route
Rs at different time slots are assumed to be independent. Further,
the packet drop and packet transmission events on route Rs are
assumed to be independent for every time slot. Using the standard
assumption (see e.g., Caceres et al., 1999) that the drop events on
various links are independent, the drop probability ds(k) on route
Rs as observed by the destination d can be expressed as

ds(k) = 1 �
Y

l2L(s)

(1 � dl(k � ⌧ld)), (3)

where ⌧ld denotes the forward delay between link l and destination
d. Thus, ds(k) depends on the rates of the sources that share the
linkswith source s. This introduces a coupling to the problem. Note
that ds may not be a convex function of the source rates.

Remark 1 (Stochastic Rate Control). The stochastic transmission
scheme that we propose controls the source rate by varying
the transmission probability. This is in contrast to deterministic
schemes, wherein the sources send the information at determinis-
tic instants and rate control is achieved by varying the time interval
between the transmissions. A stochastic transmission scheme is a
natural choice since a congested network drops packets stochas-
tically. Therefore, the information reception process is inherently
probabilistic. We superimpose an additional stochastic transmis-
sion process on the stochastic network, still resulting in a stochas-
tic reception process.

Remark 2 (Instantaneous Behavior).Due to the stochastic rate con-
trol, there may be instants when many sources may not trans-
mit resulting in instantaneous network underutilization, or many

sources may transmit at the same time resulting in instantaneous
increase in congestion. However, due to the feedback implicit in
rate control, such instants will be few and on average, the network
will be utilized in an optimal manner.
For the source s and its corresponding destination d, denote the
estimation error covariances of the local estimate x̂s(k) and the
remote estimate x̂rs(k) by Ms(k) and Fs(k), respectively. Since the
pair (As, Cs) is observable, the local estimation error covariance
Ms(k) converges to a steady state value, denoted byMs with a slight
abuse of notation. According to the decoder structure DECs, the
remote estimation error covariance Fs(k) evolves as

Fs(k) =

8

>

>

<

>

>

:

A⌧sd
s Ms(k � ⌧sd)A⌧sd,T

s +
⌧sd�1
X

i=0

Ai
sQsAi,T

s

if a packet is received
AsFs(k � 1)AT

s + Qs, otherwise,

where, A⌧ ,T , (A⌧ )T . Thus, Fs(k) is a random variable. As a
performancemetric,we consider its expected value, that evolves as

E[Fs(k)] = E

"

ps(k � ⌧sd)(1 � ds(k))

 

A⌧sd
s Ms(k � ⌧sd)A⌧sd,T

s

+
⌧sd�1
X

i=0

Ai
sQsAi,T

s

!

+ (1 � ps(k � ⌧sd)(1 � ds(k)))

⇥ (AsE[Fs(k � 1)]AT
s + Qs)

#

(4)

where ps(k � ⌧sd)(1 � ds(k)) is the packet reception probability
and the expectation is taken with respect to the packet transmis-
sion process, packet drop process and delays in the network. Under
the assumption that the system reaches a steady state, (4) can be
written as

Fs(ps, ds) = ps(1 � ds)

 

E

"

A⌧sd
s MsA⌧sd,T

s +
⌧sd�1
X

i=0

Ai
sQsAi,T

s

#!

+ (1 � ps(1 � ds)) (AsFs(ps, ds)AT
s + Qs), (5)

where ps, ds and Fs(ps, ds) denote the steady state values of ps(k)
and ds(k) and E[Fs(k)], respectively.

Problem statement: Let p denote the vector of all steady state
transmission probabilities, i.e. p = (p1, p2, . . . , p|S|)T , where |S|
denotes the cardinality of set S. We consider the estimation cost
incurred for the source s as cs = tr(Fs(ps, ds)), where tr denotes
the trace. Further, the total cost of the system Csys(p) is chosen to
be the sum of individual costs. For ease of notation, we will denote
{tr(Fs(ps, ds)), tr(Ms), tr(AsAT

s ), tr(Qs)} by {fs(ps, ds),ms, as, qs}, re-
spectively. Thus,

Csys(p) =
X

s2S

fs(ps, ds)

fs(ps, ds) = ps(1 � ds)tr

 

E

"

A⌧sd
s MsA⌧sd,T

s +
⌧sd�1
X

i=0

Ai
sQsAi,T

s

#!

