
The Structured Controllability Radius of Symmetric (Brain) Networks

Tommaso Menara, Vaibhav Katewa, Danielle S. Bassett, and Fabio Pasqualetti

Abstract— In this paper we propose and analyze a novel
notion of controllability of network systems with linear dy-
namics and symmetric weights. Namely, we quantify the
controllability degree of a network with its distance from
the set of uncontrollable networks with the same structure,
that is, with the minimum Frobenius norm of a structured
perturbation rendering the network uncontrollable (structured
controllability radius). We derive analytical conditions to com-
pute the structured controllability radius of a network with
symmetric weights, and illustrate our results through a number
of examples. In particular, we use our theoretical results to
study the controllability properties of a set of brain networks
reconstructed from diffusion MRI data, and compare them with
the controllability properties of a class of random networks.
Our results show that brain networks feature a controllability
radius that is consistently smaller than the one of random
networks with similar weights, indicating that the considered
brain networks may not be optimized to favor controllability.

I. INTRODUCTION

The question of controllability of natural and man-made
network systems has recently received considerable attention.
In the context of the human brain, the study of various
controllability properties may not only shed light into the
organization and function of different neural circuits, but also
inform the design and implementation of minimally invasive
yet effective intervention protocols to treat neurological
disorders [1]. Although the study of the human brain as a
network system is still in its infancy, some recent results, e.g.,
see [2], [3], [4], have suggested that the complexity of the
brain and its underlying principles can be further untangled
with tools from control theory and network science [5].

While the dynamics of most brain processes is clearly
nonlinear, linearized models with empirically reconstructed
network matrices have been proved useful to characterize
how the anatomical structure of the brain influences its
dynamic functions [6], [7]. In this paper we follow this line
of work, and model the dynamics of a brain network as a lin-
ear, discrete-time, time-invariant system, where the network
matrix is empirically estimated from diffusion MRI data.
A key feature of these empirically reconstructed networks
is that the estimated edges are undirected, giving rise to
symmetric network matrices [8]. This constraint on the edge
weights adds a layer of complexity to the study of network
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controllability [9], [10]. For instance, it prevents the use of
most tools developed within structural control theory [11].

