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Abstract

by

Vaibhav Katewa

This dissertation presents techniques for design and analysis of multi-agent dis-

tributed systems with control oriented objectives. We study two problems: one

related to networked estimation in Networked Control Systems and the other related

to privacy in Cyber-physical systems.

In the first problem, we focus on congestion control in a communication network

that is supporting remote estimation of multiple processes. A stochastic rate con-

trol protocol is developed using the network utility maximization framework. This

decentralized protocol avoids congestion by regulating the transmission probabilities

of the sources. The presence of estimation costs poses new challenges; however, for

low congestion levels, the form of rate controller resembles that of the standard TCP

rate controller. Stability of the protocol is analyzed in the presence of fixed network

delays.

In the second problem, we address the issue of privacy of agents in a multi-agent

LTI system which is monitored by a control center via the measurements sent to it by

the agents. We show that such architecture is prone to privacy breaches in which an

intruder can gain access to agents’ sensitive parameters that govern their dynamics.

To prevent this, we employ the differential privacy framework and develop a noise

adding privacy mechanism in which the agents add synthetic noise while sending their
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measurements to the control center. We design the privacy noise by characterizing the

sensitivity of the system. We substantiate our framework by studying two concrete

examples of second-order consensus and LQR control. Our numerical results show

that in an asymptotic regime of low privacy and high SNR, the privacy noise results

in marginal performance degradation at the control center, when compared to the

error suffered by the intruder in identifying the sensitive parameters.

We study another related privacy problem for a scenario where multiple agents

cooperatively solve a quadratic optimization problem. To maintain privacy of their

states over time, agents implement a noise-adding mechanism according to the classic

differential privacy framework. We characterize how the noise due to the privacy

mechanism degrades the performance of the multi-agent system. Interestingly, we

show that depending on the desired level of privacy (and thus noise), the system

performance is optimized by reducing the level of cooperation among the agents.

The notion of cooperation level models the trust of an agent towards the information

received from neighboring agents. For the prototypical examples of consensus and

centroidal Voronoi tessellations, we are able to characterize the optimum cooperation

level that maximizes the system performance while ensuring a desired privacy level.

Our results suggest that for the class of problems we study, and in fact for a broad

class of multi-agent systems, it is always beneficial for the agents to reduce their

cooperation level when the privacy level increases.
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CHAPTER 1

INTRODUCTION

The architecture of control systems has evolved significantly over time. Tradition-

ally, all the components of a dynamical system were co-located and shared informa-

tion seamlessly. However, with the advance in communication, computation and pro-

cessing technology, systems with distributed components are being proposed widely.

The distributed components interact among each other by exchanging information

over a communication link/network to achieve a particular objective. Such systems

are typically characterized as Networked Control Systems(NCS) or Cyber-physical

Systems(CPS), and often consist of multiple agents that interact with each other

either implicitly or explicitly. They are becoming increasingly important because the

distributed nature of such systems allows implementation of flexible architectures,

renders them more autonomy and scalability, and reduces the system complexity and

installation costs. As a result, they are being proposed for diverse application in-

cluding transportation management systems, power grid, large scale monitoring of a

geographical area, automated vehicle systems, process industry and so on[1].

The networked or cyber features of these systems also introduce limitations as-

sociated with them. The links between the components have imperfections such as

packet drops, data rate limits, delay etc. The cyber component of the system renders

it susceptible to potential security attacks and privacy breaches. Moreover, there can

be limits on the computational capabilities and complexity of the systems. Thus,

there is a need to analyze the effect of these constraints and imperfections on the

functionality of the distributed systems and design systems that explicitly take them
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Figure 1.1. A networked control system containing a single feedback loop.
D represents delay, P represents packet dropout and R represents rate

constraints on respective links.

into account. Early works in this direction analyzed the effects of communication

links on simple configurations such as a single loop NCS shown in figure 1.1. There

is a vast amount of literature analyzing the effect of packet drops, delay, rate con-

straints etc. on estimation and control of the NCS [2]. The study of these systems

has led to important foundational results in the field.

The NCS have evolved significantly beyond this single loop configuration. A

generalized distributed system may have all its components such as plants, sensors,

controllers and actuators located at different places. Moreover, there can be interac-

tions between any of these components. A more generalized setup in shown in figure

1.2. The type of interactions between the components may include coupling among

multiple plants, multiple sensors observing a single plant, multiple sensors sharing a

communication link, selective controllers sharing information among each other etc.

Moreover, there can be intruders and attackers present anywhere in the system ar-

2
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Figure 1.2. A general networked control system containing plants(P),
sensors(S), controllers(C), actuators(A) and relays(R). Each link may

include rate constraints, packet dropouts and delays. Also, an intruder can
snoop on messages between S and C, or hack into P or C.

chitecture, which may try to snoop upon some private parameters or actively attack

and disrupt the system.

In this dissertation, we study two problems in this generalized setup that ad-

dress the design and analysis of multi-agent NCS and CPS in presence of data rate

limitations and privacy requirements, respectively.

1.1 Rate Control for Networked Estimation

In chapter 2, we focus on a scenario in which control oriented applications operate

over a rate constrained communication network. Due to rate limits on the links, the

network may become congested if the applications exchange information at a high

data rate, thereby leading to packet drops and information loss. To prevent this, we

develop a rate control protocol that regulates the data transmission rates of these

applications. This problem lies at an intersection of the fields of control systems

and communication networks, which have largely evolved independently. Traditional

3



rate control protocols such as Transmission Control Protocol (TCP) [3], which is

widely used in internet, were not developed for these control oriented applications

and therefore, cannot be used in NCS. We develop a systematic procedure to obtain

the rate control protocol suitable for such applications.

We consider a distributed estimation setup, wherein a remote estimator tries to

estimate the state of a local plant. The plant transmits its state to the remote esti-

mator over a rate limited communication network. Moreover, several plant-estimator

pairs share the same communication network. As explained earlier, congestion in the

network leads to packet drops and the estimators do not receive perfect information

from the plants, thus degrading estimation performance. We propose a probabilistic

transmission strategy through which the plants can vary their transmission rates. We

characterize the effect of transmission rates and packet drops on the estimation error.

Then, using the network utility maximization (NUM) [4] framework we formulate a

network optimization problem for finding optimal plant transmission rates that min-

imize the overall system estimation error. The rate control protocol is then obtained

as a distributed solution of this optimization problem.

1.2 Privacy and Cooperation in Multi-agent Cyber-physical Systems

Architectures of modern cyber-physical systems (CPS) include tight coupling be-

tween its physical dynamical components, computational and processing units, and

communication network. As a result of this integration, the performance of the

physical components depends on the correct functioning of the other components.

These physical components are interconnected through local communication net-

works, which in turn may be connected to a global network like internet. This archi-

tecture of the CPS is inherently susceptible to security attacks and privacy breaches

since there are several access points though which potential intruders may gain unau-

thorized access into the CPS. Moreover, the intruder may be physically present in the

4



system. For example, an intruder may be able to monitor the interactions between

system components or an component/agent itself can go rouge and try to disrupt

the system functionality. Therefore, security and privacy mechanisms need to be an

integral part in the design of upcoming cyber-physical systems.

In this dissertation, we focus on the privacy aspect of distributed multi-agent

dynamical systems. These agents communicate and coordinate among themselves

to achieve a particular objective. Examples include consensus [5], formation control

[6], and distributed optimization [7, 8]. Each agent has some associated sensitive

parameters that it wishes to keep private. For example, in a consensus network, each

(node) agent has edges with associated edge weights. These edge weights represent

sensitive information, for example, load values in the case of power networks. In

another scenario, the states of the node can represent sensitive information like the

position and velocity of the agent. As mentioned above, such systems are susceptible

to privacy breaches in which an intruder gains information about these sensitive

parameters. In this dissertation, we design privacy mechanisms to prevent such

breaches and analyze their effect on the system performance.

In chapter 3, we consider a distributed linear multi-agent dynamical system which

is monitored by a control center using measurements from the agents. Each agent has

some sensitive parameters associated with its dynamics. In this setup, a potential

intruder can try to infer these sensitive parameters by snooping upon the measure-

ments sent by the agents, or it may hack into the control system itself. To prevent

this, we design the privacy mechanism using the notion of Differential Privacy (DP)

[9, 10]. Under this notion, the agents mask their actual measurements by adding ran-

dom noise before sending them to the control center. The noise ensures that if the

sensitive parameters change within a specified limit, the resulting measurements are

statistically not very different. Thus, an intruder is unable to determine the actual

parameters using the noisy measurements.

5



In chapter 4, we study another privacy related problem to answer the following

question: in the presence of a noisy differential privacy mechanism, is it always

beneficial for the agents to cooperate? We consider a setup in which multiple agents

cooperatively minimize a quadratic cost as a function of their states by exchanging

state information among each other. We design a noise adding DP mechanism to

keep their states private. Next, we introduce a method by which the agents can vary

their cooperation level. By studying the combined effect of the privacy mechanism

and the cooperation level on the system performance, we argue that generally, it is

always beneficial for the agents to reduce cooperation if they want to achieve a higher

level of privacy.

1.3 Contributions of the Dissertation

This dissertation studies problems related to analysis and design of distributed

protocols for NCS and privacy mechanisms for multi-agent systems, respectively. The

main contributions with regard to these problems are summarized below.

1. Rate control for Networked Estimation

• We consider a distributed estimation setup wherein multiple plant(source)-

estimator(destination) pairs are connected through a common rate constrained

communication network. We propose a probabilistic transmission strategy by

which a source can vary its data transmission rate, and analyze its effect on

the estimation performance.

• We use the network utility maximization (NUM) framework to obtain a scal-

able rate control protocol that optimally allocates the transmission rates to

the sources such that the overall estimation performance of the system is

maximized. Our method provides a systematic way of designing protocols

that are specifically catered towards estimation oriented applications.

6



• We develop the rate control protocol in primal form and show that under low

network congestion, it resembles the structure of the standard TCP protocol.

Therefore, our protocol can co-exist with other rate control protocols. This

allows estimation oriented applications to be integrated easily into existing

communication networks like the internet. We also analyze the stability of

our protocol in presence of time invariant delays.

2. Dynamical Privacy in Multi-agent LTI Systems

• We present a noise adding DP mechanism for protecting the privacy of the

parameters related to the dynamics of the agents in a continuous-time linear

time invariant system.

• We obtain an analytical upper bound to the sensitivity of the system which

provides a sufficient condition to design the privacy noise.

• Our framework has a wide range of applications and we present two of these:

second-order consensus problem and a LQR control problem in which the DP

mechanism protects the topology of the consensus network and the state cost

matrix used in the quadratic cost, respectively.

• Using numerical simulations for the second-order consensus problem, we show

that for asymptotically low privacy levels and asymptotically high SNR val-

ues, the privacy mechanism has marginal effect on the eigenvalue estimation

performed by the control center when compared to the parameter identifi-

cation error incurred by the intruder. Thus, in this asymptotic regime, the

proposed mechanism provides privacy in the system with only marginal per-

formance degradation.

3. Privacy vs Cooperation in Multi-agent Systems

• We consider a general class of multi-agent systems arising from the solution

7



of quadratic optimization problems via distributed computation. We propose

a noise-adding privacy mechanism for the agents to solve the optimization

problem while maintaining privacy of their states over time. We analytically

quantify the effect of the privacy noise on the system performance.

• We present a novel method to introduce the notion of cooperation level in

cooperative multi-agent systems, as a weighting factor by which the agents

weigh the system cost vs. their individual costs. We show that, due to the

privacy noise, the performance of the distributed system may improve when

reducing the cooperation level among the agents. In fact, we simultaneously

characterize the effect of cooperation and privacy levels on the system per-

formance, and show that a fundamental tradeoff exists between the two in

multi-agent systems.

• We illustrate our results through the problems of consensus and one-dimensional

Voronoi tessellation. In both cases, we show (by simulation) that an optimal

cooperation level exists to maximize the system performance for a desired pri-

vacy level. Our results mathematically support the intuition that the optimal

cooperation level should decrease if the privacy level increases.

8



CHAPTER 2

RATE CONTROL PROTOCOL FOR DISTRIBUTED ESTIMATION

2.1 Background

The architecture and protocols in a communication network should ideally depend

on the objectives of the end users. Traditionally, such networks were used with the

sole goal of reliable data transfer. More recently, such networks have been proposed

to be used in control and estimation applications in the Networked Control Systems

(see, e.g., the special issue [11]). In such applications, the performance metric is a

complicated function of delay, throughput, and reliability; hence, traditional network

protocols may not be suitable. For both the cases when the communication network is

designed specifically for estimation or control, and when the communication network

is shared with data unrelated to such applications, it is of interest to design network

protocols that optimize the performance relevant to these applications.

However, most of the research in Networked Control Systems so far has focused on

analyzing and designing a single networked control system in isolation. While this has

led to important foundational results, it has ignored the new problems that may arise

when multiple such systems operate over a common communication network. As an

example, networked communication may give rise to congestion or MAC delays. Such

effects will impact the performance of every networked control system and in fact, will

couple their performance even though the systems may not be dynamically coupled.

It is, thus, of interest to study the impact of communication network protocols on

the performance of multiple control systems sharing a common network, and further,

design network protocols more suitable for estimation and control ([12], [13]).
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In this dissertation, we focus on a rate control protocol suitable for an estimation

oriented cost function. We consider multiple systems, each of which consists of an

estimator that remotely estimates the state of an associated process. A sensor collo-

cated with each process transmits information over a shared communication network

to the estimator. The network has capacity constraints for every link. Such a capac-

ity constrained network may result in congestion when the network load increases.

Congestion results in packet losses and delays, which adversely affect the estimation

performance. We show that traditional rate control protocols such as TCP may not

be suitable for optimizing estimation performance, and propose a new distributed

rate control protocol that can co-exist with existing rate control protocols.

The problem of congestion control has been well studied for communication net-

works (see, e.g., [14]). TCP ([3]) is the most widely used congestion control protocol

in the Internet. While originally an engineering heuristic, TCP has now been reverse

engineered to show that it is a distributed solution that optimizes a particular util-

ity function ([15]). The chief tool in this regard is the Network Utility Maximization

(NUM) framework ([16]) which transforms the end objective to an optimization prob-

lem with constraints. The communication protocols are the distributed solutions to

these optimization problems ([17]).

The primary aim of traditional TCP is reliable transfer of data, even at the ex-

pense of delays. For estimation and control, it may be more useful to have a lower

reliability, but a higher throughput. Moreover, not all processes need to transmit

data at the same rate to achieve the same estimation error covariance. Thus, is-

sues such as fairness relevant to traditional TCP may not be applicable. In fact,

using TCP for estimation purposes may result in instability of the estimation error

covariance. Because of these reasons, designing an estimation oriented rate control

protocol is not simply a matter of substituting the estimation error covariance as a

cost function instead of the throughput. Our proposed protocol, while sharing the

10



formal structure of TCP protocols, considers these issues directly. The proposed

protocol is implemented at the transport layer of the standard OSI layer stack, and

thus, preserves the layered structure of the network.

To ensure that the proposed protocol can co-exist with the standard TCP, we use

a cost minimization framework that is analogous to the standard NUM framework.

The total cost that the rate control protocol aims to minimize includes both an

estimation performance cost and a congestion cost. The work closest to ours is that

of [18] which presents a bandwidth allocation scheme by using a dual form of NUM

problem. However, our solution is in the primal form and is similar to the structure of

the standard TCP protocol. Moreover, we present a stochastic transmission scheme

as opposed to the deterministic transmission scheme in [18].

We also come up with conditions on network delay and system parameters for

which the protocol remains stable. The delays can be time varying in realistic net-

works. However, we analyze the stability of the system with fixed delays for tractabil-

ity. Although it is a special case, fixed delay analysis is important and has a rich

history for standard TCP ([17, 19–21]).

2.2 Problem Formulation

2.2.1 Network and Process Setting

Consider the problem set up shown in Figure 2.1. Let all the sources form the

source set S. With every source s ∈ S, associate a unique destination d and denote the

destination set by D. Let every source be connected to its corresponding destination

through a shared capacity constrained network N . We model the network as a graph,

wherein the end-nodes are the sources and the destinations, the intermediate nodes

are routers that forward packets and the edges correspond to the communication

channels in the network. Let L be the set of links in the network and L(s) be the set
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Figure 2.1. System architecture in which multiple processes are remotely
estimated across a shared communication network.

of links that are used by source s to communicate with its corresponding destination

d. Further, denote the route between source s and destination d by Rs. Each link

l ∈ L has a limited capacity cl in terms of “packets per time slot” on an average.

Any individual link may be shared by one or more sources.

Each source s comprises of a process Ps, a sensor SRs, an encoder ENCs, and

a rate controller PCs. The process Ps evolves according to the discrete-time linear

model

Ps : xs(k + 1) = Asxs(k) +Ws(k), k ≥ 0 (2.1)

where xs(k) ∈ Rns is the process state and Ws(k) is the process noise. The initial

condition xs(0) and the white process noise Ws(k) are assumed to be Gaussian with

zero mean and variance Xs > 0 and Qs > 0, respectively. The output of the process

Ps is sensed by the sensor SRs which generates noisy measurements according to the

12



relation

SRs : ys(k) = Csxs(k) + Vs(k), k ≥ 0 (2.2)

where ys(k) ∈ Rms is the process output, Vs(k) is the measurement noise that is

assumed to be white, Gaussian with zero mean and variance Σs > 0. The initial state

and the noises {xs(0),Ws(k), Vs(k)} are assumed to be mutually independent ∀ s∈S

and ∀ k. Further, these random variables are assumed to be mutually independent

among all sources. Finally, we assume that each pair (As, Cs) is observable.

2.2.2 Encoding and Decoding Scheme

The encoder ENCs uses the noisy measurements to generate transmission data

and sends it to its corresponding destination using constant size packets. The packet

size is assumed to be large enough to represent a real number with negligible quan-

tization error. The data from ENCs is received at the corresponding destination

possibly with a stochastic delay τsd which models the transmission delay. Each desti-

nation comprises of a decoder DECd, that uses the received data to generate a state

estimate that is optimal in the minimum mean squared error (MMSE) sense. We

ignore any queuing delays in the network and assume the existence of a time stamp

for every transmitted packet. When a destination receives a packet, it sends back an

acknowledgment (ACK) to the corresponding source. We assume that ACKs are

never lost in the network.

We employ the encoder and decoder scheme described in [22]. At source s, de-

note the local estimate of state xs(k) given the measurements {ys(j)}kj=1 by x̂s(k).

Further, denote the remote state estimate, produced by DECd at the corresponding

destination d, by x̂rs(k). The encoder and the decoder are given by

• ENCs:

– At each time slot k, calculate x̂s(k) using (say) a Kalman Filter.
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– Transmit x̂s(k) along with the time stamp k.

• DECd:

– If k = 0, set the stored time stamp td = −1.

– If DECd receives a packet in time slot k, extract the time stamp k
′

from

the packet.

1. If k
′ ≤ td, ignore the old packet and set x̂rs(k) = Asx̂rs(k − 1).

2. If k
′
> td, set x̂rs(k) = Ak−k

′

s x̂s(k
′
) and set td = k

′
.

– If DECd does not receive a packet in time slot k, set x̂rs(k) = Asx̂rs(k−1).

As discussed in [22], this encoder-decoder structure is optimal amongst all causal

structures.

2.2.3 Communication Scheme

We consider a stop-and-wait type communication protocol. In any time slot k,

the source s transmits the local estimate x̂s(k) to the corresponding destination d.

The transmission is stochastic with the transmission probability ps(k) at time slot

k. The transmission events at different time slots are assumed to be independent.

The transmission probability ps(k) can be viewed as the effective transmit rate of the

source s in terms of “packets per time slot” on average. Hence, the rate controller

PCs is implemented as a probability controller, which controls the source rate. We

use the term ‘rate’ and ‘transmission probability’ interchangeably.

As the total rate on a link approaches the link capacity, congestion in the link

increases, which may result in packets being dropped by the routers in the network.

Let the packet drop probability on a link l ∈ L at time slot k be denoted by dl(k).

The drop probability on a link depends on both the link capacity and the total rate on

the link. As the total rate approaches link capacity, the queue in the corresponding
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router becomes full. In such a situation, all the packets are dropped by the router

with a probability approaching 1. To avoid such instances, the routers use queue

management protocols such as Random Early Detection (RED) protocol ([23]). In

RED, the routers increase the drop probability as the queue size increases. The

packet drops serve as a feedback mechanism to rate control protocols such as TCP,

which reduces the source rate in response to congestion. In standard RED protocol,

the link drop probability is a pre-specified increasing and convex function of the total

rate (assuming, say, a M/M/1 queue model).