+ (1 � ps(1 � ds))(tr(AsFs(ps, ds)AT
s ) + qs). (6)

The problem is to find the optimal value of pwhich minimizes the
cost function Csys(p) under the rate constraints. This problem can
also be viewed as a resource (rate) allocation problem with an ob-
jective tominimize a system cost.We are particularly interested in
decentralized solutions that ensure that the solution is scalable for
large networks.

3. Analysis and results

Cost function: The following upper and lower bounds for the cost
follow from algebraic manipulations on (6).
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Lemma 3. The steady state value fs(ps, ds) satisfies f ls (ps, ds) <
fs(ps, ds) < f us (ps, ds), where

f us (ps, ds) ,
ps(1 � ds)mu

s + (1 � ps(1 � ds))qs
1 � as,max(1 � ps(1 � ds))

(7)

f ls (ps, ds) ,
ps(1 � ds)ml

s + (1 � ps(1 � ds))qs
1 � as,min(1 � ps(1 � ds))

(8)

mu
s =

8

>

<

>

:

✓

ms + qs
as,max � 1

◆

E[a⌧sd
s,max] � qs

as,max � 1
if as,max 6= 1,

ms + qsE[⌧sd] otherwise,

ml
s =

8

>

<

>

:

✓

ms + qs
as,min � 1

◆

E[a⌧sd
s,min] � qs

as,min � 1
if as,min 6= 1,

ms + qsE[⌧sd] otherwise,

where �(A) denotes the eigenvalues of A, as,max = �max(AsAT
s ) and

as,min = �min(AsAT
s ).

Proof. From (6), we have,

fs(ps, ds) = ps(1 � ds)

0

@E

2

4tr(A⌧sd,T
s A⌧sd

s Ms)

⌧sd�1
X

i=0

tr(Ai,T
s Ai

sQs)

3

5

1

A

+ (1 � ps(1 � ds))(tr(AT
s AsFs(ps, ds)) + qs)

 ps(1 � ds)

 

E

"

msa⌧sd
s,max + qs

⌧sd�1
X

i=0

ais,max

#!

+ (1 � ps(1 � ds))(as,maxfs(ps, ds) + qs)

where we have used the following trace identities:
(1) tr(ABC) = tr(CAB),
(2) tr(E[X]) = E[tr(X)], and
(3) tr(M)�k

min(AA
T )  tr(M)�min(AkAk,T )  tr(AkAk,TM)  tr(M)

�max(AkAk,T )  tr(M)�k
max(AA

T ), for any positive semi definite
matrix M .

Simplifying and rearranging the last inequality, we get the desired
upper bound. The lower bound can be obtained in a similar way,
thus completing the proof. ⇤

In particular, for scalar processes, the upper and lower bounds
in (7) and (8) are satisfied with equality. For analytical tractability,
we replace fs by f us in the system cost. Thus, we approximate
Csys(p) ⇡ C(p) ,

P

s2S f us (ps, ds), where ps is the transmission
probability allotted to source s under the vector p.

