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Abstract—We study the problem of binary sequential hypothesis
testing usingmultiple sensors with associated observation costs. An
off-line randomized sensor selection strategy, in which a sensor is
chosen at every time step with a given probability, is considered.
The objective of this work is to find a sequential detection rule
and a sensor selection probability vector such that the expected
total observation cost is minimized subject to constraints on relia-
bility and sensor usage. First, the sequential probability ratio test
is shown to be the optimal sequential detection rule in this frame-
work as well. Efficient algorithms for obtaining the optimal sensor
selection probability vector are then derived. In particular, a spe-
cial class of problems in which the algorithm has complexity that
is linear in the number of sensors is identified. An upper bound
for the average sensor usage to estimate the error incurred due to
Wald’s approximations is also presented. This bound can be used
to set a safety margin for guaranteed satisfaction of the constraints
on the sensor usage.
Index Terms—Hypothesis testing, sensor scheduling, sensor

selection, sequential detection, sequential probability ratio test,
SPRT.

I. INTRODUCTION

T HE design and implementation of hypothesis testing
procedures have significantly evolved with the ad-

vancements in communication and computation technologies.
Hypothesis testing typically involves collecting and processing
multiple measurements in order to decide one among many
possible hypotheses. In particular, sequential hypothesis tests
are of great interest since they do not impose the constraint of
collecting a pre-specified number of measurements and allow
the flexibility of stopping the test when the measurements are
informative enough to guarantee the desired probability of
decision error. Hence, they offer a trade-off between the accu-
racy of the decision and the cost of taking more observations.
A well known example of this class of tests is the Sequential
Probability Ratio Test (SPRT) developed byWald [3] for binary
hypothesis testing. SPRT is optimal in the sense that for a given
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performance specification in terms of the error probabilities,
it requires, on average, the minimum number of observations
among all possible sequential tests.
In this paper, we focus on the problem of sensor scheduling

for sequential binary hypothesis testing with multiple sensors,
when each sensor has a usage constraint and an associated ob-
servation cost. Without loss of generality, we assume that only
one sensor can be used at every time step. The goal is to obtain
a sensor selection schedule that minimizes the expected total
observation cost while satisfying constraints on the usage fre-
quency for every sensor as well as on the reliability of the re-
sulting decision.
While sensor scheduling is a well studied problem in the

context of linear estimation (see, e.g., [7]–[9] and the refer-
ences therein) and of fixed-sample-size hypothesis testing (see,
e.g., [10]–[12] and references therein), it has received relatively
lesser attention for sequential hypothesis testing, especially if
constraints on the usage of sensors are imposed. Sensor usage
constraints arise naturally in scenarios where the sensors have
limited resources for taking measurements. For example, in a
cooperative spectrum sensing application (see e.g., [4]–[6]), one
among many mobile devices is chosen to transmit its measure-
ments to the base station which acts as a fusion center that wants
to detect whether the spectrum is free or occupied. This problem
fits into our framework with the limitations on the battery life
of sensors being incorporated as sensor usage constraints. We
focus on “off-line” sensor selection strategies, in which the rules
for choosing which sensor to use at any time step are inde-
pendent of the previous observations [7], [10], [18]. Although
“on-line” or adaptive strategies [13]–[17] may perform better,
such strategies usually require smart sensors and/or communi-
cation from the fusion center to the sensors. Moreover, the anal-
ysis of these on-line strategies seems to be not trivial for the
case when the sensor usage constraints are imposed. Following
works such as [7], [16]–[18], we propose stochastic sensor se-
lection strategies. In particular, we assume that every sensor has
a given probability of being selected in an independent and iden-
tically distributed (i.i.d.) manner at every time step, and the so-
lution aims to optimize the observation cost with respect to the
sequential decision rule and sensor selection probability vector.
A notable work on sequential detection with off-line sensor

selection is [18], in which the authors invoke the multi-hypoth-
esis SPRT and aim at minimizing the average decision time.
However, several issues remain to be explored. First, the re-
sults in [18] are valid only under the assumption that the ex-
pected number of measurements is asymptotically large. More-
over, [18] concludes that the optimal sensor selection scheme
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uses only (at most) two sensors for binary hypothesis testing.
Together, these facts imply that the results of [18] cannot readily
include the sensor usage constraints. Second, the work in [18]
assumes that the multi-hypothesis SPRT proposed in [19] is per-
formed; however, the optimality of such a test with multiple
sensors is not discussed. Third, [18] formulates the problem as
sum-of-ratios linear fractional programing (LFP) over a prob-
ability simplex and exploits the properties of such a problem.
However, in the presence of constraints on sensor usage, this
class of programming problems is NP-complete [20], in gen-
eral.
The main contributions of the paper are now summarized:
• We formally establish the optimality of SPRT among the
class of sequential tests with multiple sensors and sensor
usage constraints. This optimality holds without requiring
that the number of observations be asymptotically large.

• For a wide class of problems, we derive an algorithm to
compute the optimal sensor selection probability vector
that satisfies the sensor usage constraints. The algorithm
is computationally efficient with complexity only linear
in the number of sensors. For the general problem, we
propose a sub-optimal algorithm with computational com-
plexity quadratic in the number of sensors. Numerical re-
sults show that the optimal solution is only marginally
better than our proposed sub-optimal solution.