Let ds(k) be the probability that a packet is dropped by the network on route

Rs at time slot k. The packet drop events on route Rs at different time slots are

assumed to be independent. Further, the packet drop and packet transmission events

on route Rs are assumed to be independent for every time slot. Using the standard

assumption (see e.g., [24]) that the drop events on various links are independent, the

drop probability ds(k) on route Rs as observed by the destination d can be expressed

as

ds(k) = 1−
∏
l∈L(s)

(1− dl(k − τld)), (2.3)

where τld denotes the forward delay between link l and destination d. Thus, ds(k)

depends on the rates of the sources that share the links with source s. This introduces

a coupling to the problem. Note that ds may not be a convex function of the source

rates.

Remark 2.2.1. (Stochastic rate control) The stochastic transmission scheme that

we propose controls the source rate by varying the transmission probability. This

is in contrast to deterministic schemes, wherein the sources send the information

at deterministic instants and rate control is achieved by varying the time interval

between the transmissions. A stochastic transmission scheme is a natural choice

since a congested network drops packets stochastically. Therefore, the information
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reception process is inherently probabilistic. We superimpose an additional stochastic

transmission process on the stochastic network, still resulting in a stochastic reception

process. �

Remark 2.2.2. (Instantaneous behavior) Due to the stochastic rate control, there

may be instants when many sources may not transmit resulting in instantaneous

network underutilization or, many sources may transmit at the same time resulting

in instantaneous increase in congestion. However, due to the feedback implicit in rate

control, such instants will be few and on an average, the network will be utilized in

an optimal manner. �

2.2.4 Performance Metric and Problem Statement

For the source s and its corresponding destination d, denote the estimation error

covariances of the local estimate x̂s(k) and the remote estimate x̂rs(k) by Ms(k) and

Fs(k), respectively. Since the pair (As, Cs) is observable, the local estimation error

covariance Ms(k) converges to a steady state value, denoted by Ms with a slight

abuse of notation. According to the decoder structure DECs, the remote estimation

error covariance Fs(k) evolves as

Fs(k) =


Aτsds Ms(k − τsd)Aτsd,Ts +

∑τsd−1
i=0 AisQsA

i,T
s if a packet is received,

AsFs(k − 1)ATs +Qs, otherwise,

where Aτ,T , (Aτ )T . Thus, Fs(k) is a random variable. As a performance metric, we

consider its expected value that evolves as

E[Fs(k)] = E
[
ps(k − τsd)(1− ds(k))

(
Aτsds Ms(k − τsd)Aτsd,Ts +

τsd−1∑
i=0

AisQsA
i,T
s

)
+ (1− ps(k − τsd)(1− ds(k)))

(
AsFs(k − 1)ATs +Qs

)]
(2.4)
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where ps(k − τsd)(1− ds(k)) is the packet reception probability and the expectation

is taken with respect to the packet transmission process, packet drop process and

delays in the network. Under the assumption that the system reaches a steady state,

(2.4) can be written as

Fs(ps, ds) = ps(1− ds)
(
E
[
Aτsds MsA

τsd,T
s +

τsd−1∑
i=0

AisQsA
i,T
s

])
(2.5)

+ (1− ps(1− ds))
(
AsFs(ps, ds)A

T
s +Qs

)
,

where ps, ds and Fs(ps, ds) denote the steady state values of ps(k) and ds(k) and

E[Fs(k)], respectively.

Problem statement: Let p denote the vector of all steady state transmission

probabilities, i.e. p = (p1, p2, · · · , p|S|)T , where |S| denotes the cardinality of set S.

We consider the estimation cost incurred for the source s as cs = tr(Fs(ps, ds)), where

tr denotes the trace. Further, the total cost of the system Csys(p) is chosen to be the

sum of individual costs. For ease of notation, we will denote {tr(Fs(ps, ds)), tr(Ms),

tr(AsA
T
s ), tr(Qs)} by {fs(ps, ds),ms, as, qs}, respectively. Thus,

Csys(p) =
∑
s∈S

fs(ps, ds) where,

fs(ps, ds) = ps(1− ds)tr
(
E
[
Aτsds MsA

τsd,T
s +

τsd−1∑
i=0

AisQsA
i,T
s

])
+ (1− ps(1− ds))(tr(AsFs(ps, ds)ATs ) + qs). (2.6)

The problem is to find the optimal value of p which minimizes the cost function

Csys(p) under the rate constraints. This problem can also be viewed as a resource

(rate) allocation problem with an objective to minimize a system cost. We are par-

ticularly interested in decentralized solutions that ensure that the solution is scalable

for large networks.
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2.3 Rate Control Protocols

2.3.1 Bounds on Performance Metric

The following upper and lower bounds for the cost follow from algebraic manip-

ulations on (2.6).

Lemma 2.3.1. (Cost function) The steady state value fs(ps, ds) satisfies

f ls(ps, ds) < fs(ps, ds) < fus (ps, ds), where

fus (ps, ds) ,
ps(1− ds)mu

s + (1− ps(1− ds))qs
1− as,max(1− ps(1− ds))

, (2.7)

f ls(ps, ds) ,
ps(1− ds)ml

s + (1− ps(1− ds))qs
1− as,min(1− ps(1− ds))

, (2.8)

mu
s =


(ms + qs

as,max−1
)E[aτsds,max]−

qs
as,max−1

if as,max 6= 1,

ms + qsE[τsd] otherwise,

ml
s =


(ms + qs

as,min−1
)E[aτsds,min]− qs

as,min−1
if as,min 6= 1,

ms + qsE[τsd] otherwise,

where λ(A) denotes the eigenvalues of A, as,max = λmax(AsA
T
s ) and as,min =

λmin(AsA
T
s ).

Proof. From (2.6), we have,

fs(ps, ds) = ps(1− ds)
(
E
[
tr(Aτsd,Ts Aτsds Ms) +

τsd−1∑
i=0

tr(Ai,Ts AisQs)
])

+ (1− ps(1− ds))(tr(ATs AsFs(ps, ds)) + qs)

≤ ps(1−ds)
(
E
[
msa

τsd
s,max + qs

τsd−1∑
i=0

ais,max

])
+(1−ps(1−ds))(as,maxfs(ps, ds)+qs),

where we have used the following trace identities:

1. tr(ABC) = tr(CAB),
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2. tr(E[X]) = E[tr(X)], and

3. tr(M)λkmin(AAT )≤ tr(M)λmin(AkAk,T )≤ tr(AkAk,TM)≤ tr(M)λmax(A
kAk,T )

≤ tr(M)λkmax(AA
T ), for any positive semi-definite matrix M .

Simplifying and rearranging the last inequality, we get the desired upper bound.

The lower bound can be obtained in a similar way, thus completing the proof. �

In particular, for scalar processes, the upper and lower bounds in (2.7) and (2.8)

are satisfied with equality. For analytical tractability, we replace fs by fus in the

system cost. Thus, we approximate Csys(p) ≈ C(p) ,
∑
s∈S

fus (ps, ds), where ps is the

transmission probability allotted to source s under the vector p.

Lemma 2.3.2. (Convergence) A sufficient condition for the convergence of E[Fs(k)]

as (2.4) evolves is given by

ps(1− ds) ≥
(

1− 1

ρ2(As)

)+

, pmins , (2.9)

E[aτsds,max] <∞ if as,max 6= 1, (2.10)

E[τsd] <∞ otherwise,

where ρ(X) denotes the spectral radius of matrix X.

Proof. See [22] for condition (2.9). Condition (2.10) can be obtained from (2.7) in a

straightforward manner. �
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Thus, we have the following constrained optimization problem

SY STEM : min
p

∑
s∈S

fus (ps, ds(p)),

s.t.
∑
s:l∈Rs

ps ≤ cl ∀ l ∈ L,

ps(1− ds(p)) ≥ pmins ∀ s ∈ S,

0 ≤ ps ≤ 1 ∀ s ∈ S,

where the notation ds(p) denotes the explicit relation between the drop probability

and transmission probabilities. Assuming that a feasible region exists, we can use

standard optimization techniques to obtain a globally optimal solution. However,

this approach is not desirable for many reasons:

1. If the drop probability ds is not a convex function of p, then the system cost C(p)

may not be convex, thus making the problem difficult.

2. The method is not scalable since each source requires information about the trans-

mission probabilities and process parameters of all the other sources.

3. It requires the functional relation between {ds : s ∈ (S)} and {ps : s ∈ (S)}, which

may be unavailable in a practical scenario.

We now proceed to transform the problem into a convex form and obtain a dis-

tributed solution.

2.3.2 Posing the Problem in the NUM Framework

To obtain a scalable and distributed solution, we employ a network cost minimiza-

tion framework that is analogous to the primal formulation of the Network Utility

Maximization framework ([4]).
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Remark 2.3.3. (Advantage of the primal form) Since the communication net-

work may also be used for data unrelated to estimation / control, the dynamics of

the distributed solution should be at the sources and not at the links. This is impor-

tant especially in heterogeneous networks, where different sources may have different

interpretations of link prices. Thus, a single link price controller may not be suitable

for all the sources. The primal solution requires changes to the standard TCP only

at sources and not in the network. Thus, our solution is practically useful since im-

plementation of the rate controllers needs to be done only at the source node, which

is aware of estimation application. �

The NUM framework imposes some requirements on the costs. The costs should

be separable among the sources. In other words, the cost associated with source

s should depend only on the resource ps. Moreover, the cost should be positive,

monotonically decreasing and convex. However, the costs {fus (ps, ds) : s ∈ S} in (2.7)

are coupled among each other through the drop probabilities ds and hence are neither

separable nor convex. Therefore, we eliminate ds from the costs and let this modified

separable cost be denoted by fus (ps, 0). To include the effect of the drop probabilities,

we define a barrier of the form Bl

( ∑
s:l∈Rs

ps

)
corresponding to each link l, and add it

to the total cost. The barrier maps the congestion level in the link to an additive cost

to the system. Thus, we obtain the following relaxation of the SY STEM problem

USER : min
p

∑
s∈S

fus (ps, 0) +
∑
l∈L

Bl

(∑
s:l∈Rs

ps

)
,

s.t.
∑
s:l∈Rs

ps ≤ cl ∀ l ∈ L, (2.11)

ps ≥ pmins ≥ 0 ∀ s ∈ S, (2.12)

ps ≤ 1 ∀ s ∈ S. (2.13)

The choice of the barrier function requires some care. It should be a monotonically
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increasing function of the total rate on a link. This ensures that as the conges-

tion increases, the total system cost also increases. Thus, congestion control can be

achieved by minimizing the system cost. By ensuring a steep increase in the barrier

function as the rates approach capacity of the links, the capacity constraints can be

explicitly incorporated in the system cost. Once we have satisfied the separability

requirement, we can prove that the cost used in the USER problem satisfies the

remaining constraints. There are two terms in the cost function, that we consider

one by one.

Lemma 2.3.4. (Properties of cost function) The cost function fus (ps, 0) is pos-

itive, monotonically decreasing and convex for ps > 1− 1
as,max

.

Proof. The proof follows by differentiating fus (ps, 0) = psmu
s +(1−ps)qs

1−as,max(1−ps)
twice and veri-

fying that the terms in numerator and denominator are of appropriate signs. �

To ensure the convexity of the barrier function, we assume that Bl is differentiable

and define it as

Bl

(∑
s:l∈Rs

ps

)
,

∑
s:l∈Rs

ps∫
0

tl(x)dx, (2.14)

where tl is the penalty function corresponding to link l. If tl is a monotonically

increasing function of the total rate on the link l, then Bl is convex. We will ensure

this by choosing an appropriate penalty function in (2.17). Finally, we have the

following result.

Lemma 2.3.5. (Incorporating constraints into cost) The cost used in the prob-

lem USER implicitly guarantees the constraints (2.11) and (2.12).

Proof. The cost fus (ps, 0) is positive and finite iff ps > 1 − 1
as,max

. Since as,max =

λmax(AsA
T
s ) ≥ ρ2(As), f

u
s (ps, 0) is positive and finite only for ps > 1 − 1

as,max
≥ 1 −

1
ρ2(As)

. Thus, the cost fus (ps, 0) becomes infinite when ps approaches pmins . Further, the
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barrier function Bl on link l rapidly increases as the total rate on the link approaches

the link capacity, thereby increasing the cost function. Thus, both (2.11) and (2.12)

are satisfied. �

2.3.3 Solution of the Optimization Problem

We have shown that if we choose the penalty function appropriately, then the total

system cost in the USER problem is positive and convex. Moreover, the problem

constraints are implicitly included in the system cost. Thus, a gradient descent

algorithm can be used to minimize the total system cost. We propose a rate controller

of the form

PCs : ps(k + 1) = ps(k) − ks

 d

dps
fus (ps, 0) +

∑
l:l∈L(s)

tl

(∑
s:l∈Rs

ps

) , (2.15)

where ks > 0 is a sufficiently small step size. The quantity

qRs ,
∑

l:l∈L(s)

tl

(∑
s:l∈Rs

ps

)

can be viewed as the price of using the route Rs, which is the aggregate of prices of

all the links on the route.

Remark 2.3.6. (Scalability) The proposed rate control protocol is scalable to large

networks. The values of process parameters and transmission probabilities of other

sources are not required to implement the algorithm. The only information that a

source needs is the route price. This can be provided implicitly or explicitly by the

network through ACKs from the destination to the source. �

Besides being monotone increasing in the rates, the penalty functions tl should be

chosen such that the problem USER closely approximates the problem SY STEM .

We observe here that the congestion in the network affects the system performance
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through the drop probabilities. Since drop probabilities have a direct effect on the

system performance, we choose a penalty function that depends on the drop proba-

bilities. In turn, since the drop probability dl on a link l depends on the total rate on

the link, the penalty function also depends on the total rate on the link, as required

by the optimization framework. In particular, we choose

tl

(∑
s:l∈Rs

ps

)
= − log

(
1− dl

(∑
s:l∈Rs

ps

))
. (2.16)

Note that tl is positive and monotonically increases to infinity as the total rate on

the corresponding link approaches its capacity; thus the barrier function is indeed

convex as required and can be explicitly written as

Bl

(∑
s:l∈Rs

ps

)
=

∑
s:l∈Rs

ps∫
0

− log(1− dl(x))dx. (2.17)

Also, the route price is given by

qRs =
∑

l:l∈L(s)

− log(1− dl) = − log

 ∏
l:l∈L(s)

(1− dl)

 = − log(1− ds).

Remark 2.3.7. (Estimating the route price) The advantage of choosing a loga-

rithmic penalty function is apparent from the preceding calculation. To calculate the

route price, the probability controllers PCs require only the route drop probability ds.

They do not require the prices of individual links along the route. Thus, no explicit

field in the ACKs is required to collect price information from the links. The route

drop probability can be estimated merely based on whether ACKs are received or

not. �

Note that the different choices of the penalty/barrier function may change the

way in which congestion control is handled. For example, in a conservative approach,
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the barrier may be high for low link rates. We do not claim that the particular choice

we have proposed provides the best performance in all the cases. Other choices may

be beneficial depending on the system and application.

The barrier Bl is the integral of a logarithmic function between the interval [0,1].

Therefore, it does not diverge as the congestion increases. Ideally, when the network

congestion is large, the barrier should be large as compared to the estimation cost.

Thus, we scale down the cost fus (ps, 0) (analogous to increasing the barrier function)

by a constant βs to satisfy this property. We choose βs = Ns(qs −mu
s (1 − as,max)),

where Ns is a large positive constant. The constant βs is large when the process is

more unstable or the process and measurement noises and delays are large. Thus,

it acts like a normalization factor to the estimation error covariance. With this

relaxation, the optimization problem becomes

USER : min
p

∑
s∈S

1

βs
fus (ps, 0) +Ns

∑
l∈L

Bl

(∑
s:l∈Rs

ps

)
,

and the probability controller becomes

PCs : ps(k + 1)=ps(k)+k
′

s

(
1

(1− as,max(1− ps(k)))2
+Ns log(1− ds(k))

)
, (2.18)

where k
′
s = ks

Ns
.

The probability controller structure in (2.18) can be implemented using a TCP-

like structure under low network congestion conditions. In this regime, the route drop

probabilities are also low, {ds � 1, s ∈ S} which implies that − log(1 − ds) ≈ ds.

Thus, (2.18) becomes

PCs : ps(k + 1) = ps(k) + k
′

s

(
1

(1− as,max(1− ps(k)))2
−Nsds(k)

)
. (2.19)

Consider the following TCP-like probability controller, denoted by PCTCP
s :
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• If a packet is not transmitted in time slot k, then set ps(k + 1) = ps(k).

• If a packet is transmitted and ACK is received, then set ps(k+ 1) = ps(k) +k
′
s.

• If a packet is transmitted and ACK is not received, then set ps(k + 1) =

ps(k)− k′s(Ns(1− as,max(1− ps(k)))2 − 1).

Proposition 2.3.8. (TCP-like probability controller) The mean rate achieved

by the TCP-like probability controller PCTCP
s is upper bounded by the steady state

rate of probability controller PCs in (2.19).

Proof. The mean rate achieved by the TCP-like probability controller PCTCP
s (where

the expectation is taken with respect to transmission and drop processes) is given by

E[ps(k + 1)] = (1− ps(k))E[ps(k)] + ps(k)(1− ds(k))E
[
ps(k) + k

′

s

]
+ ps(k)ds(k)E

[
ps(k)− k′s (Ns(1− as,max(1− ps(k)))2 − 1)

]
,

= E[ps(k)] + λ(k)k
′

s

(
1

E [(1−as,max(1−ps(k)))2]
−Nsds(k)

)
≤ E[ps(k)]+λ(k)k

′

s

(
1

(1−as,max(1−E[ps(k)]))2−Nsds(k)

)
,

where λ(k) = ps(k)E [(1−as,max(1−ps(k)))2]. The mean rate obtained by PCTCP
s is

thus upper-bounded by a probability controller similar to that in (2.19), except the

scaling factor λ(k) > 0. �

The modified probability controller is similar in structure to the standard TCP

controller, which also regulates the rate based on the received ACKs. For rate

control, the TCP controller changes the window size whereas the proposed probability

controller changes transmission probabilities. Thus, the proposed controller can be

easily implemented in current networks due to its resemblance to the TCP controller.

A key difference between the two rate controllers is that TCP involves retransmissions

as opposed to no retransmissions in the proposed protocol. This can be attributed
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to the different end-objectives, i.e. reliability for TCP and estimation performance

for the proposed probability controller. Nevertheless, both protocols solve an overall

network optimization problem in a distributed manner.

2.4 Stability Analysis with Network Delays

We now consider the effect of network delays on the stability of the proposed

probability controllers. For tractability, we assume that the delays are constant.

Let the delay in the forward direction between source s and link l be denoted by

τ fsl. Further, let the delay in backward direction between link l and source s via

the corresponding destination d be denoted by τ bsl. Both the forward and backward

delays are assumed to be positive integers. We assume that the total round trip time

w.r.t. link l is constant for every link in the route, i.e. τs = τ fsl + τ bsl ∀ l ∈ L. Let

R = [rij] denote the |L| × |S| routing matrix, where

rij =


1 if source j uses link i (i ∈ Rj)

0 otherwise.

