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Abstract— Consider a set of agents implementing the discrete
time consensus algorithm. At each time step, all agents also
transmit their states to a central estimator that wishes to
identify the underlying topology and eigenvalues of the network.
It does so by using a nonlinear least squares (NLS) algorithm
to identify the state evolution matrix used in the consensus
algorithm. We present a mechanism to protect the differential
privacy of this topology from an eavesdropper who may have
unauthorized access to the estimator. In this mechanism, every
agent purposely adds noise to its measurements before trans-
mission to the estimator. The noise is designed to ensure that
the eavesdropper cannot uniquely identify the topology with a
specified confidence level. Numerical results are presented to
describe the corresponding trade-off in estimation accuracy as
a function of the level of differential privacy achieved.

I. INTRODUCTION

A distributed linear dynamical system consists of multiple
agents that are coupled with each other. The coupling may
be present due to communication among the agents or due
to the dynamics being interdependent. In either case, the
coupling induces a weighted graph/network with the agents
as nodes and links representing the coupling between agents
[3]. Examples of such networks include consensus networks
[1], power grid networks [2], formation control networks and
so on. In all these cases, the network topology and weights
represent how one agent’s state affects the states of other
agents and thus, it is equivalent to the state evolution matrix
of the overall distributed linear system. The network topol-
ogy may change over time due to variations in the system
operating conditions such as the number of agents, number
of links, proximity of the nodes, network traffic, loads, etc.
Thus, a system administrator monitoring the network needs
to keep a continuous track of the topology. One possible way
to perform this system monitoring is to collect the measured
outputs of the agents at a central control center and then
estimate the system topology using the outputs. For example,
this type of architecture is used in a power grid network,
where multiple geographically distributed sensors such as
Phasor Measurement Units (PMUs) transmit their measure-
ments to a central estimator [17]. The central estimator then
estimates the topology of the network model using suitable
system identification methods [12].

A malicious eavesdropper who hacks into the central
estimator and gets access to measurements of all agents can
determine the network topology, and thereby gain access to
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critical system-level information. This information can be
used to plan an attack on the network. Protecting the privacy
of the topology, therefore, is a crucial task for network
operators. In addition to estimating the topology, another
important objective of the system administrator is to track
the eigenvalues of the state matrix of the distributed system
using the measurements. This information is important since
eigenvalues dictate the stability and convergence rates of the
system modes. The objective of the eavesdropper, however,
is always to estimate the state matrix from which it can infer
the network topology. In this work, we consider the privacy
protection of the topology of a discrete time linear consensus
network using the notion of Differential Privacy (DP) pro-
posed by Dwork [4]. The main advantages provided by DP is
that it abstracts away from the potential side information that
the eavesdropper might have and provides a mathematical
definition of level of privacy [11], [4]. As is standard in the
mechanisms that guarantee DP, each agent adds a synthetic
noise to its state measurements before sending them to the
central estimator. The noise is designed in such a way that the
eavesdropper cannot identify the topology uniquely from the
noisy measurements. We analytically characterize the noise
properties that ensures a specified level of DP.

We borrow the DP framework developed for discrete time
dynamical system in [5] and apply it to the linear consensus
problem. There are some other recent works that present
DP mechanism for dynamical systems. In [6], the authors
propose a DP mechanism for the consensus problem and
generalize it for a general distributed control system in [7].
The authors in [9] improve on the results of [7] by careful
noise addition and removal to achieve exact consensus. In
[8] and [10], the authors present noisy update algorithms
to ensure DP in optimization problems. However, all these
works aim to protect the privacy of the initial conditions,
inputs, reference trajectories or cost functions of different
users. In contrast, our work aims to protect the network
topology which is represented by the state evolution matrix.
Note that the mapping from initial condition, input or refer-
ence trajectory to the output is linear whereas the mapping
from the state matrix to the output is non-linear, which poses
additional challenges. We derive bounds on the sensitivity of
this non-linear mapping.