Lemma 4. A sufficient condition for the convergence of E[Fs(k)]
as (4) evolves is given by

ps(1 � ds) �
✓

1 � 1
⇢2(As)

◆+
, pmin

s , (9)

E[a⌧sd
s,max] < 1 if as,max 6= 1, (10)

E[⌧sd] < 1 otherwise,

where ⇢(X) denotes the spectral radius of matrix X.
Proof. See Gupta et al. (2009) for condition (9). Condition (10) can
be obtained from (7) in a straightforward manner. ⇤
Thus, we have the following optimization problem
SYSTEM : min

p

X

s2S

f us (ps, ds(p)),

s.t.
X

s:l2Rs

ps  cl, 8l 2 L,

ps(1 � ds(p)) � pmin
s , 8s 2 S,

ps � 0, ps  1 8s 2 S,

where the notation ds(p) denotes the explicit relation between
the drop probability and transmission probabilities. Assuming
that a feasible region exists, we can use standard optimization
techniques to obtain a globally optimal solution. However, this
approach is not desirable for many reasons:

(1) If the drop probability ds is not a convex function of p, then the
system cost C(p)may not be convex, thus making the problem
difficult.

(2) Themethod is not scalable since each source requires informa-
tion about the transmission probabilities and process parame-
ters of all the other sources.

(3) It requires the functional relation between {ds : s 2 (S)} and
{ps : s 2 (S)}, whichmay be unavailable in a practical scenario.

We now proceed to transform the problem into a convex form and
obtain a distributed solution.

Posing the problem in the NUM framework: To obtain a scalable
and distributed solution, we employ a network cost minimization
framework that is analogous to the primal formulation of the
Network Utility Maximization framework (Shakkottai & Srikant,
2007).

Remark 5 (Advantage of the Primal Form). Since the communi-
cation network may also be used for data unrelated to estima-
tion/control, the dynamics of the distributed solution should be
at the sources and not at the links. This is important especially in
heterogeneous networks, where different sourcesmay have differ-
ent interpretations of link prices. Thus, a single link price controller
may not be suitable for all the sources. The primal solution requires
changes to the standard TCP only at sources and not in the network.
Thus, our solution is practically useful since implementation of the
rate controllers needs to be done only at the source node, which is
aware of estimation application.

The NUM framework imposes some requirements on the costs.
The costs should be separable among the sources. In other words,
the cost associated with source s should depend only on the
resource ps. Moreover, the cost should be positive, monotonically
decreasing and convex. However, the costs {f us (ps, ds) : s 2 S} in
(7) are coupled among each other through the drop probabilities
ds and hence are neither separable nor convex. Therefore, we
eliminate ds from the costs and let this modified separable cost be
denoted by f us (ps, 0). To include the effect of the drop probabilities,
we define a barrier of the form Bl

�

P

s:l2Rs ps
�

corresponding to each
link l, and add it to the total cost. The barrier maps the congestion
level in the link to an additive cost to the system. Thus, we obtain
the following relaxation of the SYSTEM problem

USER : min
p

X

s2S

f us (ps, 0) +
X

l2L

Bl

 

X

s:l2Rs

ps

!

,

s.t.
X

s:l2Rs

ps  cl, 8l 2 L, (11)

ps � pmin
s � 0, 8s 2 S, (12)

ps  1 8s 2 S. (13)

The choice of the barrier function requires some care. It should be
a monotonically increasing function of the total rate on a link. This
ensures that as the congestion increases, the total system cost also
increases. Thus, congestion control can be achieved by minimizing
the system cost. By ensuring a steep increase in the barrier function
as the rates approach capacity of the links, the capacity constraints
can be explicitly incorporated in the system cost. Once we have
satisfied the separability requirement, we can prove that the cost
used in theUSERproblem satisfies the remaining constraints. There
are two terms in the cost function, that we consider one by one.
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Proposition 6. The cost function f us (ps, 0) is positive, monotonically
decreasing and convex for ps > 1 � 1

as,max
.

Proof. Theproof followsbydifferentiating f us (ps, 0) = psmu
s +(1�ps)qs

1�as,max(1�ps)
twice and verifying that the terms in numerator and denominator
are of appropriate signs. ⇤

To ensure the convexity of the barrier function, we assume that Bl
is differentiable and denote

Bl

 

X

s:l2Rs

ps

!