• We characterize the maximum deviation that may possibly
result in the average number of measurements due to the
use of standard Wald’s approximations in the development
of SPRT. Using this characterization, we provide a method
that ensures that the sensor usage constraints are satisfied
with a safety margin.

The paper is organized as follows. In Section II, we formu-
late the problem. Section III proves the optimality of SPRT
with multiple sensors in the presence of reliability and sensor
usage constraints. In Section IV-A, we prove some useful
properties of the optimal sensor selection probability vector
that allow us to compute it in an efficient manner. We propose
two computationally efficient algorithms for this purpose in
Sections IV-B and IV-C. In Section V, we analyze the error
introduced in the constraint on the average sensor usage due
to Wald’s approximations and provide a method to ensure
that these constraints are satisfied with a safety margin. In
Section VI, we demonstrate the proposed algorithms with
numerical examples. Section VII concludes the paper.
Notation: The sets of natural numbers, real numbers, and
-tuples of real numbers are denoted by , , , respectively.

Vectors are denoted by bold case, e.g. . The notation de-
notes the transpose of the vector . An -tuple vector
is denoted by , and the notation
means that the inequality holds for every component of . We
define the probability simplex in to be

. Random variables are denoted by
uppercase letters (e.g. ) and their realizations are denoted by
lowercase letters (e.g. ). We let for de-
note a sequence of random variables and denote
its realization. For conciseness, let denote the conditional
expectation given . Further, we denote the conditional

Fig. 1. An illustration of the sensor network.

probability and the conditional expectation by
and , respectively.

II. PROBLEM FORMULATION

Consider a binary hypothesis testing problem in which the
objective is to determine which one of the two hypotheses

is closer (in terms of better representing the data)
to the true state of nature. We assume that the a priori prob-
abilities of and are and , respectively, with

. Let be the total number of sensors
available in the sensor network. At each time step, a single
sensor is chosen according to a constant probability vector

, where is the probability of
selecting sensor at any time step. Further, we assume that the
sensors are chosen independently at every time step. Denote the
random variable that indicates the sensor selected at time step
by . takes value from the set for all

with the event representing that the sensor
is selected at time . Hence, is an i.i.d. random sequence.
As shown in Fig. 1, at each time step, an observation is taken
by the selected sensor and transmitted to a fusion center. Let

denote the random observation sequence
collected by the fusion center from time . The
observations taken by different sensors at any time instant are
assumed to be conditionally independent given either hypoth-
esis. Let denote the probability density function (pdf)
of if is true and sensor is selected where
and . We assume that and

, where
is the Kullback-Leibler divergence [21] (KLD) between two
pdf’s and .
Suppose that a sequential detection scheme is implemented at

the fusion center. We follow the standard notation in the sequen-
tial detection literature (see, e.g., [22]) to define a sequential test.
A sequential detection rule consists of two elements: the
stopping rule and the terminal decision rule . At each time
, the stopping rule decides whether we should stop or take
more observations given the values of and . Therefore, we
can define the stopping time where the event in-
dicates that the test is terminated at time . Note that is a
random variable since the stopping time is a function of the ob-
servations and selected sensors. Moreover, the event
depends on and , while it is independent
of both and . When the test
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is stopped, a decision between and is made by using the
terminal decision rule , as a function of the available observa-
tions and the sensors used till the stopping time. The reliability
of the sequential detection rule is defined in terms of the
conditional decision error probabilities, namely,

where is the stopping time. We set constraints on reliability
of the form and , where

and . If clear from context, we
will suppress the dependence of on in the sequel.
A classical example of sequential detection isWald’s Sequen-

tial Probability Ratio Test (SPRT) [3]. For the case of multiple
sensors with off-line sensor selection, an SPRT , where

are the two thresholds satisfying , is de-
fined by the following sequential detection rule ,

if ,
otherwise.

if ,
if ,

where is the log-likelihood ratio based on observa-
tions and sensors defined as

(1)

In the single sensor case , the Wald-Wolfowitz in-
equality [3], [23] proves the optimality of SPRT in the sense
that, for appropriately designed thresholds , the test
SPRT minimizes both and subject to the
reliability constraints and . However, it is not
clear if the optimality holds for the case of multiple sensors. We
will show that the optimality indeed holds even when multiple
sensors are present.
We now introduce the constraints on sensor usage. Let be

the number of times the sensor is used up to the stopping time
. Thus, . In practice, there might be battery

related or fairness constraints on how often a sensor should be
used. Since the stopping time in a sequential test is not bounded
deterministically, we consider probabilistic sensor usage con-
straints of the form , , . Note that
an alternative way to represent is as follows. Define for
each , the random sequence , where is
the indicator function such that if and

otherwise. Since is an i.i.d. random sequence,
so is . We may use Lemma 2 (see Appendix A)
and write the usage for sensor for any sequential detection
rule with the sensor selection probability vector as

(2)

Hence, the sensor usage constraints can be written as
for all .

The classical sequential detection formulation aims at mini-
mizing the expected number of observations. With multiple sen-
sors, we introduce a more general objective. We assume that
using the sensor to generate an observation incurs a cost
where . Let denote the random ob-

servation cost sequence. The random variable takes value
from the set with for
all and . Note that is an i.i.d. random se-
quence which is independent of the true hypothesis. By defining
the vector , we can write the mean
observation cost as . Therefore, we can write
the expected total observation cost as the expectation of the cu-
mulative observation cost up to the stopping time , namely,

. The main objective of this paper is to obtain the
triplet that minimizes the expected total observation
cost while satisfying the constraints on reliability and sensor
usage, i.e.,

(3)

where are all given constants. We solve
this problem in two steps. In Section III, we show that the op-
timal sequential detection rule for any is an SPRT. Then, in
Section IV, we characterize the optimal .