The contributions of the paper are as follows. We present
a noise adding DP mechanism to protect the privacy of the
topology of a consensus network. We analytically character-
ize the level of noise required to ensure DP to a specified
level. Using numerical simulations, we illustrate that the
noise degrades the performance of the topology estimation
and eigenvalue estimation procedures. We show that although
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the estimation accuracy for both the administrator and the
eavesdropper may suffer equally for the topology identifica-
tion problem, the administrator can have significant benefit
over the eavesdropper if its goal is to estimate only the
eigenvalues.

II. PROBLEM FORMULATION

In this section, we present the consensus algorithm and
discuss the identification methods to estimate the network
topology and eigenvalues. We then provide the definition of
differential privacy and present the DP mechanism.

A. Mathematical Notation

‖.‖p denotes the p-norm of a vector or the induced p-
norm of a matrix with p ∈ [1,∞]. Further, ‖.‖F denotes
the Frobenius norm of a matrix. If {y(k)}k≥0 is a signal,
then the truncated version of y upto time T is donated by
y[0 : T ]. For a square matrix A, let ρ(A) denote the spectral
radius of A. IN denotes the N × N identity matrix and
1N = [1, 1, · · · , 1]T ∈ RN . δ(k) denotes the Kronecker
Delta function. Lap(0, b)N denotes a N dimensional Laplace
distribution with i.i.d. components, each with probability
density function f(x) = 1

2be
−|x|

b .

B. Consensus Algorithm

Consider a consensus network with N agents and let N
denote the set of agent indices, i.e. N = {1, 2, · · · , N}. The
agents are dynamically coupled and pij , i 6= j denotes the
edge weight of the edge between agent i and j. Further,
the agents perfectly communicate their measurements to a
central estimator. By convention, we adopt that pij = 0
if there is no edge between agents i and j. The agents
implement the standard consensus algorithm [1] in which
the ith agent performs the following iteration

xi(k + 1) =

N∑
j=1

pijxj(k). (1)

where xi ∈ R denotes the state of agent i. We assume that
the initial condition xi(0) = 0 for every agent.

For identification, the system needs to evolve from an
initial condition that is not the origin. We model this as
an impulse disturbance occurring at time k = 0. Thus, the
evolution of the entire system can be described as

x(k + 1) = Px(k) +Bd(k) (2)

where x(k) = [x1(k), x2(k), · · · , xN (k)]T , [P ]i,j = pij and
d(k) = δ(k) is the disturbance. The state evolution matrix P
contains all the link weights pij . Thus, the topology of the
network can be completely determined by the state matrix
P . By a slight abuse of notation, we will sometimes denote
both the state matrix and the network topology by P .

Assumptions A1: We make the following assumptions:
(i) The non diagonal weights of matrix P are non-negative,

i.e. pij ≥ 0 for all i ∈ N , j ∈ N , i 6= j. Further, the
diagonal weights are positive, i.e. pii > 0 for all i ∈ N .

(ii) The matrix P is row stochastic, i.e.
∑N
j=1 pij = 1 for

all i ∈ N .

(iii) The matrix P is symmetric. Combined with (ii), it
implies that P is a doubly stochastic matrix.

(iv) The matrix P is irreducible. The implies that the graph
associated with P is strongly connected.
Assumptions (i)-(iv) are standard assumptions made in
the consensus problem [1].

(v) The disturbance input is an impulse and it acts at a single
agent i0 of the system. Without loss of generality we
assume i0 = 1. Thus, B = [1, 0, · · · , 0]T .