,
Z

P

s:l2Rs ps

0
tl(x)dx, (14)

where tl is the penalty function corresponding to link l. If tl is a
monotonically increasing function of the total rate on the link l,
then Bl is convex. We will ensure this by choosing an appropriate
penalty function in (17). Finally, we have the following result.

Lemma 7. The cost used in the problem USER implicitly guarantees
the constraints (11) and (12).

Proof. The cost f us (ps, 0) is positive and finite iff ps > 1 � 1
as,max

.
Since as,max = �max(AsAT

s ) � ⇢2(As), f us (ps, 0) is positive and fi-
nite only for ps > 1 � 1

as,max
� 1 � 1

⇢2(As)
. Thus, the cost f us (ps, 0)

becomes infinite when ps approaches pmin
s . Further, the barrier

function Bl on link l rapidly increases as the total rate on the link
approaches the link capacity, thereby increasing the cost function.
Thus, both (11) and (12) are satisfied. ⇤

Solution of the optimization problem: We have shown that if we
choose the penalty function appropriately, then the total system
cost in the USER problem is positive and convex. Moreover, the
problem constraints are implicitly included in the system cost.
Thus, a gradient descent algorithm can be used to minimize the
total system cost. We propose a rate controller of the form
PCs : ps(k + 1) = ps(k)

� ks

 

d
dps

f us (ps, 0) +
X

l:l2L(s)

tl

 

X

s:l2Rs

ps

!!

, (15)

with ks > 0 being sufficiently small step size. The quantity

qRs ,
X

l:l2L(s)

tl

 

X

s:l2Rs

ps

!

can be viewed as the price of using the route Rs, which is the
aggregate of prices of all the links on the route.

Remark 8 (Scalability). The proposed rate control protocol is
scalable to large networks. The values of process parameters and
transmission probabilities of other sources are not required to
implement the algorithm. The only information that a source needs
is the route price. This can be provided implicitly or explicitly by
the network through ACKs from the destination to the source.

Penalty function: Besides being monotone increasing in the rates,
the penalty functions tl should be chosen such that the problem
USER closely approximates the problem SYSTEM. We observe here
that the congestion in the network affects the system performance
through the drop probabilities. Since drop probabilities have a
direct effect on the system performance, we choose a penalty
function that depends on the drop probabilities. In turn, since the
drop probability dl on a link l depends on the total rate on the link,
the penalty function also depends on the total rate on the link, as
required by the optimization framework. In particular, we choose

tl

 

X

s:l2Rs

ps

!

= � log

 

1 � dl

 

X

s:l2Rs

ps

!!

, (16)

wherein the link drop probability depends on the total rate on the
link. Note that tl is positive and monotonically increases to infinity
as the total rate on the corresponding link approaches its capacity;
thus the barrier function is indeed convex as required. In fact, the
barrier function is

Bl

 

X

s:l2Rs

ps

!

=
Z

P

s:l2Rs ps

0
� log(1 � dl(x))dx. (17)

Also, the route price is given by

qRs =
X

l:l2L(s)

� log(1 � dl) = � log

 

Y

l:l2L(s)

(1 � dl)

!

= � log(1 � ds).

Remark 9 (Estimating the Route Price). The advantage of choosing
a logarithmic penalty function is apparent from the preceding
calculation. To calculate the route price, the probability controllers
PCs require only the route drop probability ds. They do not require
the prices of individual links along the route. Thus, no explicit
field in the ACKs is required to collect price information from the
links. The route drop probability can be estimatedmerely based on
whether ACKs are received or not.

Note that the different choices of the penalty/barrier function may
change the way in which congestion control is handled. For exam-
ple, in a conservative approach, the barriermay be high for low link
rates.We do not claim that the particular choice we have proposed
provides the best performance in all the cases. Other choices may
be beneficial depending on the system and application.