Further, let yl denote the aggregate rate on link l

yl(k) =
∑
s:l∈Rs

ps(k − τ fsl) =
∑
s

rlsps(k − τ fsl). (2.20)

The penalty function tl at link l depends on yl through the relation

tl(k) = hl(yl(k)), (2.21)

where tl is the penalty function as denoted in (2.14) and hl is a positive non-

decreasing function. The route price qs associated with route Rs can be written
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as

qs(k) =
∑

l:l∈L(s)

tl(k − τ bsl) =
∑
l

rlstl(k − τ bsl). (2.22)

At the source s, probability controller updates ps(k) using the relation

ps(k + 1) = gs(ps(k), qs(k)), (2.23)

where gs is the nonlinear function as described in (2.18). The equations (2.20)-(2.23)

form a nonlinear feedback system and the presence of delays can make the network

unstable. We wish to characterize the local asymptotic stability of the network around

the equilibrium point and obtain conditions under which stability is guaranteed. We

proceed by linearizing the system of equations around the equilibrium point. Let

{ps, yl, tl, qs} denote the equilibrium values for {ps(k), yl(k), tl(k), qs(k)}. Further, let

ps(k) = ps+δps(k), yl(k) = yl+δyl(k), tl(k) = tl+δtl(k), qs(k) = qs+δqs(k) be small

perturbations around the equilibrium point. Linearizing (2.20)-(2.23), we obtain

δyl(k) =
∑
s

rlsδps(k − τ fsl), (2.24a)

δtl(k) = h
′

l(yl)δyl(k), (2.24b)

δqs(k) =
∑
l

rlsδtl(k − τ bsl), (2.24c)

δps(k + 1) = αsδps(k) + βsδqs(k), where (2.24d)

αs =
∂

∂p
gs(p, q)|ps,qs , βs =

∂

∂q
gs(p, q)|ps,qs .

For the source law in (2.18), we have

αs = 1− 2k
′
sas,max

[1− (as,max(1− ps))]3
, and βs = −k′sNs.

Denote by {y, t, q, p} the vectors of aggregate rates, penalty functions, route prices
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and transmission probabilities, respectively. Taking z transform of (2.24) and com-

bining the variables in vector form we obtain

δy(z) = Rfδp(z), δt(z) = Fδy(z),

δq(z) = Rbδt(z), zδp(z) = αδp(z) + βδq(z), where

Rf (z) , [rfij(z)], rfij(z) = rijz
−τfji ,

Rb(z) , [rbij(z)], rbij(z) = rjiz
−τbij ,

F , diag{h′l(yl)}l∈L, α , diag{αs}s∈S , β , diag{βs}s∈S .

Thus, the overall return ratio of the linearized system as seen by the sources becomes

T (z) = (zI − α)−1βRbFRf = [Tij(z)], (2.25)

Tij(z) = βi(z − αi)−1
∑
l

rlirljh
′

lz
−(τfjl+τ

b
il).

Theorem 2.4.1. (Stability under delays) The system described by equations

(2.20)-(2.23) is locally asymptotically stable if the following conditions are satisfied

k
′

s < min

{
[1− (as,max(1− ps))]3

as,max
,

2 sin
(

π
2(2τs+1)

)
Ns

∑
j

∑
k rkirkjh

′
k(yk)

}
∀ s ∈ S, and

− 1 /∈ Co

({
2 sin

(
π

2(2τs + 1)

)
(ejω − αs)−1e−jωτs

})
,

where Co denotes the convex hull.

Proof. Denote the spectrum of a square matrix Z by σ(Z). Using

Rb(z) = diag{z−τs}s∈SRf,T (z−1) and the properties of similar and diagonal matrices,
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we can show that σ(T (z)) = σ(A(z)B(z)), where,

A(z) = diag

{√
βs
ws

}
s∈S

Rf,T (z−1)FRf (z)diag

{√
βs
ws

}
s∈S

,

B(z) = diag{ws(z − αs)−1z−τs}s∈S , and ws = 2 sin

(
π

2(2τs + 1)

)
> 0.

Assuming that the system is open loop stable and using the generalized Nyquist

stability criterion ([25]), the system is stable if the eigenloci of T (z = ejω), ω ∈ [0, π]

do not cross the real axis to the left of -1. For open loop stability we should have

|αs| < 1, which (since αs < 1) is equivalent to

ks <
[1− (as,max(1− ps))]3

as,max
. (2.26)

Assume that λ is an eigenvalue and v is the corresponding normalized eigenvector of

A(ejω)B(ejω). Then, λv = A(ejω)B(ejω)v or λ = v∗A(ejω)B(ejω)v, where v∗ denotes

the conjugate transpose of v. Since A(ejω) = AT (e−jω) > 0, we have ([21])

λ ⊂ ρ(A(ejω)) Co
({
ws(e

jω − αs)−1e−jωτs
})
, (2.27)

where ρ is the spectral radius. Since the spectral radius is upper bounded by the

maximum absolute row sum, we have

ρ(A(ejω)) ≤ max
s∈S

∑
j

∥∥∥∑
k

rkirkjh
′

k(yk)(
βs
ws

)e−jω(τfjk−τ
f
ik)
∥∥∥ (2.28)

≤ max
s∈S

k
′
sNs

ws

∑
j

∑
k

rkirkjh
′

k(yk)
(a)

≤ 1,

where (a) follows from the theorem statement. The result follows from (2.26)-(2.28).

�
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Figure 2.2. The network model used for simulations.

2.5 Simulation Results

Simulations were performed in Matlab to test the protocol performance. Consider

the network shown in Fig. 2.2. There are four source destination pairs and five links

in the network. Vector processes evolve at sources S1 and S2 and scalar processes

evolve at sources S3 and S4, which are given as follows

{A1, C1, Q1, R1} =
{[

0.5 0.6
1.1 0.1

]
, [ 1 1 ],

[
1 0
0 2

]
, 3
}

,

{A2, C2, Q2, R2} =
{[

1 0.5
0.7 1

]
, [ 1 1 ],

[
2.5 0
0 1.5

]
, 2
}

,

{A3, C3, Q3, R3} = {1.2, 1, 3.5, 3}, and {A4, C4, Q4, R4} = {1.1, 1, 2.5, 1.5}.

The link capacities are {c1, c2, c3, c4, c5} = {1.5, 1.6, 1.8, 1.7, 1.4}, the step size

k
′
s = 0.001 andNs = 100. The delays on the links are {d1, d2, d3, d4, d5} = {1, 2, 2, 3, 4}.

For simulating the packet drops, we use a crude form of the standard RED pro-

tocol. Let µ be the link utilization factor, which is the ratio of total rate on an link

to the link capacity. In RED protocol, the drop probability on a link is a linear

function of the queue size, which depends on the link utilization factor. We assume

a M/M/1 queuing model to calculate the queue size. Let {µmin, µmax} denote the

link utilization extremes and let {Nmin, Nmax} denote the corresponding queue sizes.
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Figure 2.3. Link drop probability, penalty function and barrier for the RED
scheme.

Then the link drop probability varies as

dl =



0 if N < Nmin,

N −Nmin

Nmax −Nmin

if Nmin ≤ N ≤ Nmax,

1 if N > Nmax.,

where N = µ
1−µ is the queue size. The values of {µmin, µmax} are {0.5, 0.95}. We

assume that the route drop probabilities are known to the sources.

Fig. 2.3 shows the link drop probability dl, penalty function tl and the scaled

barrier βsBl as a function of link utilization factor µ for a link that implements

RED algorithm. For low rates, there are no drops. As the drop probability increase

from 0 to 1, the penalty function becomes infinite. The barrier is scaled so that

the congestion cost becomes large for large µ. All the three curves are positive,

monotonically increasing and convex. Further, the penalty function is approximately

equal to the drop probability for low values of link utilization.
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(a) Transmission probabilities
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(b) Estimation cost

Figure 2.4. Transmission probability and estimation costs achieved by
various rate controllers.
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Fig. 2.4 shows the temporal variation of the transmission probability of the sec-

ond source (p2(k)) and the USER cost C(p(k)) for the original probability controller

PCs(2.18), the TCP-like probability controller PCTCP
s and the standard TCP rate

controller. The transmission probabilities of the other sources also vary is a simi-

lar way and are omitted for clarity. We observe that PCs achieves a steady state

minimum cost of 0.1884 for the optimal transmission probability vector pUSER =

[0.51, 0.69, 0.49, 0.43]. It can be verified that the system parameters satisfy the con-

ditions of theorem 2.4.1 and hence the overall system is stable. We also performed

an exhaustive numerical search over the variable p to find the solution to the USER

problem. This exhaustive search yields the minimum value of the cost as 0.1863

which is quite close to the cost achieved by PCs.

Similarly, an exhaustive numerical search over the variable p to find the solution

of the SY STEM problem yields the minimum value of the cost as 0.41 which is

achieved by pSYS = [0.58, 0.62, 0.51, 0.46]. We compare this with the SY STEM cost

achieved by pUSER, which is 0.47. We can observe that the solutions achieved by

the proposed protocol for the USER problem is close to the optimal solution of the

SY STEM problem, thus verifying the approximation of the latter by the former.

Further, we observe from figure 2.4 that the cost achieved by PCTCP
s fluctuates

slightly with time due to its structure. More importantly, we can notice that the

mean cost and the transmission probability achieved by PCTCP
s coincides with the

steady state cost and transmission probability of the original controller. This pro-

vides empirical evidence that under low network congestion conditions the TCP-like

probability controller well approximates the original controller.

Moreover, as seen in Fig. 2.4, there is a big performance margin between the

proposed controller and the TCP controller. This is because TCP controller is not

suitable for estimation oriented applications since it minimizes a cost that is differ-

ent from the estimation cost considered in this problem. To emphasize this point
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further, we present a simple scenario in which the TCP controller results in an un-

stable system and the cost became infinite while the proposed controller maintains

stability. Assume that the network consists of a single link with capacity c1 = 1.3

shared by two sources. The process parameters are {A1, C1, Q1, R1} = {1.15, 1, 2, 2}

and {A2, C2, Q2, R2} = {2, 1, 2, 2}. The rest of the system parameters are same

as before and we ignore delays. The minimum value of the transmission prob-

abilities required to stabilize the estimation error covariance (Lemma 2.3.2) are

{pmin1 , pmin2 } = {0.24, 0.75}. The TCP controller distributes the rate approximately

equally among the two sources as {0.65, 0.65}. We can see that although the esti-

mation error of the first process is stable, the estimation error of the second process

becomes unbounded since the transmission probability is less than pmin2 . On the other

hand, the optimal transmission probabilities achieved by the proposed controller is

{0.36, 0.79} and the error covariances remain stable. Thus, we can conclude that

the standard TCP protocol may not be suitable for estimation oriented application

since it caters to different set of applications, for example applications which require

a notion of proportional fairness among the users.

2.6 Summary

We studied the problem of rate control for networked estimation in presence of

congestion. A stochastic rate control protocol was proposed that optimizes the esti-

mation performance of the network by varying the source transmission probabilities.

The protocol was developed using a minimization framework analogous to NUM

framework and is scalable for large networks. An approximated controller analogous

to the standard TCP controller was also developed. The stability of the network was

analyzed in presence of delays.
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CHAPTER 3

DYNAMICAL PRIVACY IN MULTI-AGENT LINEAR TIME INVARIANT

SYSTEMS

3.1 Background

A distributed dynamical system typically consists of multiple agents that collec-

tively want to achieve a global system objective. For this purpose, the agents share

their state information among each other and as a result, their dynamics become

coupled with each other [26]. The distributed system may change over time due to

variations in the system operating conditions such as the number of agents, interac-

tion between the agents or changes in some underlying system parameters. Thus, a

system administrator needs to continuously monitor the system to manage it more

effectively. One possible way to perform this system monitoring is to collect the

measured outputs of the agents at a central control center and then estimate the

desired parameters using the outputs. For example, this type of architecture is used

in a power grid network, where multiple geographically distributed sensors such as

Phasor Measurement Units (PMUs) transmit their measurements to a control cen-

ter. The control center then estimates the modes of the network model using suitable

system identification methods [27].

Often, the dynamics of the overall coupled system depends on some underlying

private parameters associated with each agent. These parameters contain sensitive

information about the agents and should not be revealed to external entities. For

example, in a consensus network [5], each node (agent) has multiple edges with associ-

ated edge weights. These edges represent coupling between the agents and collectively
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form the network topology, which dictates the evolution(dynamics) of the consensus

network. The edge weights contain sensitive information about the agents. For ex-

ample, they contain information about loads and power flows in a power network

[28]. As another example, consider a multi-agent LQR control problem wherein the

agents are dynamically coupled, but have individual cost matrices, resulting in an

overall decoupled cost function. The optimal control inputs (and the resulting state

trajectory) depends on the state and input cost weighing matrices of the agents. In

many applications such as biological systems, it has been shown that the cost matri-

ces of an agent (human) represents the intent of a human ([29], [30] and references

therein), which he/she would like to keep private. In many economic applications

such as price determination, welfare planning and resource allocation, the agents

solve an LQR problem to obtain optimal results [31]. In such cases, the cost matrices

represent the pricing and welfare strategies of the agents, which they do not want to

reveal to their competitors.

Due to the cyber-physical nature of the upcoming dynamical systems, there is a

persistent threat of an intruder which may hack into the system and gain information

about the private parameters of the agents (see the discussion in [32, 33] and the

references therein). For instance, the intruder may snoop upon the measurements

transmitted by the agents to the control center or it may hack the control center itself.

It can then use the measurements to infer the sensitive parameters, thereby causing

a privacy breach and gaining critical system level information. This information can

further be used to plan an attack on the system. Therefore, protecting the privacy

of these sensitive parameters of the agents is a crucial task for system operators.

3.1.1 Differential Privacy

In this dissertation, we use the notion of differential privacy(DP) to design the

privacy mechanisms. The DP framework was originally proposed by Dwork [9] in
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the context of computer databases which contain multiple entries that may repre-

sent sensitive information about individuals like their medical records, income, bank

transactions etc. The response of a particular query submitted to the database should

only provide statistical attributes of the population, without revealing any individual

data. A particular simple solution to guarantee this privacy would be to anonymize

the database entries. This can be done for example, by removing identifying infor-

mation such as name, address or contact number of persons. However, it was shown

that such anonymization techniques are not sufficient to guarantee privacy of the

individuals [34]. This is because of the existence of side information, which can be

obtained from external sources other than the database. The side information can

then be correlated with the database responses to infer and identify particular indi-

viduals and their sensitive data. For example, in [34], it was shown that information

from the IMDB movie database can be used to identify individuals (and their movie

preferences) in an anonymized dataset of 500, 000 users released by Netflix for their

data mining contest.

The motivation behind DP is that it is very difficult to quantify the side informa-

tion and design a privacy mechanism that is robust to any possible side information.

Therefore, it abstracts away from the notion of side information and provides a dif-

ferential privacy guarantee, rather than an absolute guarantee. We next present the

mathematical definitions of DP. Let the database, query and its output be denoted

by D, q and q(D), respectively. Let M denote the privacy mechanism that provides

a response Mq(D) to the user.

Definition 3.1.1. (Differential privacy for databases) The privacy mechanism

M is ε−differentially private, if for any two databases D and D′ that differ in at most

one entry and for all S ⊂ Range(M)

P[Mq(D) ∈ S] ≤ eεP[Mq(D
′) ∈ S]. (3.1)
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The definition implies that under the randomized DP mechanismM, the statistics

of the output do not change significantly (within the multiplicative factor of eε)

whether a user is present in a database or not. Thus, a user concerned about the

leakage of its private information by participating in a database can be assured that

regardless of the side information that an adversary might have, the probability

of outputs will not differ significantly whether he/she is present or absent in the

database. This differential guarantee would encourage more users to participate in

the database. Note that ε−1 can be treated as the privacy level.

The DP mechanism randomizes the query output in order to mask the pres-

ence/absence of a user in the database. One way to do this is to add Laplacian noise

to the query outputs as described below.

Lemma 3.1.2. (Laplacian mechanism) Let q(D) : D → Rk and D,D′ be any

two databases that differ in at most one entry. The mechanism Mq(D) = q(D) +

N is ε−differentially private if N ∼ Lap
(

0, ∆q,1

ε

)k
, where ∆q,1 denotes the system

sensitivity and is given by

∆q,1 , sup
D,D′

‖q(D)− q(D′)‖1 . (3.2)

Proof. See [35], Theorem 2. �

The sensitivity defines the maximum possible change in the output of a query (in

terms of 1−norm) applied on two databases that differ in a single user. The noise

level is scaled according to the sensitivity: if it is high, a large amount of noise is

needed to mask the presence/absence of the user, and vice versa. Next, we provide

a more general definition of DP.

Definition 3.1.3. (Generalized DP for databases) The privacy mechanismM

is (ε, δ)−differentially private, if for any two databases D and D′ that differ in at
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most one entry and for all S ⊂ Range(M)

P[Mq(D) ∈ S] ≤ eεP[Mq(D
′) ∈ S] + δ (3.3)

The (ε, δ)-DP relaxes the requirement of ε−DP by an additive term δ < 0.5 and

can be achieved by adding a Gaussian noise to the query outputs.

Lemma 3.1.4. (Gaussian mechanism) Let q(D) : D → Rk and D and D′ be any

two databases that differ in at most one entry. The mechanism Mq(D) = q(D) +N

is (ε, δ)−differentially private if N ∼ N(0, σ2IN), where

σ ≥ ∆q,2

2ε
(K +

√
(K2 + 2ε)),

K = Q−1(δ) and ∆q,2 , sup
D,D′

‖q(D)− q(D′)‖2 .

Proof. See [35], Theorem 3. �

The Laplacian/Gaussian noises introduced by the above privacy mechanisms

clearly introduce inaccuracies in the outputs of the queries. These noisy outputs

degrade the utility of the database. The utility depends on various factors such as (i)

the application for which the database is being used, (ii) how the database responses

are used in a particular study, and so on. If a higher level of privacy is needed, the

noise level needs to be increased, thereby further distorting the outputs and degrad-

ing the utility. Thus, a fundamental tradeoff exists between the privacy and utility in

a database and characterizing this tradeoff is an important component of any study.

The DP framework was extended to dynamical systems in [35] in which the DP

of individual input trajectories were guaranteed from a user who has access to the

outputs. Similar to the static databases scenario, DP is achieved for dynamical

systems by adding Laplacian/Gaussian noises to the system outputs. We use the DP

framework of [35] in this dissertation to design privacy mechanisms. In this chapter,
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we present a privacy mechanism for the class of linear time-invariant (LTI) dynamical

systems that protects the privacy of the system level parameters associated with the

agents which dictate the system dynamics. In this problem setting, ensuring DP

of the system parameters means that for any two sets of parameters that are “not

very different”, the outputs of the corresponding linear dynamical systems will also be

“statistically not very different”. To ensure this property, each agent adds a synthetic

noise to its state measurements before sending them to the control center. The noise

is designed in such a way that the intruder cannot identify a “differential change” in

the parameters from the noisy measurements, thereby keeping them private.

Recently, a number of works have appeared that present privacy mechanisms for

dynamical systems. In [36], the authors propose a DP mechanism to keep the initial

state private for the consensus problem and extend it in [37], to keep a reference

trajectory private for a general distributed control system . In [38], a privacy mech-

anism involving careful noise addition and removal is presented to keep the initial

state private and achieve exact consensus. Some papers have addressed privacy is-

sues in optimization problems. In [39], [32] and [33], the authors present noisy update

algorithms to protect private cost functions, constraints, and states, respectively. Fur-

ther, [40] and [41] present mechanisms for privately solving optimization problems

with linear and piecewise affine objectives, respectively. In [42], the authors present

a stochastic gradient algorithm to solve a convex optimization problem wherein the

noisy updates preserve DP. However, all these works aim to protect the privacy of

the initial conditions, inputs, reference trajectories, cost functions etc. In contrast,

our work aims to protect the parameters related to the system dynamics that are

contained in the state evolution matrix of the LTI system. Note that the mapping

from initial condition, input or reference trajectory to the output is linear whereas

the mapping from the state matrix (and the parameters) to the output is non-linear.

Characterizing this non-linear mapping poses additional challenges in our problem.
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Figure 3.1. Dynamical system architecture

Moreover, all these works address privacy in a discrete time setting whereas our work

presents privacy mechanism for continuous time systems.

3.2 Problem Setup

Figure 3.1 shows a distributed control system architecture consisting of N linear

dynamical agents. The agents want to collectively achieve a global system objective.