III. OPTIMAL SEQUENTIAL TEST

Intuitively, SPRT should be the optimal sequential decision
rule in problem (3) since the observations are conditionally i.i.d.
given any realization of the sensor selection sequence and
since the sensors are also selected in an i.i.d. fashion. In this
section, we show that this intuition is indeed correct. We first
prove that SPRT is the optimal sequential test for the problem
specified in (3) but without the sensor usage constraints. Then,
we use this result to prove the optimality of SPRT even in the
presence of the sensor usage constraints.
The following result provides the generalization of the clas-

sicalWald-Wolfowitz inequality [3], [23] that formalizes the op-
timality of the SPRT without the sensor usage constraints.
Theorem 1 (Optimality of SPRT Without Sensor Usage

Constraints): For any probability vector , let
denote the SPRT and be any other sequen-

tial detection rule such that and
. Then, we have

for all .
Proof: At every time , the information obtained by

the fusion center is the stochastic pair . Note that
is an i.i.d. sequence of random pairs when

either hypothesis is given. Thus, the log-likelihood ratio for the
observation pair is given by
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But this is identical to the expression in (1). Thus, with a given
sensor selection probability vector , the sequential test with
multiple sensors coincides with the problem framework of clas-
sical sequential hypothesis tests. The classical Wald-Wolfowitz
inequality [3], [23] can thus be used to obtain the expression

for all . Now note that
is a conditionally i.i.d. random sequence. Using Wald’s identity
(see Appendix A) yields

(4)

Since is irrespective of any stopping rule, the result fol-
lows immediately.
Theorem 1 implies that the optimal stopping rule and terminal

decision rule in problem (3) are given by an SPRT with
the thresholds and chosen such that the resulting reliabilities

equal the constraints , . Thus, in the se-
quel, we suppress the dependence of the reliabilities
on and and simply write As in the classical case,
closed form expressions of and for reaching seem not to
be tractable and we resort to Wald’s approximations [3] (suit-
ably generalized for multiple sensors) to set these thresholds.
Denote by the event that the test is terminated at step
and is accepted given that ; thus

. Since is a sequence of
disjoint events, we can write

A similar argument yields . Thus, we
have the inequalities

(5)

As for classical SPRT, we assume that these inequalities hold
with equality to obtain the thresholds and in terms of the
desired conditional error probabilities. Thus, we set

(6)

We now proceed to prove the optimality of SPRT in the pres-
ence of sensor usage constraints.
Theorem 2 (Optimality of SPRT With Sensor Usage Con-

straints): Assume that the optimization problem defined in (3)
is feasible. Then, the optimal solution is the triplet that

yields the reliabilities , , where is an SPRT ,
and is an appropriately chosen probability vector.

Proof: We prove the theorem by contradiction. Assume
that the triplet is optimal in (3), in which the sequential
detection rule is not an SPRT.
First note that is a feasible solution. The re-

liability constraints are satisfied by assumption. Since
is feasible, from Theorem 1 and (2), we obtain

for all . Therefore, is feasible.
Now, for any tests that satisfy

and , Theorem 1 yields
. This contradicts the

assumption that is optimal. Hence, our assumption
must be wrong and the theorem follows.
Remarks 1: It is worth noting that the proofs of Theorems

1 and 2 formalize the intuition that the optimal solution corre-
sponds to SPRT since both the sensor selection process and the
observations are conditionally i.i.d. Thus, for any given realiza-
tion of the sensor selection sequence (i.e. for any given ),
the optimal solution corresponds to SPRT, provided that sat-
isfies the constraints of the problem. If, for instance, the sensor
selection process has memory or if the observations are not con-
ditionally i.i.d., such optimality will not hold in general.
Theorem 2 shows that SPRT remains the optimal sequen-

tial decision rule even with multiple sensors with constraints
on the usage of sensors. Consequently, the decision variables in
(3) are reduced to where and are the thresholds of
SPRT . Notice that can be approximately solved for
by using (6). Further, these approximations do not impact the
choice of the sensor selection probability vector or the sensor
usage constraints. Hence, the problem (3) reduces to the design
of the vector . This problem is considered in the next section.

IV. OPTIMAL SENSOR SELECTION PROBABILITY VECTOR

We now derive the optimal sensor selection probability vector
, given that the sequential decision rule has been adopted to
be an SPRT with thresholds chosen in the manner outlined in
(6). We first formulate the sensor selection problem with sensor
usage constraints as a sum-of-ratios Linear Fractional Program-
ming (LFP) problem. Then we present computationally efficient
algorithms to solve the problem.

A. Simplification of the Optimization Problem
We begin by reformulating the optimization problem by using

the specific structure of the probability vector in our problem.
First, we approximate following the arguments used by
Wald in [3] for classical SPRT. Specifically, we use the approx-
imation

(7)

where , ,
, and

. Note that , , and
. A detailed derivation of (7) is provided in Appendix A.