The barrier Bl is the integral of a logarithmic function between
the interval [0, 1]. Therefore, it does not diverge as the congestion
increases. Ideally,when thenetwork congestion is large, the barrier
should be large as compared to the estimation cost. Thus, we
scale down the cost f us (ps, 0) (analogous to increasing the barrier
function) by a constant �s to satisfy this property. We choose �s =
Ns(qs � mu

s (1 � as,max)), where Ns is a large positive constant.
The constant �s is large when the process is more unstable or the
process and measurement noises and delays are large. Thus, it acts
like a normalization factor to the estimation error covariance.With
this relaxation, the optimization problem becomes

USER : min
p

X

s2S

1
�s

f us (ps, 0) + Ns

X

l2L

Bl

 

X

s:l2Rs

ps

!

,

and the probability controller becomes

PCs : ps(k + 1) = ps(k)

+ k0
s

✓

1
(1 � as,max(1 � ps(k)))2

+ Ns log(1 � ds(k))
◆

, (18)

where k0
s = ks

Ns
.

Modified TCP-like probability controller: The probability con-
troller structure in (18) can be implemented using a TCP-like struc-
ture under low network congestion conditions. In this regime, the
route drop probabilities are also low, {ds ⌧ 1, s 2 S} which im-
plies that � log(1 � ds) ⇡ ds. Thus, (18) becomes

PCs : ps(k + 1) = ps(k)

+ k0
s

✓

1
(1 � as,max(1 � ps(k)))2

� Nsds(k)
◆

. (19)

Consider the following TCP-like probability controller, denoted by
PCTCP

s :

• If a packet is not transmitted in time slot k, then set ps(k+1) =
ps(k).
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• If a packet is transmitted and ACK is received, then set ps(k +
1) = ps(k) + k0

s.• If a packet is transmitted and ACK is not received, then set
ps(k + 1) = ps(k) � k0

s(Ns(1 � as,max(1 � ps(k)))2 � 1).

Proposition 10. The mean rate achieved by the TCP-like probability
controller PCTCP

s is upper bounded by the steady state rate of proba-
bility controller PCs in (19).

Proof. The mean rate achieved by the TCP-like probability con-
troller PCTCP

s (where the expectation is taken with respect to the
transmission and drop processes) is given by

E[ps(k + 1)] = E[ps(k)]

+ �k0
s

 

1
E
⇥

(1 � as,max(1 � ps(k)))2
⇤ � Nsds(k)

!

 E[ps(k)]

+ �k0
s

 

1
�

1 � as,max(1 � E[ps(k)])
�2 � Nsds(k)

!

. (20)

Themean rate obtained by PCTCP
s is thus upper-bounded by a prob-

ability controller similar to that in (19), except the scaling factor
� > 0. ⇤

The modified probability controller is similar in structure to the
standard TCP controller, which also regulates the rate based on
the received ACKs. For rate control, the TCP controller changes the
window size whereas the proposed probability controller changes
transmission probabilities. Thus, the proposed controller can be
easily implemented in current networks due to its resemblance
to the TCP controller. A key difference between the two rate
controllers is that TCP involves retransmissions as opposed to no
retransmissions in the proposed protocol. This can be attributed to
the different end-objectives, i.e. reliability for TCP and estimation
performance for the proposed probability controller. Nevertheless,
both protocols solve an overall network optimization problem in a
distributed manner.

4. Stability with delays in the network

We now consider the effect of network delays on the stability
of the proposed probability controllers. For tractability, we assume
that the delays are constant. Let the delay in the forward direction
between source s and link l be denoted by ⌧

f
sl . Further, let the

delay in backward direction between link l and source s via the
corresponding destination d be denoted by ⌧ b

sl . Both the forward
and backward delays are assumed to be positive integers. We
assume that the total round trip time w.r.t. link l is constant for
every link in the route, i.e. ⌧s = ⌧

f
sl + ⌧ b

sl 8l. Let R = [rij] denote the
|L| ⇥ |S| routing matrix, where

rij =
⇢

1 if source j uses link i(i 2 Rj)
0 otherwise.