A directed solid line from agent i to agent j means that the evolution of agent j is

coupled with agent i. The coupling can be present due to multiple reasons: (i) the

dynamics of agent j is inherently coupled to that of agent i or, (ii) agent j uses the

state information of agent i to update its own state, and others. The evolution of

the whole system is represented as the following continuous-time LTI system

ẋc(t) = A(P )xc(t) +B(P )u(t) + Fd(t) t ≥ 0, (3.4)
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with xc = σ{[xT1 , · · · , xTN ]T} ∈ Rn, where xi ∈ Rni denotes the state of agent i with∑N
i=1 ni = n and σ denotes the permutation operator. Further, u = [uT1 , · · · , uTN ]T ∈

Rm where ui ∈ Rmi is the control input to agent i with
∑N

i=1 mi = m and d(t) ∈ Rq

denotes the disturbance in the system. Further, Pi denotes the set of parameters

associated with the dynamics of agent i that it wishes to keep private and P =

{P1, P2, · · · , PN} denotes the collection of parameters of all agents. For instance, Pi

may contain sensitive parameters that can reveal the coupling structure of agent i

with other agents or its control preferences. We will illustrate this later using some

examples. For the sake of analysis and without loss of generality, we treat the sets

Pi and P as matrices and/or vectors, depending on the application. We study a

class of systems in which the agents achieve the system objective by using a linear

state feedback control law u(t) = −K(P )xc(t). Note that the agents share their state

information among each other to implement the control law. The overall feedback

system evolves as

ẋc(t) = (A(P )−B(P )K(P ))xc(t) + Fd(t) t ≥ 0

, Ac(P )xc(t) + Fd(t) P ∈ P , (3.5)

where P denotes a given set of private parameters of all the agents. The output of

the system is given by

yc(t) = Cx(t), (3.6)

where yc = σ{[yT1 , · · · , yTN ]T} ∈ Rp where yi ∈ Rpi is the output of agent i with∑N
i=1 pi = p.

We make the following assumptions regarding the closed loop system in (3.5)-

(3.6):

A1: The closed loop state matrix Ac(P ) is stable or marginally stable for all P ∈ P.
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Further, lim
t→∞

xc(t) exists and is finite.

A2: The closed loop state matrix Ac(P ) is diagonalizable for all P ∈ P.

A3: The system is fully observable, i.e. matrix C has full rank. Then, without loss

of generality, we assume that C = In and p = n.

A4: The pair (Ac(P ), F ) is controllable for all P ∈ P.

A5: The disturbance d(t) is an impulse, i.e. d(t) = K0δ(t).

Stability assumption A1 is standard for physical systems. It implies that

Re(λi(Ac(P ))) ≤ 0 for i ∈ {1, 2, · · · , n} and in case the system is marginally stable,

there is only a single pole on the imaginary axis which is located at the origin.

Assumption A2 enables us to design the privacy noise and will be used later in the

proof of theorem 3.3.8. Assumption A3 is valid since for efficient monitoring of the

dynamical system, the control center typically has access to all the states of the

system. Assumption A4 is used in identification of the closed loop system, and will

be explained later in this section. Assumption A5 captures sudden faults in the

system, which can be modeled as impulses.

The agents periodically sample their outputs at discrete time instants

t = 0, Ts, 2Ts, · · · where Ts > 0 denotes the sampling time period. These measure-

ments are sent to a control center as denoted by dashed lines in figure 3.1. The aim

of the control center is to monitor the complete dynamical system using the measure-

ments. Specifically, the control center wants to monitor the eigenvalues of the closed

loop system Ac(P ). We will explain the eigenvalue identification procedure in detail

in subsection 3.2.5. The discrete time measurements are denoted as

y(k) , yc(kTs) = Cxc(kTs), k = 0, 1, 2, · · · (3.7)

where y ∈ Rp. Since the measurements are available in discrete time to the control

center, we convert the continuous time system (3.5) to discrete time. Since d(t) is
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an impulse (see assumption A5), we use the impulse invariant transform method to

perform the discretization. The discrete time system can be written as

x(k+1) , xc((k+1)Ts) = Ad(P )x(k) + Fd(P )d(k), (3.8)

where Ad(P ) , eAc(P )Ts , Fd(P ) = Ad(P )F,

y(k) = Cx(k), (3.9)

and d(k) is an impulse in discrete time, i.e. d(k) = K0δ(k). Note that the poles of

the discrete time system are related to that of the continuous time system as

λ(Ad(P )) = eTsλ(Ac(P )). (3.10)

We make the following assumptions regarding the discretized system:

A6: The pair (Ad(P ), Fd(P )) is controllable for all P ∈ P.

A7: The sampling time period satisfies the following property

Ts < T̄s ,
π

sup
P∈P, i∈{1,2,··· ,n}

|Im(λi(Ac(P )))|
. (3.11)

Assumption A6 is used in identification of the discrete time closed loop system

and assumption A7 is made to prevent aliasing and enable identification of the con-

tinuous time system from the discrete time system. However, the sampling time

cannot be arbitrarily small since it will cause the poles of the discrete time system

to cluster around 1, creating numerical issues in the identification procedure. The

identifications procedures will be explained in subsections 3.2.3 and 3.2.5. The evo-

lution of the discrete time system (3.8) with the impulse input d(k) = K0δ(k) (see
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assumption A5) can be written as

x(k) = Akd(P )(x(0) + FK0). (3.12)

Next, we illustrate our problem setup using examples of consensus and optimal con-

trol.

3.2.1 Example I: Second-order Consensus Network

Consider a dynamical system with N agents whose objective is to collectively

achieve consensus asymptotically. The system can be represented as a undirected

graph (N , E , G) where N = {1, 2, · · · , N} denotes the set of nodes (agents), E ∈

N ×N denotes the set of edges where an edge between agents i and j is represented

as pair (i, j) and it means that agents i and j are dynamically coupled with each

other. Further, G ∈ RN×N denotes the non-negative weighted adjacency matrix with

[G]ij = gij ≥ 0. Let Ni denote the set consisting of the neighbors of agent i, i.e.

Ni = {j : (i, j) ∈ E}. The agents evolve according to the following dynamics

Miẅi(t) = ui(t) + f̄idi(t) i = 1, · · · , N (3.13)

ui(t) = −
∑
j∈Ni

gij(wi(t)− wj(t))−Diẇi(t), (3.14)

where wi ∈ R, di ∈ R and Mi ∈ R, Di ∈ R denote the positive inertia and damping

of the ith agent, respectively. Such second order dynamics are commonly used in

modeling transportation systems [43], robot motions or electro-mechanical power

networks [28].

Definition 3.2.1. (Consensus) The agents achieve consensus if (i) lim
t→∞
|wi(t) −

wj(t)| = 0 for all agents i 6= j and (ii) lim
t→∞
|ẇi(t)| = 0 for all agents i ∈ N .
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The dynamics of the whole system can be written as

ẋc(t) =

0N×N IN

0N×N 0N×N


︸ ︷︷ ︸

A

xc(t) +

0N×N

M−1


︸ ︷︷ ︸

B

u(t) +

 0N×N

M−1F̄


︸ ︷︷ ︸

F

d(t),

(a)
=

 0N×N IN

−M−1L −M−1D


︸ ︷︷ ︸

Ac(L)

xc(t) + Fd(t), (3.15)

where (a) follows from the control law (3.14), xi = [wi, ẇi]
T ∈ R2 is the state of

agent i, xc = [w1, · · · , wN , ẇ1, · · · , ẇN ]T ∈ R2N , u = [u1, · · · , uN ]T ∈ RN , d =

[d1, · · · , dN ]T ∈ RN , M = diag(Mi, · · · ,MN) ∈ RN×N , D = diag(D1, · · · , DN) ∈

RN×N , F̄ = diag(f̄1, · · · , f̄N) ∈ RN×N , and L ∈ RN×N is the symmetric positive

semidefinite Laplacian matrix defined as

[L]ij , lij =


∑
j∈Ni

gij if i = j,

−gij otherwise.

(3.16)

We assume that the graph is connected. As a result, the closed loop state matrix

Ac(L) has one eigenvalue at 0 and all other eigenvalues have negative real part [44],

and hence it satisfies assumption A1. We will later show that the dynamical system

(3.15) achieves consensus. The laplacian matrix L represents the complete topology

of the network and the edge weights contain crucial and sensitive information about

the network, which should not be revealed [45]. For example, the edge weights may

contain information about the voltages and loads in a power network [28]. Specifically,

each agent (node) wants to keep private all the edge weights associated with it.

Comparing the consensus evolution (3.15) with the general dynamical system (3.5),

we get Pi = {lij : j ∈ Ni}, P = L and, Ac(P ) = Ac(L).
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3.2.2 Example II: LQR Control

Consider a set of N agents with coupled dynamics that evolve as

ẋc(t) = Axc(t) +Bu(t) + Fd(t), (3.17)

where xc = [x1, · · · , xN ]T ∈ Rn. The agents aim to minimize the following infinite

horizon decoupled quadratic cost function

J(x, u) =

∫ ∞
0

N∑
i=1

(xTi (t)Qixi(t) + uTi (t)Riui(t))dt

=

∫ ∞
0

(xTc (t)Qxc(t) + uT (t)Ru(t))dt, (3.18)

where Qi ∈ Rni×ni ≥ 0, Ri ∈ Rmi×mi > 0, Q = diag(Q1, · · · , QN) ∈ Rn×n and

R = diag(R1, · · · , RN) ∈ Rm×m. The cost matricesQi, Ri contain private information

about the control strategies of the agents. For example, in biological systems, the

cost matrices can represent human intent [29, 30] and in economic applications, they

can represent pricing and welfare strategies [31].

We make the following assumptions for the LQR problem:

A8.1: The pair (A,B) is controllable.

A8.2: The input cost matrix R = Im.

A8.3: Rank(B) = n.

Assumption A8.1 is standard in LQR problems. Assumption A8.2 means that

the input cost matrix R is specified for the system and the agents only wish to keep

the state cost matrix Q private. Further, without loss of generality, we assume R to be

an identity (otherwise, one can always do a coordinate transformation s.t. R = Im).

This is a standard assumption in most of the inverse control problems [46], [47] and

also simplifies the analysis (c.f. lemma 3.3.12). Assumption A8.3 ensures that the

cost matrix Q can be uniquely identified from the optimal control gain defined below
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(see [47], Theorem 7).

The optimal control law that minimizes the cost in (3.18) depends on Q, and is

given by

u(t) = −K(Q)xc(t), K(Q) = R−1BTV (Q), (3.19)

where V (Q) is the unique positive definite solution of the following Riccati equation

ATV (Q)+V (Q)A−V (Q)BR−1BTV (Q)+Q = 0. (3.20)

Since (A,B) is controllable, the closed loop matrix A − BK(Q) is stable (cf. as-

sumption A1). Comparing the closed loop evolution of the LQR system with the

general dynamical system (3.5), we get Pi = Qi, P = diag{Pi} = Q, and Ac(Q) =

A−BK(Q).

The above examples illustrate that our formulation is quite general and encom-

passes a wide variety of problems in which the agents’ dynamics is (i) linear and (ii)

contains private parameters. Next, we examine the privacy issues that may arise in

such distributed control systems.

3.2.3 Privacy Issues in Dynamical System

Due to the cyber-physical nature of the dynamical system architectures, there

always exist a threat of an external intruder that can gain an unauthorized access

into the system. This is usually the case before planning an attack on the system,

wherein the intruder wants to first obtain private information about the individual

components (agents) of the system. For this purpose, the intruder might snoop upon

the messages communicated by the agents to the control center, or it may hack

into the control center itself, as shown in figure 3.1, thereby gaining access to the

measurements y(k). In addition to the measurements, the intruder may have some
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information about the system that is obtained from some external sources. Towards

this, we make the following assumption:

A9: The intruder has information about the initial condition x(0), F , the disturbance

d(t) and sampling time period Ts. Further, it may also have information about some

non-private parameters of the system.

This assumption implies that the intruder knows that the system is excited by an

impulse disturbance, the magnitude of the impulse and how the disturbance affects

the system. Also, some non-private parameters, for ex. A,B,C in the LQR example,

are known to the intruder. Collectively, all the information about the system except

the private parameters P is called side information or auxiliary information.

Remark 3.2.2. (Side information) Assumption A9 is not restrictive to the prob-

lem because there always exists a possibility that such side information regarding

the system is known to the intruder. In fact, one of the main motivations behind

the differential privacy framework is to develop a privacy mechanism that abstracts

away from arbitrary side information that the intruder might possess [9] (also see

remark 3.2.8). Moreover, assumption A9 represents the worst case scenario and the

capabilities of the intruder will be further limited in case it does not have some of

this information. �

The aim of the intruder is to infer the private parameters P using the measure-

ments and the side information. In general, the measurements of the system depend

on the parameters P in a non-linear fashion. Therefore, the intruder uses a Non-linear

Least Squares (NLS) optimization procedure to identify the parameters. It uses an

indirect identification method in which the discrete time state matrix is identified

first, and then it is used to obtain the continuous time state matrix, from which the

private parameters are extracted. The parameter identification method is described

as follows

P1) Using (3.12), solve the following NLS problem to obtain a discrete time state
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matrix estimate using the discrete time measurements

Âd,T (P̂T ) = arg min
Z∈Rn×n

T∑
k=0

∥∥y(k)− CZk(x(0) + FK0)
∥∥2

2
, (3.21)

where T is the identification time horizon.

P2) Obtain a continuous time state matrix estimate from the discrete time state

matrix estimate using Âc,T (P̂T ) = 1
Ts
log(Âd,T (P̂T )).

P3) Extract the private parameter P̂T from Âc,T (P̂T ).

Since the discrete time system (3.8)-(3.9) is fully observable (assumption A3) and

controllable (assumption A6), the discrete time state matrix Ad(P ) can be uniquely

and accurately identified by the intruder from the discrete outputs and the impulse

input in step P1 [48] . From the discrete time state matrix, the intruder can then

accurately obtain the continuous time state matrix Ac(P ) in step P2, since condition

(3.11) on the sampling time period guarantees that there is no aliasing. From Ac(P ),

the intruder can then accurately identify the parameters P . Thus, P̂T = P and

the intruder gains access to the sensitive parameters, which is clearly undesirable.

Therefore, a privacy mechanism needs to be integrated into the dynamical system

that prevents such kind of privacy breaches. In the next subsection, we present a

noise adding privacy mechanism using the notion of differential privacy.

Remark 3.2.3. (Non-identifiability of the private parameters) In some cases,

it may be possible that the mapping from P to Ac(P ) may be many to one (for

ex., LQR problem without assumption A8.3). In other cases, the intruder may not

have enough side information to infer P from Ac(P ). For example, in the consensus

problem, if the intruder does not know M , then it cannot identify L from Ac(L). It

can only identify M−1L (see (3.15)). In all such cases, the intruder will not be able

to uniquely identify the parameters from the measurements. �

Remark 3.2.4. (Intruder vs control center) We emphasize the fact that the
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objectives of the intruder and the control center are different. The control center

wants to monitor the eigenvalues (explained in subsection 3.2.5) of the system to

verify that it is functioning correctly. On the other hand, the aim of the intruder

is to perform an attack into the system for which it requires information about the

private parameters, and the sole knowledge of eigenvalues of the system will not be

sufficient. �

3.2.4 Differential Privacy Mechanism

We motivated and introduced the DP framework in the context of static databases

in subsection 3.1.1. In this subsection, we present DP definitions pertaining to the

dynamical system considered in this problem, using the DP framework developed in

[35]. In order to prevent the intruder from accurately identifying the private param-

eters, the the agents add noise to the measurements before transmitting them to the

control center. The privacy noise ensures the following differential property: if the

private parameters are “changed within some specified limits”, then the correspond-

ing measurements appear “probabilistically almost similar” to the intruder. In other

words, the DP noise masks any change in the parameters to the intruder. Thus, the

intruder will not be able to distinguish between the two parameters with a high con-

fidence level, thereby preserving their privacy. Next, we provide formal definitions of

differential privacy specific to this problem.

Definition 3.2.5. (Adjacency) Two parameters P and P
′

(which are essentially

matrices) are β-adjacent (denoted by adj(β)) if for some β ≥ 0 we have

∥∥∥P − P ′∥∥∥
2
≤ β. (3.22)

Remark 3.2.6. (Generalized adjacency) In the DP definition for static databases

[9] and for dynamical systems [35], adjacency is defined w.r.t. the change of data/input
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of one agent while keeping the data/inputs of other agents unchanged. In contrast,

our definition of adjacency is more general and allows changes in the parameters of

one or more agents. �

As mentioned before, the agents add noise to the measurements according to the

following DP mechanism

M : ỹ(k) = y(k) + w(k), (3.23)

where w(k) ∈ Rn is the noise. We will specify the properties of the privacy noise in

section 3.3.

Let ỹP denote the noisy measurements of the of the system with private parameter

P . Note that ỹP [0 : T ] ∈ Rn(T+1) and let Rn(T+1) denote the σ − algebra generated

by it. Next, we provide the definition of differential privacy.

Definition 3.2.7. (Differential privacy) The mechanism M in (3.23) is

ε-differentially private upto time T if for any two β-adjacent parameters P and P
′

and for all S ⊂ Rn(T+1)

P[ỹP [0 : T ] ∈ S] ≤ eεP[ỹP ′ [0 : T ] ∈ S], (3.24)

where ε > 0 is the DP parameter. The definition says that if the parameter

changes from P to P
′

that is β-adjacent to P , then the corresponding measurement

probabilities change only within a factor of eε. Note that a smaller value of ε implies

a higher level of privacy and vice versa.

Remark 3.2.8. (Differential vs absolute privacy) We would like to emphasize

that the DP mechanism does not guarantee absolute privacy of the parameters. In

some scenarios, the intruder may be able to obtain an extensive amount of side

information and it can identify some of the private parameters even without using
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the measurements. The only guarantee DP provides is that there will only be a

marginal privacy loss (determined by ε) due to any changes in the private parameters

of the agents within a specified limit (determined by β). Thus, it abstracts away

from any possible side information that the intruder might have [10]. �

The privacy noise will prevent the intruder from accurately identifying the private

parameters. Instead, the intruder will use the noisy measurements in step P1 of the

parameter identification procedure, which can be re-written as (for comparison, see

(3.21))

Âd,T (P̂T ) = arg min
Z∈Rn×n

T∑
k=0

∥∥ỹP (k)− CZk(x(0) + FK0)
∥∥2

2
, (3.25)

and the steps P2 and P3 remain the same. The inaccuracy in the identification will

preserve the privacy of the parameters. The parameter identification error suffered

by the intruder can be quantified as

EP = E
[∥∥∥P̂T − P∥∥∥

F

]
, (3.26)

where the expectation E is taken w.r.t the noise. We will present numerical simulation

results regarding the identification error in section 3.4, and show that it increases with

increase in privacy level (or noise).

Remark 3.2.9. (Advanced identification techniques) We have presented one

technique for parameter identification. There may be alternative and possibly ad-

vanced techniques that the intruder may employ to obtain a better estimates from

the noisy measurements. However, a fundamental property of DP mechanism is its

resilience to post processing, i.e. one cannot weaken the DP guarantee by processing

the differentially private outputs using any technique [35]. Therefore, the DP mech-

anism is robust to any identification/processing technique used by the intruder and
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hence, finding an optimal technique is not the central premise of this problem. �

Next, we explain how the noisy DP mechanism affects the eigenvalue identification

procedure at the control center.

3.2.5 Eigenvalue Identification by Control Center

As mentioned earlier, the objective of the control center is to identify the eigen-

values of the continuous time closed loop state matrix Ac(P ). This identification is

performed using the noisy measurements ỹ(k) that the control center receives from

the agents at discrete times t = 0, Ts, 2Ts, · · · . First, the control center identifies the

eigenvalues of the discrete time state matrix Ad(P ) by identifying the coefficients of

its characteristic polynomial. Next, the eigenvalues of the continuous time system

are computed using the eigenvalues of the discrete time system. The upper bound on

the sampling time in (3.11) prevent aliasing during this reverse sampling step. For

identification purposes, the impulse disturbance d(k) acts like an input to the discrete

time closed loop system in (3.8)-(3.9). We denote the transfer function matrix from

d to y as

H(z) = C(zIn − Ad(P ))−1Fd with, (3.27)

[H]ij =

∑n
k=1 b

(k)
ij z

−k

1 +
∑n

k=1 a
(k)z−k

, (3.28)

where ad(z) = 1 +
∑n

k=1 a
(k)z−k is the characteristic polynomial of Ad(P ). Let a =

[a(1), a(2), · · · , a(n)]T , b
(k)
i = [b

(k)
i1 , b

(k)
i2 , · · · , b

(k)
iq ]T , bi = [(b

(1)
i )T , (b

(2)
i )T , · · · , (b(n)

i )T ]T . Us-
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ing the transfer function, the noisy outputs can be written as

ỹ(k) = ϕT (k)θ + v(k), (3.29)

where, v(k) =
n∑
i=1

a(i)w(k − i),

ϕ(k) =



−ỹT (k − 1)

−ỹT (k − 2)

...