Since the input is an impulse function, the state evolution
in (2) can be equivalently represented as the state evolving
with the initial condition x(1) and zero input

x(k + 1) = Px(k), x(1) = B, k ≥ 1 (3)
It is well known [1] that under assumptions A1.(i)-(iv),
• All eigenvalues of P are inside the unit circle except

the eigenvalue 1, which has algebraic multiplicity one.
• The consensus algorithm achieves average consensus

lim
k→∞

xi(k) = x̄i ,
1

N

N∑
j=1

xj(1). (4)

C. Topology Identification Using NLS Estimation

For the topology identification purposes, each agent in
the consensus network produces a measurement/output as
yi(k) = cixi(k) where yi ∈ R. All agents transmit their
outputs to the central estimator and the received outputs can
be collectively represented as

y(k) = Cx(k) (5)

where, y(k) = [y1(k), y2(k), · · · , yN (k)]T ∈ RN , and C =
diag(c1, c2, · · · , cN ).

The central estimator (or a potential eavesdropper) uses
these outputs to estimate the network topology. Since the
outputs y are a non-linear function of the topology P , the
estimate is obtained by solving the following Non-linear
Least Squares (NLS) optimization problem

min
P̃

∥∥∥∥∥
T∑
k=1

y(k)− CP̃ k−1x(1)

∥∥∥∥∥
2

2

(6)

where P̃ and y follow from (3) and (5). Following [13], we
assume C = IN and the pair (P,B) in (2) to be controllable
so that despite the non-convexity of the NLS problem, the
topology can be uniquely and accurately identified. We also
assume that the central estimator knows the order N of the
system.

D. Eigenvalue Identification Using LLS Estimation

In addition to the topology identification, the central
estimator is often interested in knowing the eigenvalues
of the system. For eigenvalue identification, it estimates
the coefficients of the characteristic polynomial (referred
to as parameters hereinafter) of the system from which
the eigenvalues can be evaluated. For ease of notation and
without loss of generality, we assume that the parameter
estimation is performed using the output of a single agent
(say ith agent). The results extend to the case when the
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central estimator uses outputs of all agents. The parameters
are related through the input-output equation

yi(k)+a1yi(k − 1) + · · ·+ aNyi(k −N) (7)
= b1u(k − 1) + · · ·+ bmi

u(k −mi)

Let θ = [a1, · · · , aN , b1, · · · , bmi
] denote the parameter

vector that needs to be estimated and let ϕ(k) = [−yi(k −
1), · · · ,−yi(k − N), u(k − 1), · · · , u(k − mi)] denote the
regression vector. Then, the outputs are a linear function of
the parameters and can be represented as yi(k) = ϕT (k)θ.
Thus, we can use the Linear Least Squares (LLS) estimation
[12] to obtain the parameter estimate as

θ̂T =

(
1

T

T∑
k=1

ϕ(k)ϕ(k)T

)−1

1

T

T∑
k=1

ϕ(k)yi(k) (8)

If the outputs are generated by actual parameters θ0 as
yi(k) = ϕT (k)θ0, then we have θ̂T = θ0 and thus, the LLS
method provides perfect estimation and the eigenvalues of
the system can be identified accurately.

E. Differential Privacy for Topology Identification

In an adverse scenario, an eavesdropper that has unau-
thorized access to the central estimator can use the outputs
(5) to uniquely identify the topology, thus causing a privacy
breach. To prevent this, we present a Differential Privacy
(DP) mechanism that can be intuitively explained as follows.
Suppose the mechanism ensures the following property: if
a topology is “changed ”, then the corresponding outputs
are “statistically not very different”. Then, by observing the
outputs, the eavesdropper will not be able to distinguish
between the two topologies with high confidence level and
privacy of the topology will be preserved. Of course for the
outputs not to be very different, the topology change should
also be bounded. To make the outputs look statistically same,
the DP mechanism adds a synthetic noise to the actual
outputs. The noise level depends on the sensitivity between
the topology and its output, as we will see in the next section.
Next, we formally define what “change within a specified
bound” and “statistically not very different” mean.