Further, let yl denote the aggregate rate on link l

yl(k) =
X

s:l2Rs

ps(k � ⌧
f
sl) =

X

s

rlsps(k � ⌧
f
sl). (21)

The penalty function tl at link l depends on yl through the relation

tl(k) = hl(yl(k)), (22)

where tl is the penalty function as denoted in (14) and hl is a
positive non-decreasing function. The route price qs associated
with route Rs can be written as

qs(k) =
X

l:l2L(s)

tl(k � ⌧ b
sl) =

X

l

rlstl(k � ⌧ b
sl). (23)

At the source s, probability controller updates ps(k) using the
relation

ps(k + 1) = gs(ps(k), qs(k)), (24)

where gs is the nonlinear function as described in (18). The
Eqs. (21)–(24) form a nonlinear feedback system. The presence of
delays can make the network unstable. We wish to characterize
the local asymptotic stability of the network around the equilib-
rium point and obtain conditions under which stability is guaran-
teed. We proceed by linearizing the system of equations around
the equilibrium point. Denote the vector of source rates by p, the
vector of aggregate rates of all links by y, the vector of link penal-
ties by t and the vector of route prices by q. Let {ps, yl, tl, qs} de-
note the equilibrium values for {ps(k), yl(k), tl(k), qs(k)}. Further,
let ps(k) = ps+�ps(k), yl(k) = yl+�yl(k), tl(k) = tl+�tl(k), qs(k) =
qs + �qs(k) be small perturbations around the equilibrium point.
Linearizing (21)–(24), we obtain

�yl(k) =
X

s

rls�ps(k � ⌧
f
sl), (25a)

�tl(k) = h0
l(yl)�yl(k), (25b)

�qs(k) =
X

l

rls�tl(k � ⌧ b
sl), (25c)

�ps(k + 1) = ↵s�ps(k) + �s�qs(k), where (25d)

↵s = @

@p
gs(p, q)|ps,qs , �s = @

@q
gs(p, q)|ps,qs .

For the source law in (18), we have

↵s = 1 � 2k0
sas,max

[1 � (as,max(1 � ps))]3 , and �s = �k0
sNs.

Denote by {y, t, q, p} the vectors of aggregate rates, penalty func-
tions, route prices and transmission probabilities. Taking z trans-
form of (25) and combining the variables in vector form we obtain

�y(z) = Rf �p(z), �t(z) = F�y(z),
�q(z) = Rb�t(z), z�p(z) = ↵�p(z) + ��q(z), where

Rf (z) = [rfij(z)], rfij(z) = rijz
�⌧

f
ji ,

Rb(z) = [rbij(z)], rbij(z) = rjiz
�⌧b

ij ,

F = diag(h0
l(yl)), ↵ = diag(↵s), � = diag(�s).

Thus, the overall return ratio of the linearized system as seen by
the sources becomes

T (z) = (zI � ↵)�1�RbFRf = [Tij(z)], (26)

Tij(z) = �i(z � ↵i)
�1

X

l

rlirljh0
lz

�(⌧
f
jl+⌧b

il ).

Theorem 11. The systemdescribed by Eqs. (21)–(24) is locally asymp-
totically stable if the following conditions are satisfied

k0
s < min

8

<

:

[1 � (as,max(1 � ps))]3
as,max

,
2 sin

⇣

⇡
2(2⌧s+1)

⌘

Ns

⇥
X

j

X

k

rkirkjh0
k(yk)

9

=

;

8s 2 S, and

�1 62 Co
✓⇢

2 sin
✓

⇡

2(2⌧s + 1)

◆

(ej! � ↵s)
�1e�j!⌧s

�◆

,

where Co denotes the convex hull.
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Fig. 2. The network model used for simulation.