−ỹT (k − n)

Ip ⊗



d(k − 1)

d(k − 2)

...

d(k − n)




(n+pqn)×p

and θ =



a

b1

b2

...

bp


(n+pqn)×1

(3.30)

The data vector ϕ is constructed from the noisy measurements and the impulse dis-

turbance. Further, θ is the vector consisting of all the numerator and denominator

coefficients of the transfer function H(z). Note that the vector a contains the co-

efficients of the characteristic polynomial of Ad(P ), from which the eigenvalues can

be calculated. Thus, first θ is estimated using the input-output data and then a is

extracted from the estimate.

The identification is performed using the instrumental variable (IV) method,

which is stated as follows

θ̂T = sol

{
1

T

T∑
k=1

ζ(k)[ỹ(k)− ϕ(k)T θ] = 0

}
,

=

(
1

T

T∑
k=1

ζ(k)ϕ(k)T

)−1

1

T

T∑
k=1

ζ(k)ỹ(k),

= θ +

(
1

T

T∑
k=1

ζ(k)ϕ(k)T

)−1

1

T

T∑
k=1

ζ(k)v(k), (3.31)
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where sol denotes the solution of an equation, T is the time horizon for identification,

and ζ(k) are appropriately chosen instruments that are uncorrelated with the noise

v(k). We do not present the details of the choice of instruments here. These results

are a part of standard identification theory and we refer the interested reader to [49]

for further details.

Let âT denote the estimate of a that is extracted from θ̂T . The eigenvalue identi-

fication procedure can be summarized as follows:

E1) Obtain the estimate θ̂T using the IV method in (3.31).

E2) Extract âT from θ̂T using its structure given in (3.30).

E3) Obtain the eigenvalue estimates of the discrete time system λ̂(Ad(P )) from âT .

E4) Obtain the eigenvalue estimates of the continuous time system using λ̂(Ac(P )) =

1
Ts

log(λ̂(Ad(P ))).

Let ac denote the coefficients of the characteristic polynomial of Ac(P ) and let âc,T

denote its estimate, which is calculated from the estimated eigenvalues λ̂(Ac(P )). We

evaluate the eigenvalue identification performance in terms of the estimation error of

these coefficients

Eac = E
[
‖âc,T − ac‖2

]
, (3.32)

where the expectation is taken w.r.t the privacy noise.

3.3 Noise Design for Differential Privacy

In the previous section, we introduced the noise adding privacy mechanism in

(3.23). In this section, we present the properties of the privacy noise w(k) that

guarantee that the mechanismM satisfies the DP criterion of (3.24). As standard in

the literature [35, 50], the noise provides DP if it satisfies the following two conditions

(i) it is Laplacian and white, and (ii) the noise level is calibrated according to the
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sensitivity of the system. We also use the Laplacian mechanism for providing DP.

Since we want to protect the parameters P from an intruder that has access to the

measurements y(k), we compute the sensitivity from P to y for determining the noise

level. If this sensitivity is low, then the measurements do not change significantly

with the change the parameters. Therefore, a lower level of noise needs to be added

to the measurements to mask the change in the parameters, and vice versa. Thus,

the required noise level is proportional to the sensitivity of the system. Next, we

present the formal definition of sensitivity specific to our problem.

Definition 3.3.1. (Sensitivity) The system sensitivity at time instant k ≥ 0 is

defined as

∆(k) = sup
P,P ′ :adj(β)

‖yP (k)− yP ′ (k)‖1 . (3.33)

The sensitivity characterizes the maximum possible difference (in terms of 1-norm)

between the measurements resulting from any two possible adjacent parameters. It

depends on a number of system parameters and we will characterize it later in this

section. Next, we show that we can use the sensitivity to design the privacy noise.

Theorem 3.3.2. (Noise design for DP) The mechanism M in (3.23) is ε-

differentially private upto time T if w(k) is white Laplacian with

w(k) ∼ Lap(0, ck)
p and

T∑
k=0

∆(k)

ck
≤ ε. (3.34)

Proof. From the mechanismM, we have ỹP [0 : T ] = yP [0 : T ] +w[0 : T ]. Let fP and

fP ′ denote the probability density functions of ỹP [0 : T ] and ỹP ′ [0 : T ], respectively.
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Further, let x = [xT0 , x
T
1 , · · · , xTT ]T ∈ Rn(T+1) denote the integration variable. Then

P[ỹP [0 : T ] ∈ S] =

∫
S

fP (x)dx

(a)
=

∫
S

T∏
k=0

1

(2ck)n
e
−‖xk−yP (k)‖1

ck dxk

(b)

≤
∫
S

T∏
k=0

1

(2ck)n
e

−‖xk−yP ′ (k)‖
1

ck e
‖yP (k)−y

P
′ (k)‖

1

ck dxk

(c)

≤ e

(
T∑

k=0

∆(k)
ck

) ∫
S

T∏
k=0

1

(2ck)n
e

−‖xk−yP ′ (k)‖
1

ck dxk

(d)

≤ eεP[ỹP ′ [0 : T ] ∈ S],

where (a) follows from the joint Laplacian distribution of w[0 : T ], (b) follows from

the triangle inequality

−‖x− p‖1 ≤ −
∥∥∥x− p′∥∥∥

1
+
∥∥∥p− p′∥∥∥

1

(c) follows from the definition of sensitivity and (d) follows from the condition given

in the theorem. Thus, the DP condition (3.24) is satisfied. �

From the preceding theorem, it is clear that in order to design the noise, we need

to characterize the sensitivity of the system. However, it is difficult to obtain an

exact expression for the sensitivity. Therefore, we next obtain an upper bound on

the sensitivity which can be used to design the noise level.

3.3.1 Upper Bound on Sensitivity

Let x̄(P ) denote the steady state value of the discrete time system (3.12) (also

see assumption A1). If Ad(P ) is stable, then x̄(P ) is trivially zero. For marginally

stable systems (i.e. a single eigenvalue on the unit circle located at 1: see assumption
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A1), using assumption A2, the steady state value can be readily obtained as

x̄(P ) = Ād(P )(x(0) + FK0), where (3.35)

Ād(P ) , lim
k→∞

Akd(P ) = ν1(Ad(P ))ν̃1(Ad(P )) with,

ν̃1(Ad(P ))ν1(Ad(P )) = 1,

where νλ and ν̃λ denote the right and left eigenvectors associated with the eigenvalue

λ, respectively. We make the following assumption regarding the steady state.

A10: The steady state value x̄(P ) is independent of the private parameters P .

This assumption is trivially satisfied for stable systems since the steady state is

zero. For marginally stable systems, this assumption guarantees that the sensitivity

defined in (3.33) decays with time and the privacy noise level remains bounded.

We will further comment on this assumption later in the section. In view of this

assumption, we drop the dependence of x̄(P ) and Ād(P ) on the privacy parameter P

and denote them by x̄ and Ād, respectively.

For marginally stable systems, we use the fact that the system describing the

evolution of the error defined as e(k) , x(k) − x̄, is stable. Towards this, we have

the following lemma.

Lemma 3.3.3. (Error evolution) The dynamics of the error can be represented

as

e(k + 1) = Ãd(P )e(k) for k ≥ 0, where (3.36)

Ãd(P ) =


Ad(P ) if Ad(P ) is stable,

Ad(P )− Ād if Ad(P ) is marginally stable,

and e(0) = x(0) + FK0.

Proof. See appendix A.1. �

60



Next, we derive the eigenvalues of the error dynamics for the marginally stable

case and show that it is stable.

Lemma 3.3.4. (Error eigenvalues) For marginally stable systems, the set of

eigenvalues of Ãd(P ) is

λ(Ãd(P )) = {0, {λi(Ad(P )) : λi(Ad(P )) 6= 1}ni=1}. (3.37)

Proof. See appendix A.1. �

From the preceding lemma, it is clear that ρ(Ãd(P )) < 1 and therefore the error

dynamics is stable.

Corollary 3.3.5. (Simultaneous diagonalizability) Ac(P ), Ad(P ) and Ãd(P )

are simultaneously diagonalizable.

Proof. Since Ac(P ) is diagonalizable (assumption A2) and Ad(P ) = eAc(P )Ts , it is

trivial to observe that Ac(P ) and Ad(P ) are simultaneously diagonalizable. Further,

from the proof of Lemma 3.3.4, we can observe that both Ad(P ) and Ãd(P ) have

same eigenvectors and thus, they are simultaneously diagonalizable. �

Now, the measurements can be represented in terms of the error as

y(k) = C(e(k)+x̄) = C(Ãkd(P )(x(0) + FK0) + x̄). (3.38)

Next, we define some global quantities of the system, which will be used in ob-

taining the upper bound to the sensitivity. Using corollary 3.3.5, let Ac(P ) =

X−1(P )Λc(P )X(P ), Ad(P ) = X−1(P )Λd(P )X(P ) and Ãd(P ) = X−1(P )Λ̃d(P )X(P )

, where Λc(P ),Λd(P ) and Λ̃d(P ) are diagonal matrices consisting of the eigenvalues
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of Ac(P ), Ad(P ) and Ãd(P ), respectively. Then, let

κmax , sup
P∈P

κ(X(P )) = sup
P∈P

‖X(P )‖2‖X−1(P )‖2 (3.39)

ρmax , sup
P∈P

ρ(Ãd(P )). (3.40)

Next, we provide two known results which will be used to derive the upper bound to

the sensitivity.

Lemma 3.3.6. (Perturbation of matrix powers [51]) Let A and Ã be two n×n

diagonalizable matrices for which ρ(A) < 1 and ρ(Ã) < 1. Let X and X̃ be invert-

ible matrices which yield diagonal matrices S and S̃ via similarity transformations

X−1AX = S and X̃−1ÃX̃ = S̃. Then,

‖Ak−Ãk‖1≤ κ(X)κ(X̃)kn‖A−Ã‖2 max{ρ(A), ρ(Ã)}k−1.

Proof. See appendix A.1. �

Lemma 3.3.7. (Perturbation of matrix exponential [52]) Let A and Ã be two

square, diagonalizable matrices. Let X and X̃ be invertible matrices which yield diag-

onal matrices S and S̃ via similarity transformations X−1AX = S and X̃−1ÃX̃ = S̃.

Further, let t > 0. Then,

‖eAt − eÃt‖2 ≤ ‖A− Ã‖2tκ
2(X, X̃)eκ(X,X̃)‖A−Ã‖2t,

where κ(X, X̃) , max{κ(X), κ(X̃)}.

Proof. The proof follows from [52], Theorem 3. �

Next, we derive the upper bound on the sensitivity of the system.
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Theorem 3.3.8. (Sensitivity bound) The sensitivity ∆(k) in (3.33) can be upper

bounded as

∆(k) ≤ ∆̄(k) , α1α2e
α2kρk−1

max, (3.41)

where α1 = κ3
maxn‖C(x(0) + FK0)‖1, α2 = κmaxTsδ and,

δ = sup
P,P ′ :adj(β)

‖Ac(P )− Ac(P
′
)‖2.

Proof. Let P and P
′

be two β-adjacent parameters. For the impulse input d(k), we

have

‖yP (k)− yP ′ (k)‖1
(a)
= ‖CÃkd(P )(x(0) + FK0)− CÃkd(P ′)(x(0) + FK0)‖1

(b)

≤ ‖C(x(0) + FK0)‖1‖Ãkd(P )− Ãkd(P
′
)‖1

(c)

≤ ‖C(x(0) + FK0)‖1κ
2
maxnkρ

k−1
max‖Ad(P )−Ad(P

′
)‖2

(d)

≤ ‖C(x(0) + FK0)‖1κ
4
maxnTskρ

k−1
max‖Ac(P )− Ac(P

′
)‖2e

κmaxTs‖Ac(P )−Ac(P
′
)‖2

where (a) follows from (3.38) (b) follows from the submultiplicative property of matrix

norm, (c) follows from assumption A2, lemma 3.3.6, definitions of κmax and ρmax in

(3.39) and (3.40) and the fact that Ãd(P )− Ãd(P ′) = Ad(P )−Ad(P ′) and (d) follows

from lemma 3.3.7, and (3.39). The theorem then follows using the definition of δ. �

The sensitivity bound in (3.41) can be used to determine the privacy noise level,

as shown in the next corollary.

Corollary 3.3.9. (Noise design using sensitivity bound) The mechanism M

in (3.23) is ε-differentially private upto time T if w(k) is white Laplacian with

w(k) ∼ Lap(0, ck)
p and

T∑
k=0

∆̄(k)

ck
≤ ε. (3.42)

Proof. It can be easily verified that (3.42) implies that the conditions of theorem

3.3.2 are satisfied and the mechanism M is ε-differentially private. �
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Observe that the sensitivity bound ∆̄(k) in (3.41) decays exponentially for large k.

This is a direct consequence of assumption A10. Note that without assumption A10,

the sensitivity (and the sensitivity bound) would remain constant asymptotically. As

a result, the noise level required to ensure DP would increase with T (see (3.42)).

Clearly, such unbounded noise in the system is undesirable. Utilizing the decaying

behavior of the sensitivity bound, we next show that DP can be guaranteed using an

exponentially decaying noise.

Lemma 3.3.10. (DP through decaying noise) The mechanism M in (3.23) is

ε-differentially private upto time T if w(k) is white Laplacian with the distribution

w(k) ∼ Lap(0, ckγk)n with 0 < ρmax < γ < 1 and

c ≥ c ,
α1α2e

α2

ερmax

1− (ρmax

γ
)T+1

1− ρmax

γ

. (3.43)

Proof. It can be easily verified that (3.43) implies that the condition in (3.42) is

satisfied and the mechanism is ε-differentially private �

Note that the lower bound c in (3.43) is bounded for all T . Thus, the privacy

noise level also remains bounded.

In order to compute the upper bound given in (3.41), we need to further char-

acterize the sensitivity δ from the private parameters to the continuous time closed

loop state matrix, as contained in the constant α2 (see theorem 3.3.8). This sensi-

tivity depends on the structure of Ac(P ), and is specific to the application for which

privacy is being designed. Next, we characterize this quantity for the two examples

considered earlier in section 3.2: second-order consensus and LQR control.
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3.3.2 Sensitivity for Second-order Consensus

Consider the consensus example in (3.15). Since L is symmetric and L1N =

0N , we have ν1(Ad(L)) = ν0(Ac(L)) = γ1

1N

0N

 and ν̃1(Ad(L)) = ν̃0(Ac(L)) =

γ2

[
1TND 1TNM

]
where γ1 ∈ R and γ2 ∈ R are some scalars. Using (3.35), the

steady state value for consensus can be obtained as

x̄ =
1∑N
i=1 di

1N

0N

[1TND 1TNM

]
(x(0) + FK0). (3.44)

It can be verified that x̄ in (3.44) satisfies the conditions in definition 3.2.1 and thus,

the agents achieve consensus. Further, observe that x̄ does not depend on matrix L,

and assumption A10 is satisfied.

Lemma 3.3.11. (Sensitivity bound for consensus) The sensitivity δ for the

second-order consensus in (3.15) is upper bounded by

δCONS ≤ δ̄CONS , ‖M−1‖2β.

Proof. Using the structure of Ac(L) in (3.15), we have

‖Ac(L)− Ac(L
′
)‖2 = ‖M−1(L− L′)‖2

(a)

≤ ‖M−1‖2β,

where (a) follows from submultiplicative property of the norm and the fact that L

and L
′

are adjacent. �
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3.3.3 Sensitivity for LQR Control

We first define the following quantity which captures the minimum distance of

the poles of the system from the imaginary axis

µmin , inf
P∈P,i∈{1,2,··· ,n}

|Re(λi(Ac(P )))|. (3.45)

Further, we define separation of a n× n matrix A as

sep(A)=min{‖SA+ ATS‖2 : S = ST ∈ Rn×n, ‖S‖2 = 1} (3.46)

Next, we present a known result regarding the perturbation of the Riccati equation.

Lemma 3.3.12. (Perturbation of Riccati equation [53]) Consider two Riccati

equations of the form (3.20) that differ only w.r.t. the private parameters, given as

Q and Q′.

If ‖Q−Q′‖2 <
sep2(Ac(Q))

4‖BR−1BT‖2

, then, (3.47)

‖V (Q)− V (Q′)‖2 ≤
2‖Q−Q′‖2

sep(Ac(Q))
. (3.48)

Proof. The proof follows from [53], Theorem 2.1. �

Next, we present the sensitivity bound for the LQR problem.

Lemma 3.3.13. (Sensitivity bound for LQR control) If

β <
µ2
min

κ4
max‖BR−1BT‖2

, (3.49)

then the sensitivity δ for the LQR control is upper bounded by

δLQR ≤
‖BR−1BT‖2κ

2
maxβ

µmin
<
µmin
κ2
max

. (3.50)
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Proof. From Theorem 3.2 in [53], and the definitions of κmax (in (3.39)) and µmin (in

(3.45)), we have

sep(Ac(Q)) ≥ 2µmin
κ2
max

∀ Q ∈ P . (3.51)

Further, since Q and Q′ are β - adjacent, we have

‖Q−Q′‖2 ≤ β <
µ2
min

κ4
max‖BR−1BT‖2

≤ sep2(Ac(Q))

4‖BR−1BT‖2

,

and thus, the condition (3.47) in lemma 3.3.12 is satisfied. Next,

‖Ac(Q)− Ac(Q
′
)‖2 = ‖BR−1BT (V (Q)− V (Q′))‖2

(a)

≤ ‖BR−1BT‖2
2‖Q−Q′‖2

sep(Ac(Q))
,

(b)

≤ ‖BR
−1BT‖2κ

2
maxβ

µmin
,

where (a) follows from the submultiplicative property of the norm and lemma 3.3.12,

and (b) follows from the the β-adjacency of Q and Q′ and (3.51). The last inequality

in (3.50) follows from the condition on β given in (3.49). �

3.4 Numerical Illustration

In this section, we present numerical simulations for the second-order consensus

example to analyze the effect of the privacy noise on the parameter and eigenvalue

identification procedures. We consider a connected consensus network with N = 3
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agents for which the Laplacian matrix is given as

L =


10 −6 −4

−6 9.5 −3.5

−4 −3.5 7.5

 .

The other system parameters are given as M = diag(4, 4, 6), D = diag(1, 2, 1),

F̄ = diag(1, 0, 0), x(0) = 06 and the disturbance is an impulse with K0 = 10513. The

coefficients of the characteristic polynomial of Ac are ac = [1, 0.92, 6.38, 3.61, 9.07,

2.46, 0]T with ||ac||2 = 11.99. For the above system, T̄s = 1.54 (see (3.11)) and

the agents sample the measurements with Ts = 1 to satisfy assumption A7. The

agents implement the privacy mechanism M in (3.23) and add Laplacian noise to

the measurements before sending them to the control center.

To design the privacy noise, we use the sensitivity upper bounds obtained in

theorem 3.3.8 and lemma 3.3.11. For the given consensus network, κ(X(L)) = 7.45

(see (3.39)) and ρ(Ãd(L)) = 0.86 (see (3.36)). Note that in order to compute κmax in

(3.39) and ρmax in (3.40), we need a characterization of the set P of all possible private

parameters. Without loss of generality, we avoid this explicit characterization and

choose κmax = 8 and ρmax = 0.9. In scenarios where the set P is given explicitly, κmax

and ρmax can be easily computed. We choose the adjacency parameter β = 2 (see

definition 3.2.5). With the given choice of parameters, we have α1 = 7.68× 106 and

α2 = 4 (see (3.41) and lemma 3.3.11). We design the decaying Laplacian noise using

lemma 3.3.10. We choose the noise decay factor γ = 0.99 and simulate the system for

T = 1000 time steps. Using these parameter values, the noise lower bound in (3.43)

becomes c = 2.28 × 1011ε−1 and we choose c = c for adding the privacy noise. We

select the range of privacy noise level c = [0, 1]. This represents an asymptotically

high SNR regime (> 58dB) and asymptotically low privacy level (ε−1 < 4.4× 10−12).

This high SNR regime guarantees numerical stability of the identification methods
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Figure 3.2. Eigenvalue identification performance

in Matlab.

Figure 3.2 characterizes the effect of privacy noise on the eigenvalue identification

procedure at the control center. The identification is performed in Matlab using the

iv4 function in its system identification toolbox, which implements a four stage IV

identification method [49]. The eigenvalue identification performance is characterized

in terms of expected relative coefficient error as ∆Eac ,
Eac
||ac||2 (see (3.32)). We

approximate the expected error by averaging the error values over 1000 iterations

for each noise level. We can observe that the identification error increases with the

privacy noise (privacy level).