Definition 2.1: Adjacency: Two topologies P and P
′

are
β-adjacent(denoted by adj(β)) if for some β ≥ 0 we have∥∥∥P − P ′∥∥∥

2
≤ β. (9)

Remark 2.2: In the DP definition for static databases
[4] and for dynamical systems [5], adjacency is defined
w.r.t. the change of data/input of one agent while keeping
the data/inputs of other agents unchanged. In contrast, our
definition of adjacency allows changes in the topology that
can possibly affect the weights of links between multiple
agent pairs, including creation and deletion of links.

As mentioned before, the agents add noise to the outputs
according to the following DP mechanism

M : ỹ(k) = y(k) + n(k), (10)

where n(k) = [n1(k), · · · , nN (k)]T ∈ RN is the noise. We
will specify the properties of the noise in the next section.

Let ỹP denote the noisy output of the topology P . Note
that ỹP [0 : T ] ∈ RN(T+1). Next, we give the definition of
differential privacy.

Definition 2.3: Differential Privacy: The mechanism M
in (10) is ε-differentially private upto time T if for any two
β-adjacent topologies P and P

′
and for all S ∈ RN(T+1)

P[ỹP [0 : T ] ∈ S] ≤ eεP[ỹP ′ [0 : T ] ∈ S], (11)
where ε > 0 is the privacy parameter. The definition says
that if the topology changes from P to P

′
that is β-adjacent

to P , then the corresponding output statistics change only
within a factor of eε.

F. Effect of DP Mechanism on Topology and Eigenvalue
Identification

In case an eavesdropper gets an unauthorized access to
the central estimator, it estimates the topology from the
noisy outputs ỹP generated by topology P . The estimate is
obtained by solving the NLS problem presented in (6) and
can be represented as

P̂ = arg min
P̃

∥∥∥∥∥
T∑
k=1

ỹP (k)− CP̃ k−1x(1)

∥∥∥∥∥
2

2

(12)

The DP mechanism will ensure that the estimate P̂ is almost
equally likely for two cases when the outputs are generated
by P and a β-adjacent topology P

′
. Thus, it ensures indis-

tinguishability among the set of β-adjacent topologies and
results in the following topology estimation error for the
eavesdropper

E = E
[∥∥∥P̂ − P∥∥∥

F

]
, (13)

where the expectation is taken w.r.t the noise. We will
present numerical simulation results on this estimation error
in section IV and show that it increases with the increase in
noise level.

We next characterize the effect of noise on parameter
estimate θ̂. Assuming that the noisy outputs are generated
by the actual parameter θ0, using (7) and (10) we get

ỹi(k) = ϕ̃T (k)θ0 + v(k) (14)

where v(k) , ni(k) + a1ni(k − 1) + · · ·+ aNni(k −N)

and ϕ̃(k) = [−ỹi(k − 1), · · · ,−ỹi(k −N), u(k − 1), · · ·
· · · , u(k −mi)].

With the above characterization, it can be shown [12] that
if v(k) and ϕ(k) are quasi stationary and the system is
stable, then as the number of observations T becomes
asymptotically large

(i) b = lim
T→∞

θ̂T − θ0 = (R∗)
−1
f∗ (15)

where R∗ , lim
T→∞

1

T

T∑
k=1

E
[
ϕ(k)ϕ(k)T

]
and

f∗ , lim
T→∞

1

T

T∑
k=1

E [ϕ(k)v(k)]

(ii) lim
T→∞

Cov(θ̂T ) ∼ 1

T
Iθ, (16)
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where Cov(.) denotes the covariance and the expression of
Iθ is complicated in general and is omitted here. Note that
the noise v(k) as defined in (14) is not white and thus it
introduces a bias in the asymptotic estimate. In section IV,
we will show the effect of noise on the estimate via numerical
simulations.