Proof. Denote the spectrum of a square matrix Z by � (Z). Using
Rb(z) = diag{z�⌧s}Rf ,T (z�1) and the properties of similar and di-
agonal matrices, we can show � (T (z)) = � (A(z)B(z)), where,

A(z) = diag

(

s

�s

ws

)

Rf ,T (z�1)FRf (z)diag

(

s

�s

ws

)

,

B(z) = diag{ws(z � ↵s)
�1z�⌧s},

and ws = 2 sin
⇣

⇡
2(2⌧s+1)

⌘

> 0. Assuming that the system is open
loop stable and using the generalized Nyquist stability criterion
(Desoer & Wang, 1980), the system is stable if the eigenloci of
T (z = ej!), ! 2 [0, ⇡] do not cross the real axis to the left of
�1. For open loop stability we should have |↵s| < 1, which (since
↵s < 1) is equivalent to

ks <
[1 � (as,max(1 � ps))]3

as,max
. (27)

Assume that � is an eigenvalue and v is the corresponding nor-
malized eigenvector of A(ej!)B(ej!). Then, �v = A(ej!)B(ej!)v or
� = v⇤A(ej!)B(ej!)v,where v⇤ denotes the conjugate transpose of
v. Since A(ej!) = AT (e�j!) > 0, we have (Vinnicombe, 2002)

� ⇢ ⇢(A(ej!)) Co
��

ws(ej! � ↵s)
�1e�j!⌧s

 �

, (28)

where ⇢ is the spectral radius. Since the spectral radius is upper
bounded by the maximum absolute row sum,

⇢(A(ej!))  max
s2S

X

j

�

�

�

�

�

X

k

rkirkjh0
k(yk)

✓

�s

ws

◆

e�j!(⌧
f
jk�⌧

f
ik)

�

�

�

�

�

 max
s2S

k0
sNs

ws

X

j

X

k

rkirkjh0
k(yk)

(a) 1, (29)

where (a) follows from the theorem statement. The result follows
from (27) to (29). ⇤

Simulation results: Simulations were performed in Matlab to test
the protocol performance. Consider the network shown in Fig. 2.
There are four source destination pairs and five links in the
network. Vector processes evolve at sources S1 and S2 and scalar
processes evolve at sources S3 and S4.

The process parameters are chosen arbitrarily as {A1, C1,Q1, R1}
=

nh

0.5 0.6
1.1 0.1

i

, [1 1],
h

1 0
0 2

i

, 3
o

, {A2, C2,Q2, R2} =
nh

1 0.5
0.7 1

i

,

[1 1],
h

2.5 0
0 1.5

i

, 2
o

, {A3, C3,Q3, R3} = {1.2, 1, 3.5, 3}, and {A4,

C4,Q4, R4} = {1.1, 1, 2.5, 1.5}. The link capacities are {c1, c2, c3,
c4, c5} = {1.5, 1.6, 1.8, 1.7, 1.4}, the step size k0

s = 0.001 and
Ns = 100. The delays on the links are {d1, d2, d3, d4, d5} = {1, 2,
2, 3, 4}.

For simulating the packet drops, we use a crude form of the
standard RED protocol. Let µ be the link utilization factor, which
is the ratio of total rate on an link to the link capacity. In the
RED protocol, the drop probability on a link is a linear function
of the queue size, which depends on the link utilization factor.

Fig. 3. Link drop probability, penalty function and barrier for the RED scheme.

We assume a M/M/1 queuing model to calculate the queue size.
Let {µmin, µmax} denote the link utilization extremes and let
{Nmin,Nmax} denote the corresponding queue sizes. Then the link
drop probability varies as

dl =

8

>

<

>

:

0 if N < Nmin,
N � Nmin

Nmax � Nmin
if Nmin  N  Nmax,

1 if N > Nmax,

where N = µ
1�µ

is the queue size. The values of {µmin, µmax} are
{0.5, 0.95}. We assume that the route drop probabilities are known
to the sources.