Using (7) and the identity and
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as noted in (2) and (4), the problem in (3) is refor-
mulated as

(8)

This optimization problem is a sum-of-ratios LFP [24], which
is known to be, in general, computationally hard to solve. How-
ever, in our case, we can further simplify the problem.
Remark 2: We would like to emphasize that the optimization

problem in (8) is an relaxation of our original problem (3) that
is obtained using Wald’s approximations. Thus, the solution of
problem (8) may not be the optimal solution for (3). Neverthe-
less, Wald’s approximations are used frequently in sequential
detection literature since they are reasonably accurate for small
error probabilities and make the implementation SPRT practi-
cally feasible.
Define the weighted Kullback-Leibler divergence of sensor

when is true as

and when is true as

Denote , Further, de-
fine two sensors and to be equivalent, if they have the same
weighted KLD, i.e., and . Let

where is the normalization factor such that .
Simple algebraic manipulation then yields the equivalence be-
tween the optimization problem (8) and the following sum-of-
ratios LFP with a constant numerator objective function,

(9)

For ease of notation, we define the following quantities to
represent the objective function and the constraints in (9):

We may further reduce the number of decision variables in the
optimization problem (9) if the condition in Lemma 1 is satis-
fied.
Lemma 1: Consider the problem (9) with the additional as-

sumption that sensors are equivalent. The optimal solution can
then be found by solving an optimization problem of the same
form as (9) but with variables.

Proof: See Appendix B.
From now on we consider the problem (9) and assume that

the simplification in Lemma 1 has already been carried out. In
other words, we assume that no two sensors are equivalent in
the sense defined above.

B. A Special Case: Orderable Sensors
We first consider a special case in which an algorithm to

solve (9) can be obtained that has complexity only linear in the
number of sensors. This case is a generalization of the case of
symmetric sensors that we presented in [1].
Specifically, in this section, we focus on the case when the

sensors are orderable in the sense that we can order the indices
of sensors such that

(10)
Several hypothesis testing problems satisfy this assumption. We
present two such examples.
Example 1: (Amplitude Detection): Consider the problem of

detecting the presence of a constant signal embedded in addi-
tive white Gaussian noise. This is a classical binary hypothesis
testing problem of deciding between the two hypotheses:

where denotes the Gaussian pdf withmean and vari-
ance . In this case, . Clearly, for ,

if and only if .
Example 2: (Energy Detection): Consider the problem of en-

ergy detection with uniform observation costs. Let

and . We obtain
and where . Since

and are both strictly increasing functions of on
, the sensors are orderable. Notice that this case is not

symmetric as defined in [1].
We now develop an algorithm to solve (9) for the case when

the sensors are orderable. The algorithm is based on the heuristic
that to minimize the objective function in (9), we should select
the sensors with “larger” weighted KLDwith probability as high
as possible, while satisfying the sensor usage constraints. We in-
troduce the following terms. We say that a sensor is active if it is
selected with probability greater than zero, and a sensor is fully
used if its sensor usage constraint is reached, i.e., .
This heuristic can be justified by using the following theorem.
Theorem 3: Assume that (10) is satisfied and no two sensors

are equivalent. A probability vector is the optimal
solution to the sum-of-ratios LFP in (9) if and only if all the
following conditions are satisfied.
1) is feasible.
2) where and

holds for all .
3) There exists no such that a feasible

and holds for
all .
Proof: See Appendix C.

Theorem 3 implies that a greedy algorithm to solve the sum-
of-ratios LFP in (9) will result in the optimal solution. We seek
a feasible and the smallest set of active sensors such that all
the sensors in the set are fully used, except for the sensor with
the least weighted KLD among all sensors in the set. The greedy
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algorithm for solving (9) can be conceptually described by the
pseudocode in Algorithm 1.1

Algorithm 1: To Find the Optimal for the Orderable Case

1: Order the indices of the sensors such that (10) is satisfied;
2: ;
3: if then
4: return ;
5: else
6: for do
7: Solve from the equations:

, and ;
8: if then
9: return ;
10: end if
11: end for
12: end if

While Algorithm 1 is efficient in the number of iterations, it
still requires the solution of a system of equations at each
iteration in the “for” loop. We can further reduce the compu-
tational complexity of the algorithm to by implementing
Algorithm 2 which is derived as follows. At the -th iteration of
Algorithm 1, notice that the first sensors are fully used, i.e.,

for all . These equality con-
straints yield for all

. Letting , we can sum up all the equality con-

straints for the fully used sensors and obtain

(11)

where , . Using (11), can be
solved from the quadratic equation

(12)

In general, the quadratic (12) has two roots. That the roots must
be of opposite signs can be seen from that the fact that if we set

, then since the algorithm is not
terminated at the previous iteration. We pick the positive root
as the solution for , since, by definition, is non-negative. To
determine the feasibility, we note that since and
is solved based on the fact that the first sensors are fully

1In the algorithm, the feasible region of (9) is denoted by .

used, the only thing we have to check is whether the condition
is satisfied. We can express as

(13)

Hence, the feasibility of can be determined by checking
whether the condition is satisfied. Based on
Theorem 3, Lemma 3, (12) and (13), we may thus solve for the
optimal solution of (9) for the orderable case by implementing
Algorithm 2. If the indices have been pre-ordered, the compu-
tational complexity of Algorithm 2 is linear in the number of
sensors.