Remark 2.4: The above mentioned LLS eigenvalue iden-
tification method results in a biased estimate. An alternate
method to obtain an unbiased estimate is through the Instru-
mental Variable (IV) method [12], in which the estimate is
calculated as a solution of the following equation

1

N

T∑
k=1

ζ(k)
[
ỹ(k)− ϕ̃(k)T θ

]
= 0

where ζ(k) is called instruments and they are chosen such
that ζ(k) and v(k) are independent. It can be shown that
this method leads to an unbiased asymptotic estimate with
zero covariance as number of measurements becomes large.
Thus, the IV method ensures that there is no degradation
in the eigenvalue estimation performance while preserving
the privacy of the network topology. We plan to propose and
analyze this identification method in future extensions of this
work.

Remark 2.5: We would like to emphasize that both the
central estimator and eavesdropper will incur the same
performance loss as given by (13) and (15) for topology
and eigenvalue estimation, respectively. However, in many
cases the eavesdropper is solely interested in determining the
network topology whereas the central estimator is required
to monitor only the eigenvalues of the system [18]. In
such cases where the objectives of the eavesdropper and
the central estimator are different, our study provides an
interesting trade-off between the two.

Problem Objective: Given the above system setup, the goal
of this paper is to design the noise n(k) that ensures that the
DP definition is satisfied for any given privacy parameter ε
and to characterize the resulting trade-off between the level
of privacy and the performance degradation as defined by
(13) and (15) . We present the design criteria in the next
section.

III. DIFFERENTIAL PRIVACY MECHANISM

In this section, we present a mechanism to add noise for
protecting the differential privacy of the network topology.

A. The Noise Mechanism

A standard way to implement DP mechanism is to add
Laplacian noise to the outputs, with the noise level de-
pending on the sensitivity of the system [4], [16]. In our
privacy problem, the goal is to protect the topology from an
eavesdropper that has access to the system outputs. Thus, we
consider the sensitivity from the topology P to the outputs
y. If the sensitivity is low, then for two different topologies,
the change in the corresponding outputs will not be large.
Thus, the level of noise required to make the two outputs
“statistically not very different” will also be small. On the
other hand, if sensitivity is large, a large level of noise is

needed to ensure DP. Thus, sensitivity plays a crucial role in
noise design.

Definition 3.1: The system sensitivity upto time T is
defined as

∆(T ) = sup
P,P ′ :adj(β)

‖yP [0 : T ]− yP ′ [0 : T ]‖1 . (17)

Sensitivity characterizes the maximum possible difference in
the outputs for any two β-adjacent topologies. It depends on
the system parameters and the adjacency bound β. We will
provide the characterization of sensitivity in terms of these
parameters later in this section. The next theorem shows that
sensitivity provides a sufficient condition for noise design.

Theorem 3.2: The mechanism M in (10) is ε-
differentially private upto time T if n(k) is white
Laplacian noise with the distribution n(k) ∼ Lap(0, c)N

and c ≥ ∆(T )
ε .

Proof: See [5], Theorem 2.
Remark 3.3: The noise parameter c is directly propor-

tional to the sensitivity as explained intuitively at the start
of the section. Further, it is inversely proportional to the
privacy parameter ε. Observe from the DP definition (11)
that privacy increases as ε decreases and vice versa. Thus,
for small values of ε, higher noise level is required to ensure
higher level of privacy.

It is apparent from the preceding theorem that character-
ization of sensitivity of the system is required to design the
DP mechanism. However, it is infeasible to obtain an exact
analytical expression for sensitivity. Thus, we obtain an upper
bound on the sensitivity. The upper bound also provides a
sufficient condition for the noise level that can ensure DP.

B. Characterizing Privacy Level

We start by defining the error between the state and the
final consensus value as e(k) = x(k) − x̄, where x̄ =
[x̄1, x̄2, · · · , x̄N ]T . We have the following facts:

1) The final consensus value can also be written as x̄ =
1N1T

N

N x(1), where 1N = [1, 1, · · · , 1]T ∈ RN .
2) Since P is stochastic, P1N = 1N and 1TNP = 1TN .
Next, we present the dynamics of the error evolution.
Lemma 3.4: The evolution of the error can be stated as

e(k + 1) = P̃ e(k) where P̃ ,

(
P − 1N1TN

N

)
. (18)

Proof: The proof can be derived using the preceding
facts and is ommitted due to lack of space.