Figure 3.3 shows the effect of privacy noise on the parameter identification pro-

cedure. In second-order consensus networks, it is always not feasible for an intruder

to gain information about the agents’ inertias and damping values. We assume that

the intruder does not have access to M and D matrices and thus, it can only iden-

tify L̄ , M−1L (instead of topology L) using the measurements (see remark 3.2.3).

Therefore, it extracts ˆ̄LT from the estimate Âc,T ( ˆ̄LT ) (see structure of Ac(L) in (3.15))
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Figure 3.3. Parameter identification performance

in step P3 of the parameter identification procedure. The relative parameter identifi-

cation error is defined as ∆EL̄ ,
E
[∥∥∥ ˆ̄LT−M−1L

∥∥∥
F

]
‖M−1L‖F

. As seen in fig. 3.3, the identification

error is close to 0 for c = 0. Thus, the private topology is accurately identified if

there is no privacy mechanism in the system, leading to a privacy breach. As the

privacy noise level increases, the identification error also increases making it more

difficult for the intruder to identify the topology. Comparing figures 3.2 and 3.3, we

can observe that relative error of eigenvalue identification is of order of magnitude 2

less than that of the parameter identification. The privacy noise causes significantly

larger performance degradation for the intruder as compared to the control center.

This implies that our mechanism can provide privacy without significant performance

loss.

3.5 Summary

In this chapter, we develop a noise adding differential privacy mechanism to pro-

tect the privacy of the sensitive parameters associated with the dynamics of the agents
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in LTI multi-agent systems. We derive an upper bound to the sensitivity of the sys-

tem and use it to design the privacy noise. We present two concrete applications of

our privacy framework: the second-order consensus network and LQR control. Our

numerical simulations for the consensus problem show that for the asymptotic regime

of low privacy and high SNR, the performance degradation suffered by the intruder

due to privacy noise is significantly higher when compared to that of the control

center.

71



CHAPTER 4

PRIVACY VS COOPERATION IN MULTI-AGENT SYSTEMS

4.1 Background

Several problems in control theory, optimization and robotics require cooperation

among multiple agents. Prototypical examples include consensus [5], flocking [54],

formation control [6], coverage control [55], and distributed optimization [7, 8]. Typi-

cally, cooperation requires information exchange, which may lead to leakage of private

information with undesirable consequences. For example, in smart metering systems

where users send their energy consumption data for power network optimization, the

data can reveal information about their personal lives, such as daily schedules etc.

[56], [57]. In autonomous vehicle scenarios where the vehicles communicate and share

their position/velocity data, it can reveal their past or future travel plans. Even if

the agents are trustworthy, a possibility exists for an intruder to eavesdrop on the

messages exchanged among the agents and gather their private information. Privacy

concerns have recently been addressed by introducing dedicated mechanisms as part

of the cooperation protocol [32, 33, 35, 36, 39–41]. In most of these privacy mecha-

nisms, each agent deliberately adds noise to the data communicated to other agents,

thereby preventing them (or an eavesdropper) from recovering the sensitive data of

individual agents by accurately processing the distorted messages.

Most of the recently proposed privacy mechanisms are based on techniques orig-

inally developed to protect static databases and usually degrade the performance

when applied to dynamical systems. For instance, in applications involving wide
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area control of power grids, adding noise to the data may result in loss of stability. In

distributed systems, if agents use noisy information from other agents to update their

own state, the resulting behavior differs from the desired one. Furthermore, both due

to the dynamical nature of the system and the fact that information originating from

one agent may traverse to another agent through multiple paths in distributed sys-

tems, the noise introduced by the agents at one time step can adversely affect the

state evolution of a multi-agent system multiple times in the future. Notice that the

second reason arises because of the cooperative nature of the system where one agent

uses information from other agents. Thus, intuitively, there should be a tradeoff

between the ‘cooperation level’ and performance in a distributed system when the

agents are trying to keep their information private. If the noise level introduced to

maintain privacy is too high, then cooperation might even impede the system func-

tionality. On the other hand, if the agents do not transmit any information to each

other, perfect privacy is achieved, at the expense of the benefits of cooperation. In

this dissertation, we address an outstanding and important question whether coop-

eration leads to improved performance in the presence of a privacy mechanism, and

whether a fundamental tradeoff exists between the two.

We consider a scenario where the objective of the agents is to cooperatively min-

imize a common quadratic cost function of their states by sharing their state infor-

mation among each other. Several problems such as consensus and formation control

fall into this class. In addition, the agents wish to keep their states private during

this process. We propose a noise adding privacy mechanism for the agents to keep

their states private over time. Note that we focus on privacy of the agents’ state

trajectory, rather than the state at any specific time (as in [33]). We adopt the Dif-

ferential Privacy (DP) framework originally proposed by [9], and later extended to

dynamical systems in [35]. We characterize the noise level ensuring a desired level of

privacy.
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Next, we introduce a method for the agents to adapt their cooperation level in

response to the privacy noise. In many scenarios, in addition to optimizing a global

cost, the agents also have individual goals that do not require cooperation. For ex-

ample, in intelligent transport systems, vehicles cooperate to reduce road congestion

while each of them also wants to reduce its own travel time (ex. congestion game

in [58]). Individual objectives also exist in multi-objective optimization problems,

wherein multiple conflicting goals are considered and in optimization problems with

separable cost functions. When the agents wish to remain private (by sharing noisy

data), it is intuitive that they should cooperate less and focus more on their indi-

vidual goals. Thus, the cooperation level can be characterized based on whether the

agents are willing to cooperatively minimize the global cost, or they want to selfishly

minimize their individual costs. We formalize this notion by defining a new cost

that is a convex combination of the global and individual costs, wherein the weighing

factor represents the cooperation level. We then characterize the combined effect of

cooperation level and privacy noise on the system performance.

Several secure multiparty computation schemes exist in literature which compute

a function of agents’ variables while keeping them private [59, 60]. However, in

these schemes, there always exists a possibility that some agent(s) obtain auxiliary

information and use it to infer other agents’ private variables. Moreover, majority of

agents can collude to infer the remaining agents’ sensitive information. To address

these issues, we use the differential privacy framework in this work. DP abstracts

away from any auxiliary information that the agents might have and it is also resilient

to post processing of data [10, 35].

As mentioned in subsection 3.1.1 many recent studies have proposed privacy mech-

anisms for multi-agent systems in the context of consensus [36, 38] and optimization

problems [32, 33, 39–41]. All of these works develop privacy mechanisms and analyze

their effect of the on the system performance in terms of sub-optimality, accuracy,
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convergence etc. In contrast, we also develop similar privacy mechanism but address

fundamentally different questions such as: (i) How does the system performance

change if the agents vary the amount of cooperation among each other?, (ii) for a

higher privacy level, is it beneficial for the agents to reduce cooperation? Our analysis

highlights this previously unidentified tradeoff in multi-agent systems.

The cooperation level in our framework can be viewed as a weighting factor for the

noisy state information received from the neighbors and used to update the agents

states. Related works include [61], in which the authors analyze consensus in the

presence of noise, and show that almost sure convergence can be guaranteed by using

time decaying weighing factor in the updates. In [62], the authors find the optimal

edge weights for the consensus problem that minimize the expected deviation among

the agents. These works are specifically developed for the consensus algorithm, and

may not work for other problems. In contrast, to elucidate the relation between the

cooperation and privacy levels in multi-agent systems, we develop techniques that

are applicable to more general quadratic optimization problems and not only limited

to consensus.

4.2 Problem Formulation

In this section we present our multi-agent cooperative optimization problem and

characterize its solution. Additionally, we describe a noise adding mechanism that

preserves the privacy of the agents’ states over time.

4.2.1 Distributed Quadratic Optimization Framework

Consider a distributed system with a set of N ≥ 2 agents denoted by N =

{1, 2, · · · , N}. The agents collectively aim to minimize a common objective that is
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given by

P : min
x

Jco(x) =
1

2
xTQx+ rTx+ s, (4.1)

where the vector x = [x1, x2, · · · , xN ]T ∈ RN denotes the states of all agents. Further,

Q is a non-zero N × N real matrix, r ∈ RN and s ∈ R. Let qij and ri denote the

entries of Q and r, respectively. Note that the states of the agents are coupled with

each other via the quadratic term 1
2
xTQx in the cost function. Specifically, we say

that the agents i and j are uncoupled if both qij and qji are zero, and that they

are coupled otherwise. Let Ni denote the neighbor set or the set of agents whose

states are coupled to the state of agent i, and let Ni = |Ni|. We place the following

assumptions on the cost function Jco(x):

A.1) Q is symmetric and positive semi-definite. Further, if 0 is an eigenvalue of Q,

then: (i) its algebraic multiplicity is 1, and (ii) r = 0N in (4.1).

A.2) Each row(or column) of Q− diag(Q) has atleast one non-zero entry.

Assumption A.2 implies that there is no uncoupled agent in the system, that is,

Ni 6= 0 for each i ∈ N . This assumption is not restrictive because a system with n

uncoupled agents can be studied via a reduced system with N − n coupled agents.

Assumption A.1 implies that the minimization problem P is convex and admits a

finite (but not necessarily unique) optimum. Let the set of all the optimum solutions

of P be denoted by X ∗. An optimum x∗ ∈ X ∗ can be achieved by the agents with a

distributed, iterative gradient descent algorithm. In such an algorithm, the update

rule of agent i is

xi(k + 1) = xi(k)− γ1
∂

∂xi
Jco(x(k)) = xi(k)− γ1

(
qiixi(k) +

∑
j∈Ni

qijxj(k) + ri

)
,

(4.2)
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where γ1 > 0 is the step size and xi(0) is the initial state of agent i. As evident

from the above iteration, agent i requires state information xNi
from all its neighbors

for its own state update. We assume that the agents can communicate their state

information to each other without any distortion. The gradient descent algorithm for

all agents can be collectively represented as

S1 : x(k + 1) = x(k)− γ1(Qx(k) + r) = (IN − γ1Q)x(k)− γ1r , A1x(k) + b1,

(4.3)

where A1 = IN − γ1Q, b1 = −γ1r and initial state x(0) = [x1(0), x2(0), · · · , xN(0)]T .

Since the cost gradient is linear, algorithm S1 can be represented as a discrete time

invariant linear system. The optimum of problem P is given by the steady state

solution of S1. Next, we state the condition under which the steady state solution

exists.

Lemma 4.2.1. (Convergence of algorithm S1) Let γ1 < 2ρ(Q)−1. Then, the

algorithm S1 in (4.3) converges asymptotically, that is lim
k→∞

x(k) = x∗ for an x∗ ∈ X ∗.

Proof. First, assume Q > 0. For i = 1, 2, · · · , N we have 0 < γ1λi(Q) ≤ γ1λ1(Q) < 2.

Since λi(A1) = 1 − γ1λi(Q), the above condition is equivalent to −1 < λi(A1) < 1.

Thus, all eigenvalues of A1 lie inside the unit circle and a steady state solution of

(4.3) is achieved. Assume now that Q has a 0 eigenvalue. Then, by assumption A.1,

b1 = 0 and A1 has a single eigenvalue at 1 and all other eigenvalues lie inside the unit

circle. Thus, the linear system in (4.3) is marginally stable and a finite steady state

solution is achieved. �

Let the steady state of (4.3) be denoted by m1. Then,

m1 = A1m1 + b1, (4.4)
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and the optimum cost achieved by the agents is given by

J∗co =
1

2
mT

1Qm1 + rTm1 + s. (4.5)

Remark 4.2.2. (Examples) A number of problems fit into our quadratic cost frame-

work, including consensus and formation control. We will discuss the consensus

example in detail in Section 4.4. We also study the 1D centroidal Voronoi tessella-

tion problem in which the agents implement a linear algorithm to minimize a convex

cubic cost. This shows that our framework can be extended to problems involving

convex non-quadratic costs that can be optimized by a linear algorithm. �

4.2.2 Privacy Mechanism

In the cooperative algorithm S1, the agents update their state upon communicat-

ing the state information with their neighbors. Thus, algorithm S1 is not private and

in fact, an intruder may reconstruct the state trajectories of the agents with access to

only a few messages communicated by the agents. To ensure privacy, we consider the

Differential Privacy (DP) mechanism that protects the state of the agents over time,

where each agent adds an artificial random noise to its state before communicating

it with other agents. The noise ensures that “any two different instances” of the

communicated state trajectories are “statistically not very different”, which prevents

the intruder from accurately obtaining the actual state information of the agents;

thus, maintaining their privacy.

Remark 4.2.3. (Privacy of state trajectory) Note that different instances of the

state trajectory arise from different initial states x(0). However, in addition to the

initial state, agents wish to keep their positions/velocities private at all times because

accurate state information at any time instant can potentially reveal the complete

future state trajectory. �
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The noisy DP mechanism can be written as

M : x̃i(k) = xi(k) + ni(k), (4.6)

where x̃i(k) denotes the state communicated to the neighbors of agent i and ni(k)

is the random privacy noise. Let n(k) = [n1(k), n2(k), · · · , nN(k)]T . We adopt the

differential privacy framework developed in [35] to design the noise that ensures

privacy of the state trajectories. We begin with the definition of adjacency.

Definition 4.2.4. (Adjacency) Given a finite β ≥ 0, two state trajectories x[0 :∞]

and x′[0 :∞] are β-adjacent (denoted by adj(β)) if

‖x[0 :∞]− x′[0 :∞]‖ ≤ β. (4.7)

It should be noticed that in the classic definitions of DP for static databases [9]

and for dynamical systems [35], adjacency is defined with respect to the change of

trajectory of one agent only, while keeping the trajectories of other agents unchanged.

In contrast, our definition of adjacency allows simultaneous changes in the trajectories

of one or more agents.

Remark 4.2.5. (Common steady state value) The adjacency definition in (4.7)

implicitly requires that the two instances of the state trajectories (resulting from two

different initial conditions) vary only for transient periods and have a common steady

state value. This holds true if Q > 0, since it is easy to observe (see (4.4)) that the

steady state value does not depend on the initial condition x(0). However, when

Q ≥ 0 with a single eigenvalue at 0 (see A.1), then the steady state value might

depend on the initial condition. Let Xm
0 denote the set of all initial conditions that

result in a steady state value of m. Then, the privacy mechanism guarantees DP

only among those trajectories that result from initial conditions contained in the set
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Xm
0 . �

Let x̃[0 : ∞] and x̃′[0 : ∞] denote the corresponding noisy communicated state

trajectories. Note that x̃[0 : T ] ∈ RN(T+1) and let RN(T+1) denote the σ − algebra

generated by it. Next, we provide the definition of differential privacy.

Definition 4.2.6. (Differential privacy) The mechanism M in (4.6) is (ε, δ)-

differentially private if for any two β-adjacent trajectories x[0 :∞] and x′[0 :∞] and

for all S ⊂ RN(T+1) and for all T ≥ 0 it holds

P[x̃[0 : T ] ∈ S] ≤ eεP[x̃′[0 : T ] ∈ S] + δ, (4.8)

where ε > 0 and 0 < δ < 0.5 are privacy parameters. �

Definition 4.2.6 implies that for any two beta adjacent trajectories, the statistics

of the corresponding noisy communicated state trajectories differ only within a mul-

tiplicative factor of eε and an additive factor of δ. A standard way to guarantee DP

is to choose an i.i.d. Gaussian noise and scale its variance according to the adjacency

parameter β, as stated in the next lemma.

Lemma 4.2.7. (Ensuring differential privacy) The mechanism M in (4.6) is

(ε, δ)-differentially private if n(k) is white Gaussian noise with distribution n(k) ∼

N(0, σ2IN), where

σ ≥ β

2ε
(K +

√
(K2 + 2ε)), and K = Q−1(δ).

Proof. See Theorem 3 in [35]. Since the quantity that needs to be protected and that

is communicated is same (i.e. the state trajectory), the sensitivity is trivially upper

bounded by the adjacency parameter β. �

In Lemma 4.2.7, the relation between σ and the privacy parameters (ε, δ) implies

that the noise variance is a monotonically decreasing function of ε and δ. Also, note
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from the definition of DP in (4.8) that a smaller value of ε and δ implies larger privacy

of the agents. Thus, the noise variance σ can be treated as synonymous to the privacy

level of the system, and for the ease of presentation, we present our results directly

in terms of noise level σ (instead of the privacy parameters ε and δ).

In the presence of privacy noise, the evolution of the algorithm S1 in (4.3) is

modified as

Spriv
1 : x(k + 1) = A1x(k) + b1 +H1n(k), (4.9)

where H1 , A1− diag(A1) is obtained by replacing the diagonal elements of A1 with

zero entries, since only non-diagonal entries in A1 represent coupling between the

agents. Note that H1 = −γ1Q̃ where Q̃ = Q− diag(Q).

4.2.3 Performance Degradation due to the Privacy Mechanism

The noise introduced by the privacy mechanism makes the states of the agents

private. However, it also adversely affects the system performance. Due to the

stochastic nature of algorithm Spriv
1 , we analyze the system performance by calculat-

ing the expected cost achieved by the agents in the presence of noise. The algorithm

Spriv
1 in (4.9) can be viewed as a linear system driven by a constant input and Gaus-

sian privacy noise. Thus, the state of the agents at each time instant has a normal

distribution, denoted by x(k) ∼ N(m1(k), P1(k)). The evolution of the mean and the

covariance of the states of the agents is given by

m1(k + 1) = A1m1(k) + b1, and (4.10)

P1(k + 1) = A1P1(k)AT1 + σ2H1H
T
1 , (4.11)

with m1(0) = x(0) and P1(0) = 0. If A1 is stable (i.e. Q > 0 in (4.1)), then the mean

and covariance reach a finite steady state value, denoted by m1 and P1, respectively.

Note that we have overloaded the notation of m1 with the noiseless case presented in
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section 4.2.1 since the steady state solution of (4.3) and (4.10) are the same. Thus,

the mean m1 satisfies (4.4) and the covariance P1 satisfies the following Lyapunov

equation:

P1 = A1P1A
T
1 + σ2H1H

T
1 . (4.12)

If A1 is marginally stable (that is, Q in (4.1) has a single eigenvalue at 0, see as-

sumption A.1), then m1 exists and is finite. Yet, the covariance P1 may become un-

bounded, and the system becomes unstable in the stochastic sense. We now present

the performance result.

Theorem 4.2.8. (Performance in the presence of privacy noise) Assume

Q > 0. At steady state, the expected cost achieved by the agents implementing the

algorithm Spriv
1 in (4.9) is given by

J∗co(σ) , E[Jco(x)] =
1

2
tr(QP1) +

1

2
mT

1Qm1 + rTm1 + s. (4.13)

where the expectation E[.] is taken w.r.t the privacy noise and P1 depends on σ.

Proof. Since Q > 0, its Cholesky decomposition exists, denoted by Q = LTL. Fur-

ther, let x denote the random steady state and let y = Lx. If x ∼ N(m1, P1), then

y ∼ N(Lm1, LP1L
T ). We have,

E[Jco(x)] = E[
1

2
xTQx+ rTx+ s]

=
1

2
E[yTy] + rTm1 + s

=
1

2
tr(E[yyT ]) + rTm1 + s

=
1

2
tr(LP1L

T + Lm1(Lm1)T ) + rTm1 + s

=
1

2
(tr(QP1) +mT

1Qm1) + rTm1 + s,

where we have used the fact that tr(.) is a linear and invariant under cyclic permu-

tations. �
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The performance degradation due to the privacy noise is obtained by comparing

(4.5) and (4.13), and is given by

J∗co(σ)− J∗co =
1

2
tr(QP1),

which increases with the noise level σ. Because the agents share noisy state informa-

tion, full cooperation and use of the distorted information for the algorithm updates

affect the agents performance. In the other extreme case, if the agents forgo co-

operation, then they will be completely private, since no state information will be

exchanged among them, but will probably not achieve the optimum of problem P.

Thus, a mechanism is needed for the agents to adapt their level of cooperation to

maximize their performance in the presence of privacy noise. In the next section,

we define a notion of cooperative level, and present modified optimization algorithms

that incorporate the cooperation level as a parameter.