Fig. 3 shows the link drop probability dl, penalty function tl
and the scaled barrier �sBl as a function of link utilization factor
µ for a link that implements the RED algorithm. For low rates,
there are no drops. As the drop probability increases from 0 to
1, the penalty function becomes infinite. The barrier is scaled so
that the congestion cost becomes large for large µ. All the three
curves are positive, monotonically increasing and convex. Further,
the penalty function is approximately equal to the drop probability
for low values of link utilization.

Fig. 4 shows the temporal variation of the transmission prob-
ability of the second source (p2(k)) and the USER cost C(p(k)) for
the original probability controller PCs (18), the TCP-like probability
controller PCTCP

s and the standard TCP rate controller. The transmis-
sion probabilities of the other sources also vary is a similarway and
are omitted for clarity. We observe that PCs achieves a steady state
minimum cost of 0.1884 for the optimal transmission probability
vector p

USER

= [0.51, 0.69, 0.49, 0.43]. It can be verified that the
system parameters satisfy the conditions of Theorem 11 and hence
the overall system is stable. We also performed an exhaustive nu-
merical search over the variable p to find the solution to the USER
problem. This exhaustive search yields the minimum value of the
cost as 0.1863 which is quite close to the cost achieved by PCs.

Similarly, an exhaustive numerical search over the variable p

to find the solution of the SYSTEM problem yields the minimum
value of the cost as 0.41 which is achieved by p

SYS

= [0.58, 0.62,
0.51, 0.46]. We compare this with the SYSTEM cost achieved by
p

USER

, which is 0.47.We can observe that the solutions achieved by
the proposed protocol for the USER problem is close to the optimal
solution of the SYSTEM problem, thus verifying the approximation
of the latter by the former.

Further, we observe from Fig. 4 that the cost achieved by PCTCP
s

fluctuates slightlywith time due to its structure.More importantly,
we can notice that the mean cost and the transmission proba-
bility achieved by PCTCP

s coincides with the steady state cost and
transmission probability of the original controller. This provides
empirical evidence that under low network congestion conditions
the TCP-like probability controller well approximates the original
controller.

Moreover, as seen in Fig. 4, there is a big performance margin
between the proposed controller and the TCP controller. This is
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(a) Transmission probabilities. (b) Estimation cost.

Fig. 4. Transmission probability and estimation costs achieved by various rate controllers.

because the TCP controller is not suitable for estimation oriented
applications since it minimizes a cost that is different from the es-
timation cost considered in this paper. To emphasize this point
further, we present a simple scenario in which the TCP controller
results in an unstable system and the cost becomes infinite while
the proposed controller maintains stability. Assume that the net-
work consists of a single link with capacity c1 = 1.3 shared by two
sources. The process parameters are {A1, C1,Q1, R1} = {1.15, 1,
2, 2} and {A2, C2,Q2, R2} = {2, 1, 2, 2}. The rest of the system pa-
rameters are same as before and we ignore delays. The minimum
value of the transmission probabilities required to stabilize the
estimation error covariance (Lemma 4) are {pmin

1 , pmin
2 } = {0.24,

0.75}. The TCP controller distributes the rate approximately
equally among the two sources as {0.65, 0.65}. We can see that
although the estimation error of the first process is stable, the es-
timation error of the second process becomes unbounded since
the transmission probability is less than pmin

2 . On the other hand,
the optimal transmission probabilities achieved by the proposed
controller is {0.36, 0.79} and the error covariances remain stable.
Thus, we can conclude that the standard TCP protocol may not be
suitable for an estimation oriented application since it caters to
a different set of applications, for example applications which re-
quire a notion of proportional fairness among the users.

5. Conclusion

We studied the problem of rate control for networked estima-
tion in the presence of congestion. A stochastic rate control proto-
colwas proposed that optimizes the estimation performance of the
network by varying the source transmission probabilities. The pro-
tocol was developed using a minimization framework analogous
to NUM framework and is scalable for large networks. An approxi-
mated controller analogous to the standard TCP controllerwas also
developed. The stability of the network was analyzed in the pres-
ence of delays.
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