Algorithm 2:To Find the Optimal for the Orderable Case

1: Order the indices of the sensors such that (10) is satisfied;
2: , , ;
3: if then
4: ;
5: return ;
6: else
7: for do
8: , ;
9: ;
10: The positive root of (12);
11: if then

12: ;
13: return ;
14: end if
15: end for
16: end if

C. The General Case
If the sensors are not “orderable” as discussed in the previous

section, then Algorithm 1 is no longer optimal. One reason is
that Algorithm 1 is based on the fact that at most one active
sensor is not fully used in the orderable case. A counter-example
in the general case can be found by considering the situation
of unconstrained sensor usage, i.e., . If there are
no constraints on the sensor usage, then our problem set-up re-
duces to the one studied in [18] which showed that the optimal
probability vector may be such that two active sensors are not
fully used. Even though the feasible region of (9) is convex (see
Appendix D for a proof), an arbitrary sum-of-ratios LFP even
over a convex set may be NP-complete [20]. Rather than the
computationally demanding algorithms available in the litera-
ture for this class of problems (see, e.g., [20], [25], [26]), we
propose a computationally efficient sub-optimal algorithm that
uses the specific structure of our problem. The sub-optimal al-
gorithm is a generalization of the greedy algorithm proposed in
Section IV-B using the following fact.



BAI et al.: SEQUENTIAL HYPOTHESIS TESTING WITH MULTIPLE SENSORS 3693

Algorithm 3: To Find a Solution to (9)

1: Order the indices of the groups such that ;
2: , ;
3: for do
4: if or then
5: continue;
6: end if
7: ;
8: if then
9: ; s.t. ,

, ,
10: else
11: ; s.t. ,

, , or , for
some
12: end if
13: if then
14: return ;
15: else
16: ;
17: if then
18: jump to line 9;
19: end if
20: end if
21: end for

Theorem 4: Assume . There exists an optimal solution
to (9) such that at most two active sensors are not fully used.
Proof: See Appendix E.

Theorem 4 is a generalization of [18, Theorem 4] that proved
a similar result for the case when there are no constraints on the
sensor usage. Lemmas 3 and Theorem 4 imply that if we knew
which sensors were active and which ones were fully used, then
the optimal probability vector can be obtained by solving an op-
timization problem with three variables, irrespective of the total
number of sensors. The source of computational complexity of
the problem lies in identifying which sensors should be active,
and which (one or two) active sensors are not fully used. In the
orderable case this identification could be done by considering
all the sensors sequentially. In the general case, two sensors may
be simultaneously active and the sequential procedure breaks
down.
To obtain a sub-optimal algorithm, we begin by defining the

efficiency of the sensor pair to be

(14)
and the efficiency of the single sensor as

(15)

Further, we say that a pair is effective if the minimum in
(14) is achieved by a value The sub-optimal algo-
rithm presented in Algorithm 3 is similar to Algorithm 1 con-
sidered for the case of orderable sensors. However, in this case,
since we need to consider the possibility that two sensors may
be simultaneously active and not fully used, we define the set of
sensor groups to be the collection of all effective pairs and all
single sensors. Then, we calculate the efficiency of eachmember
of this set by using either (14) or (15). Similar to Algorithm 1,
we order the groups in the deceasing order of their efficiency,
denoted by , , , and greedily activate sensor groups in
this order till a feasible solution is obtained. In every iteration,
we can define and to be the set of available sensors
and the set of fully used sensors, respectively. The relative com-
plement of in , denoted by , is the set of the sensors
for which the usage probabilities need to be obtained. The algo-
rithm has the following three main parts:
1) Initialization: This step is carried out once. For the first

iteration, we let and . We begin by obtaining
the optimal sensor selection vector by temporarily ignoring the
sensor usage constraints (in which case we can use the results
of [18]). If there is only one sensor available, i.e., ,
then the trivial sensor selection probability vector is optimal. If

, the optimal sensor selection probability vector can
be obtained by using the Karush-Kuhn-Tucker (KKT) condi-
tions. We then evaluate whether this solution violates the sensor
usage constraints. If it does not, then the solution is feasible for
the original optimization problem as well and hence optimal.
Otherwise, some other sensor(s) must be activated. Mimicking
Algorithm 1, we force the sensors in that reach or violate
their sensor usage constraints to be fully used, i.e., set

. Then we add one more group into the
available set.
2) Updating : This step is carried out once every iteration.

Notice that is non-empty as long as is not returned in the
initialization step. During the -th iteration, we make the sensors
in available if possible by updating to . There are
two cases in which this is not possible. First, it may be possible
that already. Secondly, it is also possible that
and (i.e., if one sensor in is not in , and the

other sensor in has been fully used). In both these cases, we
skip this step and begin the next iteration. In the first case, it is
because the sensors are already active. In the second case, the
intuition is that the usage of the fully used sensor in may have
been occupied by another effective sensor pair more efficient
than .
3) Calculating and updating : This step is carried out

once every iteration if the set has been updated during that it-
eration. Thus, this step is carried out if the set is non-
empty. To reduce the computational complexity of the algo-
rithm, we will constrain that the condition is met in
every iteration. Suppose that . We ignore the sensor
usage constraints and solve for using Lemma 3 and the KKT
conditions given that the sensors in are active and the sensors
in are fully used, as shown in line 9. Suppose that .
We impose that one of the sensors in be either inactive
or fully used and solve for the optimal sensor selection proba-
bility vector by using KKT conditions (see line 11). For either
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case, if the solution obtained in line 9 or line 11 is feasible with
the sensor usage constraints, we return as the solution. Oth-
erwise, we set the sensors that are meeting their sensor usage
constraints with equality, or that are violating their constraints,
to be fully used (see line 16). Notice that after updating in
line 16, it is possible to obtain , which may result

after updating in the next iteration. To solve this
issue, we jump to the procedure stated in line 9 (see line 18) to
guarantee the condition in every iteration.
Remark 3: The maximum number of iterations of Algorithm