4.3 Cooperation Level in Multi-agent Systems

In this section, we introduce and motivate our notion of cooperation level in

private multi-agent systems. We calculate the expected cost achieved by the agents

for a particular level of cooperation and privacy noise and use it to characterize the

optimum cooperation level.

4.3.1 A Notion of Cooperation Level

Agents cooperate to implement algorithm S1. However, as discussed above, full

cooperation may not be optimal if agents also want to preserve privacy. To formalize

this, we introduce a cooperation parameter in the algorithm S1. In many scenarios, in

addition to minimizing the system cost Jco, the agents also have individual goals for

which no cooperation is required. As explained in the background, such conflicting
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goals are ubiquitous in optimization and game theory. We formalize the individual

agent goals by the following cost function

Jnco(x) =
1

2
xT Q̄x+ r̄Tx+ s̄, (4.14)

and assume that

A.3) Q̄ is diagonal and positive definite.

Assumption A.3 implies that the states of all the agents are decoupled in Jnco(x). As

a result, no cooperation is required to minimize the decoupled cost function Jnco(x).

We utilize these individual agent goals to introduce cooperation level in our frame-

work. The costs Jco(x) and Jnco(x) represent two extremes on the cooperation scale.

To minimize the former, full cooperation is necessary among the agents, while no

cooperation is required for the latter. When the agents wish to keep private, it is

prudent for them to give more weight to their individual goals as compared to the

system goal. Following this reasoning and to capture the intermediate cooperation

behavior, we consider a new cost function which is precisely the convex combination

of Jco(x) and Jnco(x):

Jα(x) = αJco(x) + (1− α)Jnco(x), (4.15)

where the parameter α ∈ [0, 1] is the agents’ cooperation level. Note that the new cost

Jα(x) is convex due to convexity of Jco(x) and Jnco(x). The gradient descent algorithm

that minimizes Jα inherently introduces the cooperation level in our framework and
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in presence of privacy noise can be written as

Spriv
α : x(k + 1) = x(k)− γ

(
α(Qx(k) + r) + (1− α)(Q̄x(k) + r̄)

)
+Hαn(k)

, Aαx(k) + bα +Hαn(k), where (4.16)

Qα = αQ+ (1− α)Q̄, Aα = IN − γQα,

bα = −γrα, rα = αr + (1− α)r̄,

Hα , Aα − diag(Aα) = −γα(Q− diag(Q)),

and γ > 0 is the step size.

Remark 4.3.1. (Auxiliary cost function) Note that the decoupled cost function

Jnco, the new cost function Jα and its minimizing algorithm Spriv
α merely act as a

means to introduce the cooperation level in our problem. The goal of the agents is

to minimize the global cost Jco, and thus we measure the performance the algorithm

achieves also in terms of this global cost. �

By varying the cooperation level in Spriv
α , the agents can achieve a range of private

solutions of P. In practice, agents should select a cooperation level that maximizes

the system performance, as we will show in the next subsection. Notice that agents

are still required to exchange their state information for all values of the cooperation

level 0 < α ≤ 1, and that the cooperation level determines the weight given by an

agent to the information coming from its neighbors.

Remark 4.3.2. (Alternative approaches for variable cooperation level) Dif-

ferent methods exist to capture the notion of cooperation level. For instance, agents

may filter the exchanged measurements to reduce the effect of privacy noise on the

performance, and use the filter weights to measure their cooperation level. Yet, our

formulation modulates cooperation in a natural and explicit way by balancing the

individual and global goals of the agents, and it allows us to directly characterize

critical tradeoffs between privacy and performance in multi-agent systems. �
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Remark 4.3.3. (Selection of the decoupled cost) There may be scenarios in which

the agents do not have individual goals. In such cases, we can construct an artificial

decoupled cost Jnco to capture the non-cooperation extreme. Several choices of the

matrix Q̄ are possible. For instance, Q̄ can be chosen to consist of the diagonal

elements of Q, or it can be an arbitrary matrix that satisfies assumption A.3(see

examples in Section 4.4). Thus, our framework is applicable for a wide variety of

multi-agent optimization problems. The selection of a decoupled cost that optimizes

the agents performance is left as the subject of future research. �

4.3.2 Performance Analysis with Privacy and Cooperation

We now analytically characterize the expected cost for a given privacy and co-

operation level. Note that due to assumptions A.1 and A.3, both Qα and Aα are

symmetric. Moreover, since the privacy noise has a normal distribution, the state

x(k) in algorithm Spriv
α is also normal. Let the steady state mean and covariance of

x(k) in algorithm Spriv
α be denoted by mα and Pα, respectively. Next, we present con-

ditions under which the steady state mean and covariance exist. Note that Lemma

4.2.1 presents such condition for α = 1.

Lemma 4.3.4. (Convergence of Sprivα for α 6= 1) Let α 6= 1. Then, the steady

state mean and covariance of algorithm Spriv
α exist if

γ <
2

max{ρ(Q), ρ(Q̄)}
. (4.17)

Proof. The proof is similar to that of lemma 4.2.1 by using the following facts: (i)

Qα > 0 for α 6= 1, and (ii) from Weyl’s inequality [63], ρ(Qα) ≤ max{ρ(Q), ρ(Q̄)}. �

Analogous to (4.4) and (4.12), the steady state mean and covariance of Spriv
α
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satisfy

mα = Aαmα + bα

⇒ 0 = Qαmα + rα and, (4.18)

Pα = AαPαA
T
α + σ2HαH

T
α . (4.19)

A closed form expression of Pα can be written as

Pα = σ2γ2α2

∞∑
k=0

Akα(Q− diag(Q))2(ATα)k. (4.20)

Similarly to (4.13), the cost achieved by algorithm Spriv
α is

J(α, σ) = Jpriv(α, σ) + Jico(α) where, (4.21)

Jpriv(α, σ) ,
1

2
tr(QPα) and, (4.22)

Jico(α) ,
1

2
mT
αQmα + rTmα + s. (4.23)

Notice that Jico(α) represents the cost achieved by the agents for any intermediate

cooperation level α in the absence of privacy noise. Further, the cost term Jpriv(α, σ)

quantifies the effect of the privacy noise at a given cooperation level since the covari-

ance Pα depends on noise level σ. However, we omit that dependence in the notation

for the ease of presentation. Moreover, Pα also depends on the step size γ. We do not

analyze this dependence because γ dictates the number of iterations for algorithm

Spriv
α to converge, which is not the primary issue addressed here. Note that the op-

timum for P is achieved only when α = 1 and σ = 0 (that is, when the agents fully

cooperate and no privacy noise is present). To clarify the notation, J∗co = J(1, 0),

J∗co(σ) = J(1, σ) and Jico(α) = J(α, 0). Also note that the functions J, Jpriv and Jico

are continuous functions in their respective variables.
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Intuitively, in the absence of privacy noise, the performance should increase as the

agents cooperate more and should equal the best performance when they cooperate

fully (α = 1). The following lemma proves this fact and justifies our definition of

cooperation level.

Lemma 4.3.5. (Performance without privacy) The cost Jico(α) in (4.23) is

monotonically decreasing for α ∈ [0, 1].

Proof. By differentiating Jico(α) with respect to α, we obtain

J ′ico(α) = (mT
αQ+ rT )m′α. (4.24)

For α = 1, from (4.18) we have, Qm1 + r = 0. Thus, J ′ico(1) = 0.

For α ∈ [0, 1), Qα > 0. Thus, Qα is invertible, and Q−1
α > 0. Differentiating (4.18),

we get

(Q− Q̄)mα +Qαm
′
α + r − r̄ = 0, (4.25)

(a)⇒ m′α = −Q
−1
α (Qmα + r)

1− α
, (4.26)

where (a) follows from (4.18). Thus, we have

J ′ico(α) = − 1

1− α
(Qmα + r)TQ−1

α (Qmα + r).

and the derivative is non-positive, which completes the proof. �

Lemma 4.3.5 implies that, in absence of privacy noise, it is beneficial for the agents

to cooperate fully. Instead, in the presence of privacy noise, agents can achieve a range

of private solutions of P by varying the cooperation level. In practice, agents should

select a cooperation level that minimizes the cost J(α, σ). The optimum cooperation
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level for the agents for a given level of privacy noise σ is characterized as

α∗(σ) = arg min
α

J(α, σ). (4.27)

Remark 4.3.6. (Finding the optimum cooperation level) The optimum cooper-

ation level α∗(σ) can be approximated numerically by discretizing the interval [0, 1]

for α, and evaluating the cost J(α, σ) at each point. �

Next, we show that under some conditions on cost functions Jpriv and Jico, we

can characterize the behavior of α∗(σ).

Theorem 4.3.7. (Characterizing the optimum cooperation level) For all

σ > 0, let Jpriv(α, σ) be strictly increasing for all α ∈ (0, 1]. Further, let Jpriv(α, σ)

and Jico(α) be strictly convex for α ∈ [0, 1). Then, α∗(σ) is a monotonically decreasing

function of σ.

Proof. Let ′ denote the derivative or partial derivative w.r.t. α. Using (4.20), we

have Jpriv(α, σ) = σ2f(α), where f(α) , 1
2
α2γ2tr[Q

∑∞
k=0A

k
α(Q − diag(Q))2(ATα)k].

Since Jpriv(α, σ) is assumed to be strictly increasing in the theorem statement, f(α)

is also strictly increasing for α ∈ (0, 1]. Also, it can be readily observed that f ′(0) = 0

and f ′′(0) > 0. From the proof of Lemma 4.3.5, we have J ′ico(0) ≤ 0 and J ′ico(1) = 0.

Thus, J ′(0, σ) ≤ 0 and J ′(1, σ) > 0. Also, J(α, σ) is strictly convex for α ∈ [0, 1).

Thus, α∗(σ) ∈ [0, 1) is unique and J ′(α∗(σ), σ) = 0.

We prove the theorem by contradiction. Suppose α∗(σ) is not monotonically

decreasing function. Then, there exist 0 < σ1 < σ2 such that 0 ≤ α∗(σ1) < α∗(σ2) <

1. Further,

J ′(α∗(σ1), σ1) = σ2
1f
′(α∗(σ1)) + J ′ico(α

∗(σ1)) = 0, and

J ′(α∗(σ2), σ2) = σ2
2f
′(α∗(σ2)) + J ′ico(α

∗(σ2)) = 0.
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Subtracting, we get

0 = σ2
1f
′(α∗(σ1))− σ2

2f
′(α∗(σ2)) + J ′ico(α

∗(σ1))− J ′ico(α∗(σ2))

(a)

≤ σ2
1[f ′(α∗(σ1))− f ′(α∗(σ2))] + J ′ico(α

∗(σ1))− J ′ico(α∗(σ2))
(b)
< 0,

where (a) follows since f is an increasing function and (b) follows from the strict

convexity of f and Jico. Thus, there is a contradiction and therefore, the theorem

follows. �

Due to the convexity and increasing properties of the functions involved in Theo-

rem 4.3.7, we are able to obtain a nice characterization of the optimum cooperation

level. This result implies that under the conditions given in Theorem 4.3.7, it is

always beneficial for the agents to reduce their cooperation level if they want to in-

crease their privacy level. It characterizes an important and previously unidentified

tradeoff between privacy and cooperation is multi-agent systems. Next, we show

how to design the artificial cost function Jnco(in cases where individual costs are not

present) which guarantees that the conditions of Theorem 4.3.7 hold true.

Corollary 4.3.8. (Design of artificial cost function) Assume that Q satisfies

the following properties:

(i) Q > 0 and λ1(Q)
λN (Q)

< 1.5,

(ii) diag(Q) = µIN for some µ > 0.

Then, there exists a Q̄ = δIN with λ1(Q) < δ < 1.5λN(Q) and γ < δ−1 such that

Jpriv(α, σ) is strictly increasing for α ∈ (0, 1], and Jico(α) and Jpriv(α, σ) are strictly

convex for α ∈ [0, 1).

Proof. See appendix A.2. �

The above corollary guarantees that α∗(σ) is a monotonically decreasing function.

It should be noticed, however, that the conditions presented in Theorem 4.3.7 and
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Corollary 4.3.8 are not necessary, and α∗(σ) may or may not exhibit similar behavior

if these conditions are not satisfied.

4.4 Consensus and Voronoi Tessellation

In this section, we illustrate our results through two prototypical problems, namely

the consensus and the one-dimensional Voronoi tessellation problems.

4.4.1 Consensus with Privacy and Cooperation

Consensus algorithms are used by autonomous agents to agree on a common value

in a distributed fashion. The algorithm involves sharing of state information among

the agents. The iterations of the consensus algorithm in a discrete time setting can

be represented as [5]

x(k + 1) = (IN − γL)x(k), (4.28)

where L = [lij] is the Laplacian matrix of the graph representing the agents interac-

tion. We consider an undirected consensus graph for which the Laplacian is symmet-

ric, positive semi-definite with positive diagonal entries and non-positive non-diagonal

entries. For such a graph, 1N is an eigenvector of L associated with the eigenvalue

0, that is, L1N = 0 and λN(L) = 0. Further, we assume that the graph is connected,

which is equivalent to λN−1(L) > 0. Then, the algorithm in (4.28) asymptotically

achieves average consensus, that is, lim
k→∞

x(k) = µ1N , where µ = 1
N

∑N
i=1 xi(0).

The consensus algorithm in (4.28) can be viewed as a gradient descent algorithm

to minimize the following disagreement function [5]

Jco(x) =
1

2
xTLx =

1

4

N∑
i=1

∑
j:j∈Ni

−lij(xi − xj)2. (4.29)
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Thus, the consensus problem fits into our framework (Problem (4.1) and solution

(4.3)) with Q = L, r = 0, and s = 0. Further, it also satisfies assumptions A.1

and A.2. To introduce the cooperation level, we select the following decoupled cost

function

Jnco(x) =
1

2N
xTx− 1

N
aTx+

1

2N
aTa+ b2,

where a ∈ RN and b ∈ R. Note that the optimum of Jnco(x) is achieved at x = a and

the optimum cost is b2. Comparing the above cost function with (4.14), we obtain

Q̄ = 1
N
IN , r̄ = − 1

N
a, and s̄ = 1

2N
aTa+ b2. Thus,

Qα=αL+
1− α
N

IN , Aα=IN−γQα, bα =
γ(1− α)

N
a.

Further, the step size can be chosen according to Lemma 4.3.4 to guarantee con-

vergence of the consensus algorithm. The resulting cost with privacy mechanism

becomes

J(α, σ) =
1

2
(tr(LPα) +mT

αLmα).

Notice that, for α = 1, A1 becomes marginally stable and thus, the covariance matrix

P1 becomes unbounded resulting in instability (see discussion below (4.12)). Thus,

the agents have to choose a cooperation level 0 ≤ α < 1 for the cost to remain finite.

We now consider a specific consensus example with N = 4 agents, and the fol-
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Figure 4.1. System costs as a function of cooperation level for privacy noise
level σ = 3.

lowing Laplacian matrix

L =



0.8 −0.14 −0.15 −0.51

−0.14 1.4 −0.85 −.41

−0.15 −0.85 1.1 −0.1

−0.51 −0.41 −0.1 1.02


.

Let a = [1.5, 1, 3, 0]T and x(0) = [0.2, 0.6, 1.2, 2]T . Figure 4.1 shows the system costs

J , Jpriv, and Jico in (4.21)-(4.23) as a function of α for σ = 3. We can observe that

Jico, which is the system cost in absence of privacy noise, is monotonically decreasing

(c.f. lemma 4.3.5). This validates our understanding that it is always beneficial for

the agents to have full cooperation if they do not desire any privacy.

The effect of privacy noise is included in the cost Jpriv. It is interesting to ob-

serve its behavior at different cooperation levels. Note that the noise has only a

marginal effect on the cost at smaller cooperation levels. In fact, when the agents
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Figure 4.2. Consensus cost as a function of cooperation and privacy.

do not cooperate (α = 0), the noise does not affect the performance at all – which

is natural because the agents do not share any information. In contrast, the effect

of noise is significantly higher at larger cooperation levels, because the agents use

the noisy states in their updates. Thus, the cost Jpriv is a monotonically increasing

function of α. The two cost curves Jico and Jpriv highlight the trade-off between

having full cooperation vs. no cooperation. As evident from the resulting overall

cost curve J , an intermediate optimum cooperation level should be chosen to achieve

best performance.

Figure 4.2 shows the overall cost J achieved as a function of the cooperation level

for various levels of privacy noise. Observe that for each cooperation level, the cost

increases with the noise level. These curves highlight that the optimum cooperation

level changes with the privacy noise level which can be seen explicitly in figure 4.3.

Note that along with the fact that Jpriv is an increasing function, both Jpriv and

Jico are strictly convex. Thus, α∗(σ) is a monotonically decreasing function (c.f.
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Figure 4.3. Variation of the optimum cooperation level with noise for
Consensus.

theorem 4.3.7), which implies that it is always better for the agents to reduce their

cooperation level if they desire to have a higher level of privacy. Finally, note that the

consensus example does not satisfy the conditions in corollary 4.3.8 (see discussion

below corollary 4.3.8).

4.4.2 Centroidal Voronoi Tessellation with Privacy and Cooperation

In this subsection, we show that our results and the intuition gained from the

consensus problem, hold even when some of our assumptions are not satisfied; thus

suggesting that a tradeoff between privacy and cooperation exists in a large class of

distributed systems. We study a 1-dimensional centroidal Voronoi tessellation (CVT)

problem over the interval Ω = [0, 1]. The goal of a CVT problem is to divide Ω into

N regions denoted by {Ωi}i∈N , and find N points in Ω, denoted by {xi}i∈N such that

(i) Ωi is the Voronoi region1 of xi, and (ii) xi is the centroid of Ωi. The CVT problem

1The Voronoi region for xi is defined by Vxi
= {y : |y − xi| ≤ |y − xj | ∀ j 6= i}.
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can be expressed as the following optimization problem:

min
x

Jco(x) =

∫ 1

0

min
i∈N

(xi − y)2dy. (4.30)

The 1D-CVT problem can be viewed as an optimal resource allocation problem, and

it has wide applications including data compression and scalar quantization [64].

Without loss of generality, we assume that x1 ≤ x2 ≤ · · · ≤ xN . Then, the cost

in (4.30) can be written as

Jco(x) =
1

24

N∑
i=1

[
(xi − xi−1)3 + (xi+1 − xi)3

]
, (4.31)

where x0 , −x1 and xN+1 , 2 − xN are dummy variables introduced for ease of

analysis. It can be easily verified that Jco(x) is convex. Further, the ith component

of its gradient can be written as

∂Jco(x)

∂xi
=

1

4
(2xi − xi−1 − xi+1)(xi+1 − xi−1). (4.32)

By examining (4.32), it follows that the optimum value x∗ that minimizes Jco(x) also

minimizes a different cost function, denoted by J̃co(x), whose ith component of the

gradient is

∂J̃co(x)

∂xi
=

1

4
(2xi − xi−1 − xi+1). (4.33)

Since Jco(x) and J̃co(x) have the same optimum, we can use the gradient of either cost

functions in the gradient descent algorithm for solving the CVT problem. However,

the gradient of Jco(x) is non-linear whereas the gradient of the J̃co(x) is linear. We

choose the linear gradient since it results in a linear gradient descent algorithm and

fits into our framework (4.3). Using the individual components in (4.33), the gradient
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can be written as

∇J̃co(x) = Qx+ r, (4.34)

where r = [0, 0, · · · , 0,−0.5]T , and Q is the following tri-diagonal matrix:

Q =
1

4



3 −1 0 0 0 · · · 0

−1 2 −1 0 0 · · · 0

0 −1 2 −1 0 · · · 0

...
...

...

0 0 · · · 0 −1 2 −1

0 0 0 · · · 0 −1 3


.

Lemma 4.4.1. (Properties of Q) Q is positive definite and ρ(Q) = 1.

Proof. From [65], Theorem 5, we get

λi(Q) =
1

2

(
1 + cos

(i− 1)π

N

)
for i = 1, 2, · · · , N.

Thus, λ1(Q) = 1 and λN(Q) > 0 and Lemma follows. �

The new cost function can then be written as J̃co(x) = 1
2
xTQx + rTx and the

gradient descent to solve the CVT problem in (4.30) becomes

SCVT : x(k + 1) = x(k)− γ1(Qx(k) + r) , A1x(k) + b1. (4.35)

The algorithm SCVT with γ1 = 1 is the well known Lloyd’s Algorithm [64] for solving

CVT problems in 1-D.