In this paper we propose and analyze a novel notion of
controllability for symmetric networks, namely, the struc-
tured controllability radius. Specifically, we quantify the
controllability degree of a network with the size of the
smallest symmetric perturbation (measured with the Frobe-
nius norm) that has a given sparsity pattern and renders the
network uncontrollable. We provide analytical conditions to
compute the structured controllability radius of a symmetric
network, and use these conditions to compare a set of brain
networks with a class of random networks. Our results show
that the considered brain networks feature a controllability
radius that is consistently smaller when compared to the
considered random networks, suggesting that the topological
organization of the brain may lead to unique dynamical
features different from those of random network models [12].
Related work Different notions of controllability of a system
have been proposed over the years. Starting from the binary
definition of controllability proposed in [13], Gramian-based
metrics have been proposed to provide a quantitative measure
of the controllability degree of a system and, more recently,
of a network based on the energetic effort needed to control
the state towards a desired value [14], [15]. In [16], [17]
an alternative notion of controllability is introduced, where
the controllability degree of a system is quantified by the
smallest norm of a perturbation of the system parameters
causing uncontrollability. Later, this notion of controllability
radius has been extended to account for several types of
constrained perturbations (Hermitian, symmetric, and skew-
symmetric) [18]. Yet, with the exception of [19], the use
of the controllability radius to quantify the controllability
degree of a network has not been investigated. In this
case, because only existing edges can typically be modified,
perturbations need to feature a pre-specified sparsity pattern,
a constraint that renders classic results on the controlla-
bility radius inapplicable. In this paper we improve upon
existing results, particularly [19], by focusing on symmetric
and structured perturbations, by deriving an explicit set of
equations for the computation of the structured controllability
radius, and by exploiting our results to compare a class of
brain networks with random networks with similar weights.
Contribution The contribution of this paper is three-fold.
First, we propose a novel notion of controllability degree
for networks with symmetric adjacency matrix, namely, the
structured controllability radius, which equals the smallest
Frobenius norm of a symmetric perturbation that renders
the network uncontrollable and has a pre-specified sparsity
pattern. Second, we derive explicit necessary and sufficient
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conditions for the computation of the structured controlla-
bility radius, and illustrate our procedure through various
examples. Third and finally, we use our notion of structured
controllability radius to compare a class of brain networks
reconstructed from diffusion MRI data with a set of random
networks with similar weights and topologies. Our results
show that the controllability radius of brain networks is
consistently smaller than in the case of random networks,
suggesting that the anatomical organization of the brain may
favor dynamic properties different from controllability.
Paper organization The remainder part of the paper is
organized as follows. In Section II we introduce our net-
work model, we define different controllability metrics, and
we state the controllability radius optimization problem. In
Section III we derive our conditions for the computation of
the structured controllability radius. Section IV contains our
numerical study of the structured controllability radius of
brain and random networks. Section V concludes the paper.
Mathematical notation supp(·) denotes the support of a
vector and vec(·) denotes the vectorization of a matrix.
λmin(·) and σmin(·) denote the minimum eigenvalue and
singular value of a matrix. ◦ and ⊗ denote the Hadamard
(element-wise) and Kronecker products, respectively. 1n ∈
Rn (1n×n ∈ Rn×n) denotes a vector (matrix) of all ones.
(·)+ denotes the Moore-Penrose pseudo inverse of a matrix.
‖ · ‖F, ‖ · ‖2 and tr(·) denote the Frobenius norm, spectral
norm and trace of a matrix, respectively. ei denotes the i-
th canonical vector. Finally, we denote a positive definite
(positive semi-definite) matrix A with A > 0 (A ≥ 0).

II. MODEL AND PROBLEM STATEMENT

We consider networks represented by a weighted graph
G = (V, E), where V = {1, . . . , n} and E ⊆ V × V are
the node and edge sets, respectively. Let A = [aij ] be the
weighted adjacency matrix of G, where aij = 0 if (i, j) 6∈ E
and aij ∈ R if (i, j) ∈ E . Because we study brain networks
reconstructed from diffusion MRI images [8], we assume
that A = AT. An example of adjacency matrix is in Fig. 1.

The network dynamics is described by the following
discrete-time linear time-invariant system:

x(t+ 1) = Ax(t) +Bu(t), (1)

where x : N → Rn is the vector containing the state of the
nodes over time, u : N → Rm is the control input that is
applied to the network through the input matrix B ∈ Rn×m.
Without loss of generality, we assume that B has full rank.

The system (1) is controllable if there exists a control
input that can steer the system from a given initial state to
any desired final state. Several notions exist to quantify the
controllability degree of a system. One such metric measures
the control energy required to control the state between two
values, and is quantified by the controllability Gramian

W =

∞∑
τ=0

AτBBT(AT)τ .

Notice that W ≥ 0 and, further, W > 0 if and only if
the pair (A,B) is controllable [20]. As a known result in
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Fig. 1. Example of an anatomical connectivity matrix derived from
diffusion MRI scans of a brain. Notice that entries are symmetric and the
diagonal entries are zero.

system theory [14], [15], the upper bound for the control
energy required to steer the network to a desired final state is
inversely proportional to λmin(W ). Thus, if the eigenvalues
of W are large, the required control energy is small and
hence, the system has a larger controllability degree. In the
case of brain networks, a larger controllability degree might
enable or guide the use of less invasive treatments.

An alternative characterization of the degree of controlla-
bility of a system is provided by the controllability radius,
which is defined as the smallest norm of a perturbation
that renders the system uncontrollable. Mathematically, such
perturbation is obtained by solving the minimization problem

µ = min
∆A,∆B

‖ [∆A ∆B ] ‖2

s.t. (A+ ∆A, B + ∆B) is uncontrollable.