3 is . In addition, at most iterations are re-
quired to solve using the KKT conditions. Hence the com-
plexity of Algorithm 3 is provided that the groups have
been pre-ordered by their efficiencies.
Remark 4: In general, Algorithm 3 returns a sub-optimal

sensor selection probability vector. However, for two special
cases, the algorithm is optimal. If the sensors are orderable,
only consists of single sensor groups. In this case, Algorithm 1
coincides with Algorithm 3, which means that Algorithm 3 is
optimal. Similarly, for the case when there are no sensor usage
constraints (i.e., ), Algorithm 3 returns the optimal
sensor selection probability vector in the first iteration.

V. AN UPPER BOUND FOR THE EXACT SENSOR USAGE

The off-line sensor selection strategy as considered above is
within the framework of the two approximations outlined in (6)
and (7). These approximations are generalizations of similar re-
lations identified by Wald for the classical sequential decision
problem. In particular, the approximations of as outlined in
(6) are used to guarantee that the reliability constraints are never
violated, since (6) is obtained from the lower and upper bounds
of and , respectively. However, the approximation of
as outlined in (7) does not guarantee that the realized value of

satisfies the usage constraints imposed for the -th sensor
exactly. We now provide an upper bound for the realized value
of which can be used to set a safety margin so that the
sensor usage constraint is always satisfied.
Define the random variables

(16)

We begin by noting two consequence of Wald’s identity (stated
for completeness in Appendix A):
• for any arbitrary time (notice
that s form an i.i.d. sequence conditioned on ).

• For any arbitrary time , the identities and
hold.

Combining these statements, we see that

(17)

Using (17) and Bayes’ law, we can write

(18)

Now we lower bound and upper bound
on the right hand side. Specifically, we use the facts that

and to obtain

(19)

Consider the term in (19). We can use Baye’s
law to write

Since is the stopping time, the random variable must
belong to the open interval with probability one. Thus, we
can further bound

We let and use the definition of the stopping time
for SPRT. The right hand side can be rewritten to obtain

Because is an conditional i.i.d. sequence of random vari-
ables given either hypothesis, must be independent of any
event for . Thus, we obtain

(20)

Using (19) and (20) provides us the required lower bound

(21)

A similar procedure yields the upper bound

(22)

Using (18), (21), and (22) yields

(23)
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Finally, plugging (23) into the identity in (2)
yields an upper bound for . A numerical comparison of
the upper bound with the realized value of is presented
in Section VI. To demonstrate how the bound in (23) can be cal-
culated, consider the detection problem considered in Example
1.
Example 3: Consider the hypothesis testing problem in Ex-

ample 1. For this problem, when is
true and , and when is true
and . We first evaluate in (22),

(24)

where . Note that
is a monotonically decreasing function of

on . Thus the supremum occurs at , which yields

(25)

By symmetry, the bound of can be obtained via replacing
by in (25).
Now we present a method that uses the upper bound to pre-

vent the violation of the sensor usage constraints due to the error
of Wald’s approximations. We first solve for the sensor selec-
tion probability vector as presented in Section IV. Denote by

the discrepancy between obtained by Wald’s
approximations and the upper bound of . We can make
the sensor usage constraints more conservative by imposing that
the sensor usage is bounded by the term for every

. With the tightened constraints, the sensor selection
probability vector and its corresponding upper bounds of the
sensor usage can be obtained. We then repeat this procedure that
makes the constraints progressively more conservative until the
upper bounds of the sensor usage do not violate the original con-
straints.

VI. NUMERICAL EXAMPLES

A. Orderable Case
To illustrate our algorithm, we consider a cooperative spec-

trum sensing problem in which the goal of a secondary user is
to detect whether or not the spectrum is occupied by a primary
user. The secondary user can obtain observations from
neighboring devices (i.e., sensors) to determine the availability
of the spectrum. Let the spectrum sensing problem be modeled
as an amplitude detection problem as presented in Example 1
with . Let the signal-to-noise ratio (SNR) of the obser-
vation of sensor be defined as be the -th entry of
the set {3.5, 3,2.5,2,1.5,1,0.5,0} dB, respectively. The different