Remark 4.4.2. (Generalization for non-quadratic cost functions) Although

the CVT problem has a cubic cost function, its optimum can be achieved via a linear
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algorithm so that our framework is still applicable. This suggests that our framework

may be applicable to general non-quadratic convex cost functions, provided that the

optimum can be achieved via a linear algorithm. �

To introduce the cooperation level, we consider the following quadratic cost

Jnco(x) =
1

N

N∑
i=1

∫ 1

0

(xi − y)2dy =
1

N
xTx− 1

N
1TNx+

1

3
. (4.36)

Observe that the decoupled cost in (4.36) is the counterpart of the coupled cost in

(4.30), and that Jnco(x) satisfies assumption A.3. Further, note that x = [0.5, 0.5, · · ·

, 0.5]T is the optimum of Jnco(x). By comparing the above cost function with (4.14),

we obtain Q̄ = 2
N
IN , r̄ = − 1

N
1N , and s̄ = 1

3
, and the corresponding values of

Qα, Aα, bα and Hα can be calculated using (4.16). Since Qα is positive definite, the

stability condition (4.17) for the CVT problem reduces to γ < 2. We next analyze

the system cost and performance.

The cost in (4.31) can be simplified as Jco(x) = 1
3
x3

1+ 1
12

∑N−1
i=1 (xi+1−xi)3+ 1

3
(1−xN)3.

We make the linear transformation z = Gx+ g to obtain



x1

x2 − x1

x3 − x2

...

xN − xN−1

1− xN


︸ ︷︷ ︸

z

=



1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1 0 · · ·
...

0 · · · 0 −1 1

0 0 · · · 0 −1


︸ ︷︷ ︸

G

x+



0

0

0

...

0

1


︸︷︷︸
g

.

Let mα and Pα denote the steady state mean and covariance achieved by algorithm

Spriv
α in (4.16) for the CVT problem. Further, let ηα and Vα denote the steady

state mean and covariance of z, and let ηi and vij denote the elements of ηα and Vα,
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Figure 4.4. Steady states achieved by Sα for the CVT problem in the
absence of noise.

respectively. Due to the linear transformation, we have ηα = Gmα + g and Vα =

GPαG
T . Recall that, for a scalar random variable with distribution y ∼ N(ν, θ2), it

holds E[y3] = ν3 + 3νθ2. Thus, the expected cost for the CVT problem becomes

J(α, σ) =
1

3
(η3

1 + 3η1v11) +
1

12

N∑
i=2

[η3
i + 3ηivii] +

1

3
(η3
N+1 + 3ηN+1vN+1,N+1). (4.37)

Consider now an example with N = 4 agents and γ = 1. Figure 4.4 shows

how the steady state values achieved by the agents vary with the cooperation level,

when they use algorithm Spriv
α in (4.16) in the absence of noise. Observe that, when

α = 0, the optimum of Jnco(x) in (4.36) is x = [0.5, 0.5, 0.5, 0.5]T , so that the agents

occupy the same location due to the lack of cooperation. When α = 1, the agents

cooperate completely and achieve the solution x = [1
8
, 3

8
, 5

8
, 7

8
]T , which is the optimum

of Jco(x) in (4.30). Figure 4.4 shows the solution achieved by algorithm Spriv
α for the

intermediate values of α.
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Figure 4.5. CVT cost as a function of cooperation level and noise level.

Figure 4.5 shows the system cost as a function of the cooperation level for various

values of σ. Similar to the consensus example, we observe that the cost is a convex

function of α and the optimum α is less than 1. Moreover, the cost increases when

the noise level increases.

The analysis of the cost function simplifies if we consider the simple, albeit useful,

case of N = 2 agents. In this case, we can algebraically solve the steady state

equations (4.18) and (4.19) to obtain

mα =

[
1
2
− α

4
1
2

+ α
4

]
, and Pα =

p1 p2

p2 p1

 ,
where p1 = α2σ2(8−α2)

32(4−α2)
and p2 = α4σ2

32(4−α2)
. Thus,

J(α, σ) =
1

48
+

(1− α)2

16
+
σ2α2(4 + α)

32(2 + α)
. (4.38)
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Figure 4.6. Variation of the optimum cooperation level with noise for CVT
problem.

It can be easily verified that this cost is monotonically increasing w.r.t. σ and is

convex with respect to α. Consequently, an optimum α exists for each value of σ,

and it is given by

α∗(σ) =

√
(1 + 2σ2)2 + 8− (1 + 2σ2)

2
. (4.39)

As shown in Figure 4.6, the function α∗(σ) is monotonically decreasing. This indicates

that it is best for the agents to cooperate fully when no noise is present, and to reduce

their cooperation level when the privacy noise increases.

Remark 4.4.3. (Similarity between consensus and CVT results) By compar-

ing Fig. 4.5 and Fig. 4.6 in the CVT example (with cubic cost) with Fig. 4.2 and

Fig. 4.3 in the consensus example (with quadratic cost), we observe a similar pattern

in the variation of the cost and the optimum cooperation level. This observation

strengthens our belief that a similar tradeoff should appear in problems with general
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non-quadratic convex cost function that can be minimized via linear iterations. This

generalization is left as a subject of future research. �

4.5 Summary

We consider a multi-agent system where the agents cooperatively optimize a

quadratic cost function while ensuring privacy of their states over time. We pro-

vide a framework in which the agents can respond to the privacy noise present in the

system by varying their cooperation level. We show that there exists an optimum

cooperation level that minimizes the cost. We studied two examples of consensus

and Voronoi Tessellations, and showed that they fit into our framework. The results

obtained illustrate a tradeoff between performance, privacy and cooperation, and

suggest that, to optimize performance, agents should decrease their cooperation level

if they want to increase the privacy level.
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CHAPTER 5

CONCLUSION AND FUTURE DIRECTIONS

In this dissertation, we studied three problems in the field of designing scalable

protocols for networked control systems and protecting privacy of agent’s sensitive

parameters in multi-agent cyber-physical systems. In chapter 2, we studied a dis-

tributed estimation problem where multiple plants and estimators perform remote

estimation over a shared rate limited communication network. We designed a rate

control protocol that reduces congestion in the network and optimizes the estimation

performance of the overall system. We proposed a probabilistic transmission scheme

and implemented rate control by varying the transmission probabilities. We also an-

alyzed the stability of the protocol in presence of fixed network delays. There exists

a possibility of various extensions and modifications of this problem.

• The probabilistic data transmission scheme may sometimes result in a scenario

when the data is not transmitted for a long time interval, although such in-

stances will occur with low probability. It may result in significant increase of

the estimation error performance. To prevent this behavior, we can augment

the probabilistic schemes with other transmission schemes. For example, we

can study alternate schemes that transmit data in a periodic or event triggered

fashion and compare their performance with the probabilistic scheme. A crit-

ical issue for design of such transmission scheme is the structure of the cost

function. The transmission scheme should result in a separable cost structure,

thus enabling scalable design of network protocols.
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• In our solution, we used the steepest descent algorithm for optimizing the trans-

mission rates. Alternatively, we can use other optimization algorithms like

Newtons’s method. It may also be possible that various components in the

distributed system use different optimization algorithms. The algorithms may

have different rates of convergence and this may affect the stability of the sys-

tems. In such heterogeneous networks, it is important to characterize the rate

of convergence of optimization algorithms, and analyze the system stability.

• In our work, we formulated the SY STEM problem that had coupling among

its cost terms. To obtain a scalable solution, we relaxed the problem and

transformed it into NUM framework to obtain a USER problem. There is a

performance loss during this transformation since the USER problem is a scal-

able approximation to the SY STEM problem. Quantifying this performance

loss (or obtaining bounds on it) would provide robust performance guarantee

in the problem.

• In the first part of the problem, we considered random delays in the network

and formulated the cost function. We then assumed that the network is stable

in presence of these delays and analyzed the steady state case. In the latter

part, we derived the stability condition of the system under fixed transmission

delays in the links. However, data packets may experience variable delays over a

route due to queuing delays at the intermediate routers. Therefore, the stability

analysis needs to be extended for time varying or stochastic delays.

This study also motivates several more general research directions. In our work,

we proposed a primal form of the distributed solution. It requires modifications

only at the source and destinations, without changing the network architecture and

functionality. This structure of the proposed protocol is similar to TCP and enables

both the protocols to co-exist in the same communication network. It is of interest

104



to obtain analytical results characterizing the equilibrium and rate allocation in such

heterogeneous network when these two different protocols operate together.

The rate control problem is formulated at the transport layer of the OSI model

and the solution obtained is similar to TCP, which is also a transport layer protocol.

Similar design problems can be formulated at other layers and each layer can be

designed separately for control oriented purposes. The NUM framework that we uti-

lized to obtain a solution is also applicable at other network layers [17]. For example,

the optimization problem can be formulated at network or MAC layer and can be

solved to obtain optimal routing and channel contention schemes, respectively. Thus,

a natural extension of the work is to formulate new class of control and estimation

problems at other layers, and obtain distributed solutions.

In chapters 3 and 4, we studied problems related to privacy of agents in multi-

agent cyber-physical systems. We utilized the notion of Differential Privacy (DP)

in this dissertation and developed noise adding privacy mechanisms to prevent leak-

age of information about sensitive parameters/states of the agents. In chapter 3, we

considered a multi-agent LTI system which is monitored by a control center using

measurements from the agents. We developed a Laplacian DP mechanism to protect

the privacy of sensitive parameters contained in the dynamics of the agents from

an intruder that hacks into the control center. We derived an upper bound to the

sensitivity of the system from the private parameters to outputs, and used it to de-

termine the privacy noise level. We illustrated our framework through the examples

of second-order consensus and LQR control. Our numerical results show that for

an asymptotic regime of low privacy and high SNR, the privacy mechanism causes

marginal degradation in the eigenvalue identification performance at the control cen-

ter, as compared to the parameter identification performance by the intruder. Some

possible extensions of this work are

• Since the exact sensitivity of the system is difficult to calculate, we obtained
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an upper bound to design the noise level. It would be of interest to determine

the tightness of this upper bound and determine conditions for which it is

tight/loose. Also, one may possibly explore alternative techniques to obtain

better bounds.

• We assumed that the capabilities of the intruder is limited to snooping on the

measurements of the agents sent to the control center or hacking into the control

center. However, there may be scenarios in which the intruder may hack into

one or more agents, thereby gaining their state information. This raises the

issue of agents not trusting each other and additional privacy mechanisms need

to be implemented in the system to protect the parameters in such cases.

In chapter 4, we studied a multi-agent system in which the agents cooperatively

solve a quadratic optimization problem and presented a Gaussian DP mechanism to

protect privacy of their states over time. We showed that in presence of the privacy

mechanism, full cooperation degrades the system performance since the agents use

each other’s noisy states. We developed a framework in which the agents can vary

their cooperation level in response to privacy noise and obtained an optimal cooper-

ation level for a given privacy level that minimizes the performance degradation. We

derived conditions under which it is always beneficial for the agents to reduce their

cooperation if they want a higher level of privacy in the system. We illustrated this

privacy vs cooperation tradeoff through the examples of consensus and centroidal

Voronoi tessellations. The possible extension to this work include the following.

• We considered a multi-agent quadratic optimization problem and showed that

a privacy vs cooperation tradeoff exists in this framework. Although quadratic

optimization has wide applications, it would be interesting to see if such trade-

off exists in more general optimization problems, possibly with convex cost

functions.
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• To introduce the cooperation level into our problem, we formulated and used

a decoupled cost function. The performance of the system depends on this

decoupled cost and therefore, identifying a decoupled cost function that maxi-

mizes the overall system performance would improve the results. Furthermore,

a more rigorous framework to characterize the cooperation level of the system

needs to be developed in which the cooperation level could be solely calculated

based on the cost function that the agents are trying to minimize.

Apart from these extensions, there are some future directions related to privacy

in cyber-physical systems that can be pursued. One possible problem would be to

analyze a scenario when one or more agents in the system are non-conforming and

do not implement the privacy mechanism. For example, this can happen if an agent

determines that its parameters/state are not sensitive or the agent is compromised

by an intruder. It can result in privacy breach of other conforming agents as well.

Quantifying the privacy loss in such cases would help in designing robust privacy

mechanisms that are resilient to such non-conforming agents. It will also help to

identify the weakest link (agent) in the system, which can result in maximum privacy

loss, if compromised.

Another possible direction would be to examine the relation between privacy and

security in CPS. We explain this idea via a simple example, without being rigorous

in our notations. Fig. 5.1a shows a simple privacy setup consisting of a plant P

whose state is estimated by an estimator (denoted by x̂) using the measurements yP .

An intruder also tries to estimate some private parameters of the plant (denoted by

P̂ ) using the measurements. To prevent this, a privacy administrator implements

a DP mechanism that distorts the measurements by adding random noise. Assume

that the plant P belongs to a set P and the measurements belong to set Y . The DP

noise guarantees that for any two adjacent plants P and P ′ and for all S ⊂ Y , the

107



Privacy	
  
Administrator	
  

Privacy	
  
Noise	
  

Es.mator	
  x̂

P
yP
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Figure 5.1. Privacy vs security framework

following holds

e−ε ≤ P(ỹP ∈ S)

P(ỹP ′ ∈ S)
≤ eε (5.1)

The goal of the system administrator is to minimize the effect of privacy noise on the

estimation performance, while maintaining privacy as given by the following problem

P1 : min E
[
(x̂(yP )− x̂(ỹP ))2]

s.t. (5.1) holds.

Now consider a security setup in fig. 5.1b with the same plant and estimator but

with an attacker present between the two. The attacker distorts the measurements

using random noise and its goal is to cause maximum estimation degradation at the
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estimator while remaining stealthy

P2 : max E
[
(x̂(yP )− x̂(ỹP ))2]

s.t. DKL (yP ||ỹP ) ≤ ε, (5.2)

where DKL denotes the Kullback-Leibler divergence and is a measure of the difference

between the probability distributions of two random variables. Notice the similar-

ity between the conditions (5.1) and (5.2). The DP condition (5.1) states that the

outputs of two adjacent plants should appear almost statistically similar to the in-

truder. The stealthiness condition (5.2) also guarantees that the noise added by the

attacker should not change the distribution of the output significantly. Although the

DP criteria in (5.1) is defined using probabilistic notion and the stealthiness criteria

in (5.2) uses K − L divergence, both imply that the corresponding outputs should

not be significantly different, statistically. Furthermore, the objectives of the privacy

administrator and the attacker are contrary to each other. This suggests that the

privacy and security problems P1 and P2 are related, and in some sense dual to each

other. This relation needs to be examined further. It can provide significant insights

and connect the results in fields of security and privacy.
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APPENDIX A

PROOFS

A.1 Selective Proofs for Chapter 3

Proof of Lemma 3.3.3 The statement is trivial when the dynamics is stable. For

marginally stable case, we begin by stating the following facts

1. Since Ād = ν1(Ad(P ))ν̃1(Ad(P )) with ν̃1(Ad(P ))ν1(Ad(P )) = 1, we haveAd(P )Ād =

ĀdAd(P ) = Ā2
d = Ād. Thus, for k ≥ 1, and an impulse input, we have

Ādx(k) = ĀdAd(P )x(k−1) = Ādx(k−1) · · · = Ādx(1) = ĀdAd(P )(x(0)+K0B) = x̄.

2. (Ad(P )− Ād)x̄ = 0n.

Next, for k ≥ 1 we have

e(k + 1) = Ad(P )x(k)− x̄ (a)
= (Ad(P )− Ād)x(k)

(b)
= (Ad(P )− Ād)x(k)− (Ad(P )− Ād)x̄

= (Ad(P )− Ād)e(k)

...

= (Ad(P )− Ād)ke(1)

= (Ad(P )−Ād)k(Ad(P )(x(0)+ FK0)−Ād(x(0)+ FK0))

= (Ad(P )− Ād)k+1(x(0) + FK0),

where (a) follows from fact 1 and (b) follows from fact 2. �
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Proof of Lemma 3.3.4 Since Ād = ν1(Ad(P ))ν̃1(Ad(P )) with ν̃1(Ad(P ))ν1(Ad(P )) =

1, we have

Ãd(P )ν1(Ad(P )) = Ad(P )(In − Ād)ν1(Ad(P )) = 0n.

Thus, 0 is an eigenvalue of Ãd(P ).

Next, for λi(Ad(P )) 6= 1, we have

Ādνi(Ad(P )) = ĀdAd(P )νi(Ad(P )) = Ādλi(Ad(P ))νi(Ad(P ))

⇒ (1− λi(Ad(P )))Ādνi(Ad(P )) = 0n

⇒ Ādνi(Ad(P )) = 0n.

Using this, we get

Ãd(P )νi(Ad(P )) = Ad(P )(IN − Ād)νi(Ad(P ))

= Ad(P )νi(Ad(P )) = λi(Ad(P ))νi(Ad(P )).

Thus, all eigenvalues λi(Ad(P )) 6= 1 are also the eigenvalues of Ãd(P ). �

Proof of Lemma 3.3.6 The Lemma follows from Corollary 2.4 in [51] by noting

that f(s) = sk, f
′
(s) = ksk−1. Further, since all the eigenvalues of A and Ã lie inside

the closed unit circle, the closed convex hull of the eigenvalues of matrices A and Ã

(denoted by co(A, Ã)) is a subset of the closed unit circle. Thus,

max
s∈co(A,Ã)

f
′
(s) ≤ max

s:|s|≤1
k|s|k−1 = kmax{ρ(A), ρ(Ã)}k−1.

The Lemma then follows using the following matrix norm inequalities ||.||1√
N
≤ ||.||F ≤

√
N ||.||2. �
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A.2 Selective Proofs for Chapter 4

Proof of Corollary 4.3.8 Let ′ denote the derivative or partial derivative w.r.t. α.

First, we derive conditions under which the cost term Jico(α) is convex w.r.t. α. By

differentiating (4.24) with respect to α we obtain

J ′′ico(α) = (m′α)TQm′α + (Qmα + r)Tm′′α.

From the proof of lemma 4.3.5, for α = 1, we have Qm1 + r = 0 and m′1 = 0. Thus,

J ′′ico(1) = 0. Now let α ∈ [0, 1). By differentiating (4.25), we get

2(Q− Q̄)m′α +Qαm
′′
α = 0,

(a)⇒ m′′α =
2

1− α
Q−1
α (Q− Q̄)Q−1

α (Qmα + r),

where (a) follows from (4.26). Substituting the derivatives m′α and m′′α we get

J ′′ico(α) =
1

1− α
(Qmα + r)TQ−1

α

(
3Q− 2Q̄+

α

1− α
Q

)
Q−1
α (Qmα + r).

Condition (iii) in the corollary guarantees that 3Q− 2Q̄ > 0 and thus J ′′ico(α) > 0 for

α ∈ (0, 1].

Next, we derive conditions under which the cost term Jpriv(α, σ) is convex w.r.t.

α. Recalling (4.16), let Aα = αA + B, where A , γ(Q̄ − Q) and B , IN − γQ̄ =

(1− γδ)IN . Further, let Hα = −γαQ̃ where Q̃ , Q− diag(Q). Differentiating (4.19)

and substituting the above expressions, we get

P ′α = AαP
′
αAα + APαB

T +BPαA
T + 2αAPαA

T + 2σ2γ2αQ̃2︸ ︷︷ ︸
W

. (A.1)

Note that due to (iii) and (iv), A > 0 and B > 0. Further, we have the following

facts (a) QAα = AαQ and (b) QQ̃ = Q̃Q (by (ii)). Using (a), (b) and (4.20), it can
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be easily observed that APαB
T = BPαA

T > 0. Thus, W > 0 and (A.1) resembles to

a Lyapunov equation. Hence, we conclude that P ′α > 0.

Taking derivative of (A.1), we get

P ′′α = AαP
′′
αAα + 2AP ′αB

T+ 2BP ′αA
T + 2A(Pα+ 2αP ′α)AT + 2σ2γ2Q̃2︸ ︷︷ ︸

Z

. (A.2)

Again using (a) and (b) and taking the derivative of (4.20), we get AP ′αB
T =

BP ′αA
T > 0.Thus, Z > 0 and (A.2) resembles to a Lyapunov equation. Hence,

we get P ′′α > 0. Thus, J ′priv(α, σ) = 1
2
tr(QP ′α) > 0 and J ′′priv(α, σ) = 1

2
tr(QP ′′α) > 0

and the proof is complete. �
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