Being consistent with (3), we assume that the error evo-
lution starts at time k = 1 with e(1) =

(
IN − 1N1T

N

N

)
x(1).

It can be shown [14] that all eigenvalues of P̃ lie inside the
open unit circle. The output of the system can be written as

y(k) = C(e(k) + x̄). (19)

Further, let ρmax denote the largest possible spectral radius
of all P̃ , i.e. ρmax = sup

P
ρ(P̃ ). Since ρ(P̃ ) < 1 for all P̃ ,

we get ρmax < 1.
We use the following lemma from [15] to derive the

sensitivity bound.
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Lemma 3.5: For two symmetric matrices P and Q
‖P k −Qk‖F ≤ k (max{ρ(P ), ρ(Q)})k−1 ‖P −Q‖F (20)

Proof: The proof follows from Theorem 7 in [15].
We now present the sensitivity bound.
Theorem 3.6: The sensitivity ∆(T ) is upper bounded by

∆̄(T ) , 2‖C‖1‖x(1)‖1(N − 1)βSρmax(T − 1)

where Sr(T ) =

T∑
k=1

krk−1 =
1− rT

(1− r)2
− TrT

1− r
.

Proof: For measurements yP and yP ′ produced by two
β-adjacent topologies P and P

′
, we have

‖yP (k)− yP ′ (k)‖1
(a)
= ‖CeP (k)− CeP ′ (k)‖1

(b)

≤ ‖C‖1‖e(1)‖1‖P̃ k−1 − (P̃
′
)k−1‖1

(c)

≤ ‖C‖1‖e(1)‖1
√
N‖P̃ k−1 − (P̃

′
)k−1‖F

(d)

≤ ‖C‖1‖e(1)‖1
√
N(k − 1)ρk−2

max‖P̃ − P̃
′
‖F

(e)

≤ ‖C‖1‖e(1)‖1N(k − 1)ρk−2
maxβ

where, (a) follows from (19), (b) follows from Lemma 3.4
and submiltiplicative property of norm, (c) follows from the
matrix norm property ||.||1√

N
≤ ||.||2 ≤ ||.||F , (d) follows from

Lemma 3.5 and definition of ρmax and (e) follows from the
matrix norm inequality ||.||F ≤

√
N ||.||2 and since P and

P
′

are adjacent, ‖P̃ − P̃ ′‖2 = ‖P − P ′‖2 ≤ β. Thus,

‖yP [0 : T ]− yP ′ [0 : T ]‖1 =

T∑
k=2

‖yP (k)− yP ′ (k)‖1

≤ ‖C‖1‖e(1)‖1NβSρmax
(T − 1)

Moreover,

‖e(1)‖1 =

∥∥∥∥(IN − 1N1TN
N

)
x(1)

∥∥∥∥
1

≤ 2

(
N − 1

N

)
‖x(1)‖1

The theorem then follows from the above inequalities.
Remark 3.7: • Using the sensitivity bound, the noise
n(k) in Theorem 3.2 can be generated by setting

c =
∆̄(T )

ε
= 2‖C‖1‖x(1)‖1(N − 1)Sρmax

(T − 1)
β

ε
(21)

Note that in (21), β and ε are the privacy design
parameters and the ratio γ , β

ε represents the privacy
level. If the adjacency parameter β increases with a
fixed ε, it signifies that the DP is ensured for a larger set
of topologies. Similarly, if ε decreases, it also signifies
an increase in privacy level as explained in remark 3.3.

• As T becomes very large, Sρmax
(T ) converges to

1
(1−r)2 . Thus, the noise level is bounded for all T .