TABLE I
NUMERICAL RESULTS OF SPRT WITH EACH SENSOR BEING

SELECTED WITH AN EQUAL PROBABILITY

TABLE II
NUMERICAL RESULTS OF SPRT WITH SENSOR

SELECTION GOVERNED BY ALGORITHM 2

SNRs can arise from the variation in sensing times used by the
sensors. An observation cost is incurred for every measurement
that models the time and energy consumed for processing the
observation taken by the sensor. In addition, sensor usage con-
straints arise from to the battery life of the sensors. We let the
observation cost for the -th sensor be where

is on a linear scale and the sensor usage constraint for
the -th sensor, denoted by be the -th element of the set
{6,8,5,4,8,4,8,6}. We assume that the secondary user requires
the reliability of the test to be , .
We implement SPRT with two different off-line sensor selec-

tion schemes, one specified by the sensor selection probability
vector obtained from Algorithm 2, and the other by a strategy
in which every sensor is chosen with an equal probability (i.e.,
an “equally likely selection strategy”). Notice that the equally
likely scheme may not be feasible for arbitrary sensor usage
constraints. The comparisons between the two schemes are sum-
marized in Tables I and II. Numerical results are obtained using
both Monte Carlo simulations and Wald’s approximations. It
can be seen that the average total observation cost is reduced
by around 14% by adopting the optimal sensor selection prob-
ability vector over the equally likely sensor selection strategy.
Nevertheless, there is a slight discrepancy between the results
obtained by Monte Carlo simulations and those obtained using
Wald’s approximations. This discrepancy is due to the error in-
troduced by Wald‘s approximations as discussed in Section V,
which may cause the sensor usage constraints to be violated.
If we tighten the sensor usage constraints to

, the upper bounds for
are shown in Table III. We can see that the resulting upper
bounds for in Table III all satisfy the original sensor usage
constraints. Compared with Table II, there is a slight perfor-
mance loss to , if we tighten the sensor usage con-
straints. However, the sensor usage constraints are not violated.

B. General Problem
If the sensors are not orderable, we may employ Algorithm

3 to obtain a sub-optimal solution. Note that by Lemma 1, the
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TABLE III
NUMERICAL RESULTS OF SPRT WITH OPTIMAL SENSOR SELECTION AND

TIGHTENED SENSOR USAGE CONSTRAINTS

Fig. 2. The complementary empirical cumulative distribution function of nor-
malized degradation using Algorithm 3.

problem (8) can be fully described by , and . Therefore,
we perform a numerical experiment in whichwe generate values
of , and randomly. We choose and perform
experiments in which i.i.d. and
i.i.d. where denotes the uniform distribution between
and . Only those parameter values are retained for which the
feasible region is non-empty. For every such problem setting,
we compute the performance obtained using Algorithm 3
and the performance obtained using the optimal sensor se-
lection probability vector computed using a brute-force search
over the probability simplex . The normalized degrada-
tion of the performance using Algorithm 3 can then be defined
as

Fig. 2 plots the empirical complementary cumulative distribu-
tion function (cdf) of . We can see from the plot that
Algorithm 3 renders near-optimal solutions in most cases. For
instance, the proportion of the cases for which the normalized
degradation has value larger than 0.02 (or 2%) is only about

. This shows that Algorithm 3 represents a good trade-off
between computational efficiency and optimality.

VII. CONCLUDING REMARKS

In this paper, we have considered the problem of off-line
sensor selection strategy for binary sequential hypothesis
testing with multiple sensors and sensor usage constraints.
By extending the Wald-Wolfowitz inequality, we showed that
SPRT is the optimal sequential detection rule. We also formu-
lated the sensor scheduling problem as a sum-of-ratios LFP. In

particular, we showed that a greedy algorithm for solving the
sensor selection probability vector is optimal for an important
class of problems. For the general case, we proposed a com-
putationally efficient algorithm that provides nearly optimal
solutions in numerical simulations. In addition, an upper bound
of the sensor usage is derived that enable us to set a safety
margin for the sensor usage constraints.
This work can be extended inmany directions. An efficient al-

gorithm that is capable of determining the optimal sets of active
sensors and fully used sensors for general cases is not addressed
in this paper. In addition, the similar sensor selection problem
in the on-line fashion with sensor usage constraints remains to
be further investigated.

APPENDIX A
A DERIVATION OF THE APPROXIMATION (7)

We first introduce Wald’s identity.
Lemma 2 (Wald’s Identity [27]): Consider an i.i.d. sequence

of random variables where and the random
variable is determined by and . Then we have

(26)

Using the definition in (16), note that is a conditional i.i.d.
random sequence given either hypothesis. Using Wald’s iden-
tity, we have where
and . By Bayes rule, we have

We may take and approximate that stays exactly
on either or with probability one, which yields

and . Then we have
. Similarly, .

Notice that these approximations are reasonably accurate when
and are small enough. Plugging these two approximations

into gives (7).
APPENDIX B

PROOFS OF LEMMA 1
We assume without loss of generality that sensors 1, 2, ,
are equivalent, so that and

. Consider the optimization problem

(27)

While the new problem (27) depends only on vari-
ables, the feasible sets for (9) and (27) are equivalent. If is fea-
sible in the new problem, we let where

if and if . Thus,

is feasible in the problem (9), and . On the other
hand, starting from a feasible solution of the problem (9), we



BAI et al.: SEQUENTIAL HYPOTHESIS TESTING WITH MULTIPLE SENSORS 3697

can generate where
and if . Hence, the lemma follows.

APPENDIX C
PROOF OF THEOREM 3

We begin by presenting a lemma that can reduce the number
of decision variables in the problem (9) if some of the sensors
are known to be fully used.
Lemma 3: Suppose that sensors are known to be fully used

in the problem (9). Then, the optimization problem (9) is equiv-
alent to an optimization problem with variables.