Equivalently [21],

µ = min
s∈C

σmin ([sI −A, B]) .

Clearly, µ > 0 if and only if W > 0. Further, when µ is
small, a small perturbation of the system weights exist that
renders the system uncontrollable.

Although the above metrics λmin(W ) and µ provide useful
information regarding controllability degree of a system,
they may not be directly applicable to networks due to
the following reasons. First, the definition of µ allows
for only unstructured perturbations ∆A,∆B . In contrast,
feasible network perturbations may be subject to constraints
on their sparsity patterns and edge weights, as in the case
of the networks considered in this paper. Second, the above
metrics are in terms of smallest eigenvalue/singular value
and, consequently, they do not provide any insight about the
magnitude and the distribution of the individual entries of the
perturbation. For instance, they do not help in determining
which edges of a network are more (or less) sensitive to per-
turbations with respect to making the system uncontrollable.

To overcome these limitations and to make the metric
µ meaningful for structured networks, we reformulate the
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optimization problem to include both symmetry and sparsity
constraints explicitly in the problem. We use the Frobenius
norm to measure the size of the perturbation. Further, we
consider perturbations only on the network weights, that is,
∆B = 0. For simplicity, in the remainder of the paper we
denote ∆A by ∆. We introduce the sparsity constraints on
∆ via a constraint graph H = (V, EH), where EH denotes
the set of edges that can be perturbed.1 Let H be the 0-1
adjacency matrix associated with H, and let Hc = 1n×n−H
be the unweighted complimentary adjacency matrix. Then,
the sparsity constraints can be written as Hc ◦∆ = 0. Since
∆ is symmetric, we also assume H to be symmetric.2

The structured controllability radius of the pair (A,B) is
the solution of the following minimization problem:

min
∆,v,λ

‖∆‖2F (2)

s.t. ∆ = ∆T, (symmetry constraint) (2a)
(A+ ∆)v = λv, (eigenvalue constraint) (2b)

‖v‖22 = 1, (eigenvector constraint) (2c)

vTB = 0, (uncontrollability) (2d)
Hc ◦∆ = 0, (structural constraint) (2e)

where constraint (2d) follows from the PBH uncontrollability
test [20], and constraint (2c) is for uniqueness of v. Notice
that the minimization problem (2) is not convex due to
the eigenvalue constraint (2b). Consequently, multiple local
minima may exist. This is a common feature in various
minimum distance and eigenvalue assignment problems [22].
We conclude this section with the following remark.

Remark 1: (Structured vs unstructured controllability
radius) The minimization problem (2) admits the trivial
solution ∆ = 0 if and only if the pair (A,B) is uncon-
trollable. Further, the controllability radius without structural
constraints is always finite, that is, a finite perturbation
causing uncontrollability always exists. Instead, the sparsity
constraints (2e) may render the problem unfeasible (trivially,
in the case where (A,B) is controllable and H = 0). �

III. SOLUTION TO THE OPTIMIZATION PROBLEM

In this section we derive a solution to the non-convex op-
timization problem (2). In the theory of equality constrained
non-linear programming, the first-order optimality conditions
are meaningful only when the optimal points satisfy the
regularity condition given by Rank J = nc, where J is the
Jacobian of the constraints and nc equals the total number of
independent equality constraints. This regularity condition is
mild and usually satisfied for most classes of problems [23].
Before presenting the main result, we derive the Jacobian and
state the regularity condition for the optimization problem

1The graph H has the same nodes as G, but possibly different edge set.
2If H is not symmetric, construct a symmetric H′ by removing a minimal

set of edges from H. It can be shown that the optimization problems with
constraints H and H′, respectively, admit the same solutions.