IV. SIMULATION RESULTS

We consider a dummy consensus network with 4 agents
for the simulations. The network is fully connected and the
topology is given by

P =


0.1 0.3 0.2 0.4
0.3 0.3 0.2 0.2
0.2 0.2 0.4 0.2
0.4 0.2 0.2 0.2



Further, as stated in the assumptions B =
[
1 0 0 0

]T
,

C = I4, and ‖x(1)‖1 = ‖B‖1 = 1. The noise is added
according to the DP mechanism M in (10). To generate the
Laplacian noise, we use the upper bound to the sensitivity ob-
tained in Theorem 3.6. We assume ρmax = 0.7 and simulate
the system till T = 100 time steps. Thus, S0.7(T−1) ∼ 11.1,
and the noise level is given by

c =
∆̄(T )

ε
= 66.6

β

ε
= 66.6γ (22)

Figure 1 shows the noisy outputs for various values of γ. In
Figure 1a, noise is absent and we can observe that all outputs
(=states) converge and average consensus is achieved. In
Figures 1b and 1c, the noise perturbs the outputs from the
average value.

A. Topology Estimation

The eavesdropper obtains the topology estimate P̂ by
solving the NLS optimization problem given in (12). We
use the MATLAB fmincon function to obtain the NLS
estimate. We approximate the expected topology error E in
(13) by running the simulation for multiple noise realizations
and then take the sample mean. Figure 2 shows the topology
estimation error as a function γ. As expected, an increase
in the privacy level requires an increase in the noise level
which degrades the estimation performance. Also, notice that
for γ = 0, no privacy is guaranteed. Thus, the estimation
error is zero and the eavesdropper obtains the exact topology.
Further, Table I shows the topology estimates P̂ for two
different values of γ. It can be observed that the weights
of the estimated topologies are different from the actual
topology P due to the DP-induced noise. For example, the
noise misleads the eavesdropper to estimate that there are no
links between agents 2− 4 and 3− 4.

B. Eigenvalue Estimation

The central estimator identifies the eigenvalues of the
system by estimating the parameter θ in (7) using the LLS es-
timation. For calculating the eigenvalues of the system, only
parameters θ = [a1, · · · , aN ] are required. We perform the
estimation using the MATLAB arx function. In accordance
with (16), the covariance of θ̂ becomes zero asymptotically
and hence, the estimates converge to a steady state value
given by lim

T→∞
θ̂T = [−0.39,−0.41,−0.17,−0.19].

Comparing with the actual parameter value of the system
θ0 = [−1,−0.06, 0.064,−0.004], we see that the estimate
is biased according to (15). Figure 3 shows the norm of
the bias ‖b‖22 as a function of privacy level γ. Observe
that as the privacy level increases, the bias degrades due
to the increasing noise required to maintain privacy. Thus,
there is a trade-off between the desired privacy level and the
parameter estimation error. Further, Table II shows the actual
eigenvalues of the system and the estimated eigenvalues for
two different values of γ.
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Fig. 1: Output Evolution.
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Fig. 2: Topology Estimation Error

γ = 1.5 ∗ 10−4 γ = 1.5 ∗ 10−30.12 0.30 0.20 0.38
0.30 0.57 0.07 0.06
0.20 0.07 0.44 0.29
0.38 0.06 0.29 0.27


0.07 0.21 0.29 0.43
0.21 0.19 0.60 0
0.29 0.60 0.11 0
0.43 0 0 0.57


TABLE I: Estimated Topology

V. CONCLUSION

In this paper, we presented a differential privacy mecha-
nism for protecting the topology of a consensus network.
The mechanism adds noise to the outputs of the system
and prevents an eavesdropper from correctly identifying the
topology from the outputs. We derived an analytical bound
for the sensitivity for designing the noise. The simulations
verify that the DP induced noise degrades the topology
estimation performance of the eavesdropper, thus protecting
the privacy of the topology. Further, the noise also degrades
the eigenvalue estimation performance of the system admin-
istrator, thereby showing a trade-off between level of privacy
and estimation error. We plan to extend the DP framework
developed in this paper for topology identification in a more
general dynamical network such as power grid.
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