Proof: We assume without loss of generality that the sen-
sors are the fully used sensors. Thus, for all

, we have or, in turn,

This implies that the variables can be treated as
dummy variables, which are fully determined by . In partic-
ular, we let

Then we can rewrite the problem (9) as

(28)

which completes the proof.
We now prove the theorem. First, we present a necessary con-

dition for a probability vector to be the optimal solution to (9)
is that if sensor is active, all sensors with larger weighted
KLD than the weighted KLD of sensor must be fully used.
Second, we provide a sufficient condition of the optimal prob-
ability vector, that is, if we can find a feasible with the least
number of active sensors that satisfies the necessary condition,
then it is optimal. The proofs of the two conditions are as fol-
lows.
(Necessity:) For the sum-of-ratios LFP in (9) for the case

when the sensors are orderable. Suppose that a vector with
is feasible in (9), and there exists a sensor such

that . The necessary condition can be proved by
showing that the vector , where ,
and zero elsewhere, is a feasible descent direction for the ob-
jective function at . Namely, there exists such that

is feasible, and . To prove this
statement, note that and

. Since no two sensors are

equivalent by assumption, it follows that is a descent direc-
tion. Since decreases along at for every , and
does not satisfy the constraint with equality, the

direction is feasible as well.
(Sufficiency:) We prove the sufficient condition inductively.

Notice that if the probability vector is feasible,
clearly, it is the trivial solution to the problem (9). If the vector

is not feasible, we consider a probability vector
such that sensor 1 is fully used and every sensor is inactive
(i.e., for ). We now show that, if is feasible for
(9), then must be the optimal solution to (9). Using Lemma
3 and (28), it is enough to prove that decreasing for every

gives a larger value of while sensor 1 remains fully used.
Note that can be viewed as an implicit function of
through the equations and . The
implicit derivative with respect to for each is given by

(29)

Note that , for all and
at least one of them is nonzero because of the assumption that
no two sensors are equivalent. In addition,

. From (29), we ob-
tain . Hence, the statement holds. On the other hand, if
such a vector is not feasible, then wemust activemore sensors,
which implies that the first two sensors must be fully used. We
can once again invoke Lemma 3 to obtain a problem of the form
(28) with the number of unknown variables further reduced by
one. Therefore, this procedure can be applied recursively until
we obtain a feasible solution, which then must be optimal.

APPENDIX D
THE CONVEXITY OF THE FEASIBLE REGION IN (9)

We need the following preliminary result.
Lemma 4: For , let be

where . Then is a quasiconvex
function.

Proof: If and , can be written in
the form of a linear fractional function of , which is known to
be quasiconvex. Otherwise, it is enough to show that has no
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local maximum on the open interval (0,1). The first and second
order derivatives of are given by

Since is smooth on (0,1), i.e., its derivatives of all orders exist,
a local extreme point , if it exists, on the interval (0,1) must
satisfy and . Moreover, the condition

gives . Consequently,
can be rewritten as

Consider the case of . Then we have
and , which yield . Likewise,
if , then we obtain . Both cases
imply . We can conclude that must be a local
minimum, not maximum. Hence, is a quasiconvex function.

Now we show that the feasible region of (9),
, is a convex set. Suppose

that . Consider the vector where
. Obviously, is on the probability simplex .

Let , , , . Using the nota-
tion in Lemma 4, , ,
and . From Lemma 4, is quasiconvex on

. Then we obtain
which gives .

Consequently, is a convex set.
APPENDIX E

PROOF OF THEOREM 4
Lemma 5: Given any , , ,

such that is
non-empty, there exists such that at least elements
of satisfy or .

Proof: We prove the lemma by induction. For ,
the statement can be illustrated geometrically. Let

, . If
consists of a single point or , then the result is trivial.
Otherwise, is a line segment in , and is a polygon
in . Since is non-empty, contains at least
one point on an edge of the polygon , which implies that
at least one satisfies or . Assume that the
statement is true for all . For , let be an
arbitrary element in . For notational simplicity, we assume
that the first entries of satisfy neither nor

and the other entries satisfy one of these two equations,
in which we only consider the non-trivial case of . If

, let , ,

where . By assumption, the statement holds
for all . Since , there exists such that at
least elements of satisfy or . We can
take and it obviously satisfies
the desired condition. If , i.e., none of satisfies
or , then we can repeat the above procedure twice and
get a desired . Thus the lemma follows.
Suppose that is an optimal solution to (9). We may assume

without loss of generality that all sensors are active by removing
the elements of and corresponding to the inactive sensors.
This assumption gives .
If lies in the interior of , then none of the sensors is fully

used. For all , we have

(30)

where is the Lagrange multiplier. Thus, the all-ones vector
, and there exist such that

. Then must satisfy the following equation

(31)

Let . By Lemma 5, there exists
such that and at most two active sensors are not fully
used. Namely, is an optimal solution as well. Therefore, the
statement is true in this case.
On the other hand, suppose that an optimal solution is

given, in which some of the sensors are fully used. Likewise,
we assume without loss of generality that all sensors are active,
and only sensor 1 is fully used. Further, we let
since . It can be shown that to maximize in (28) is
equivalent to minimize . Since sensor 1 is the only fully
used sensor, for all , we have,

(32)

where . Similar to (30), the condition (32) implies
that for all where , i.e.,
we have where

, . Now we would like to find an optimal
such that at most two active sensors are

not fully used. Let , ,
. Let ,

, . Note that
if , it results that is optimal and sensor 1 is fully used.
From Lemma 5, the desired exists. Hence the theorem fol-
lows.
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