(2). Given the constraint graph H, let ns and n̄s satisfy

ns = |{(i, j) : Hc = [hij ], j ≥ i, hij = 1}|,
n̄s = |{(i, j) : Hc = [hij ], hij = 1}|,

and note that the constraint (2e) can be equivalently written
as (see the proof of Lemma 3.1 for a formal definition of Q)

Qvec(∆) = 0, (3)

for some 0-1 matrix Q of dimension n̄s × n2.
Lemma 3.1: (Jacobian of the constraints) The Jacobian

of the equality constraints (2a)-(2e) is given by

J(∆, v, λ) =


I − Tn 0 0
vT ⊗ I A+ ∆− λI −v

0 2vT 0
0 BT 0
Q 0 0

 , (4)

where Tn is the n2-dimensional permutation matrix satisfy-
ing vec(∆T) = Tnvec(∆), and Q is as in (3). Further, the
total number of independent scalar constraints in (2a)-(2e) is

nc =
n2 + n

2
+ n+ 1 +m+ ns. (5)

Proof: We construct the Jacobian J(∆, v, λ) by rewrit-
ing the constraints (2a)-(2e) in vectorized form and taking
their derivatives with respect to δ , vec(∆), v and λ.
Vectorization of (2a) yields (I−Tn)δ = 0 and its derivatives
read as the first block row of J . Among the total n2

scalar constraints in (2a), n2−n
2 are redundant resulting

in only n2+n
2 independent constraints. Using the property

vec(AB) = (BT ⊗ I)vec(A), re-vectorization of (2b) yields
(A − λI)v + (vT ⊗ I)δ = 0, from which we obtain the
second block row of J . Notice that (2b) consists of n scalar
constraints. Differentiation of (2c) and (2d) is straightforward
and it provides 1 and m rows, respectively. Finally, (2e)
consists of n̄s non-trivial sparsity constraints, which can
be written as Qδ = 0 where Q = [ei1 ei2 . . . ein̄s

]T

and {i1, . . . , in̄s
} = supp(vec(Hc)) is the set of indices

indicating the ones in vec(Hc). Because Hc is symmetric,
only ns constraints of (2e) in the lower-triangular (or upper-
triangular) part of Hc are independent when we combine
(2e) with the independent constraints of (2a). Thus, the
total number of independent constraints in (2a)-(2e) is nc =
n2+n

2 + n+ 1 +m+ ns and this concludes the proof.
We now solve the minimization problem (2).
Theorem 3.2: (Structured controllability radius of sym-

metric networks) Let ∆∗, v∗ and λ∗ satisfy the constraints
(2a)-(2e). Then, ∆∗ is a local minimum of the minimization
problem (2) if and only if, for some l∗ ∈ Rn and q∗ ∈ Rm,

∆∗ = −1

4
H ◦

[
v∗(l∗)T + l∗(v∗)T

]
, (6a)[

A+ ∆∗ − λ∗I B
] [l∗
q∗

]
= 0, (6b)

(v∗)Tl∗ = 0, (6c)
Rank J(∆∗, v∗, λ∗) = nc, and (6d)
P ∗D∗P ∗ ≥ 0, (6e)
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where nc is as in (5), D∗ is the Hessian defined as

D∗ =

 2I I ⊗ l∗ 0
I ⊗ (l∗)T 0 −l∗

0 −(l∗)T 0

 ,
P ∗ is the projection matrix of J(∆, v, λ) defined as

P ∗ = I − J+(∆∗, v∗, λ∗)J(∆∗, v∗, λ∗).

Proof: We prove the result using the Lagrange theorem
for equality constrained minimization [24]. Let S ∈ Rn×n,
l ∈ Rn, h ∈ R, q ∈ Rm, and M ∈ Rn×n be the Lagrange
multipliers associated with constraints in (2), respectively.
We make use of the following properties for the proof:

(i) tr(A) = tr(AT) and tr(AB) = tr(BA),
(ii) ‖A‖2F = tr(ATA) = vecT(A)vec(A),

(iii) 1T
n(A ◦B)1n = tr(ATB),

(iv) A ◦B = B ◦A and A ◦ (B ◦ C) = (A ◦B) ◦ C,
(v) A ◦ (B + C) = (A ◦ B) + (A ◦ C) and (A ◦ B)T =

AT ◦BT,
(vi) d

dX tr(X
TX) = 2X and d

dX tr(AX) = AT,

(vii) aTXy = yT(I ⊗ aT)vec(X) = vecT(X)(I ⊗ a)y,
The Lagrange function for the optimization problem is

L(∆, v, λ, S, l, h, q,M) = ‖∆‖2F + 1T
n[S ◦ (∆−∆T)]1n

+ lT(A+ ∆− λI)v + h(‖v‖22 − 1) + qTBTv

+ 1T
n[M ◦ (Hc ◦∆)]1n =

(a)
= tr(∆T∆) + tr[(ST − S)∆] + lT(A+ ∆− λI)v

+ h
(
vTv − 1

)
+ qTBTv + tr[(M ◦Hc)T∆]

where (a) follows from properties (i)-(iv). Next, we derive
the first-order necessary conditions for a local minimum.
Differentiating L w.r.t. ∆ and equating to 0, we get

d

d∆
L (vi)

= 2∆ + S − ST + lvT +M ◦Hc = 0. (7)

Taking the Hadamard product of (7) with Hc and using Hc◦
∆ = 0 and Hc ◦Hc = Hc, we get

(S − ST) ◦Hc + (lvT) ◦Hc +M ◦Hc = 0. (8)

Replacing M ◦Hc from (8) into (7), we get

∆ = −1

2
H ◦ (S − ST + lvT ). (9)

Since H is symmetric, the transpose of (9) yields

∆ = ∆T (v)
= −1

2
H ◦ (ST − S + vlT). (10)

Adding (9) and (10) and using (v), we obtain (6a).
Next, we differentiate L w.r.t. v and equate to 0:

(A+ ∆− λI)Tl + 2hv +Bq = 0. (11)

Pre-multiplying (11) by vT and using the eigenvalue, eigen-
vector and uncontrollability constraints, we get h = 0. Then,
since A and ∆ are symmetric, (11) yields (6b).

Finally, differentiating L w.r.t. λ and equating to 0, we get
the orthogonality constraint (6c).

Brain Anatomical parcellation

Anatomical connectivity Imaging data

Fig. 2. Main steps performed to obtain anatomical connectivity matrices.

Equation (6d) is the necessary regularity condition and
follows from Lemma 3.1 Next, we obtain the second-order
sufficient conditions by deriving the Hessian of L. Recall
that δ = vec(∆). Taking the differential of L twice, we get

d2L = 2tr((d∆)Td∆) + 2h(dv)Tdv + 2lT(d∆− Idλ)dv

(b)
= 2(dδ)Tdδ + 2(dv)T(I ⊗ lT)dδ − 2dλlTdv

= [(dδ)T, (dv)T, dλ] D [(dδ)T, (dv)T, dλ]T,

where (b) follows from properties (ii), (vii) and h = 0. The
sufficient second-order optimality condition for the optimiza-
tion problem requires the Hessian matrix to be positive semi-
definite in the kernel of the Jacobian at the optimal point [25].
That is, zTD∗z ≥ 0, ∀z : J(∆∗, v∗, λ∗)z = 0. This condi-
tion is equivalent to P ∗D∗P ∗ ≥ 0, since J(∆∗, v∗, λ∗)z = 0
if and only if z = P ∗u for any u ∈ Rn2+n+1 [23]. Since
the projection matrix P ∗ is symmetric, (6e) follows and this
concludes the proof.

Remark 2: (Computing an optimal solution) Observe that
∆∗ in (6a) is symmetric (since H is symmetric) and satisfies
the structural constraint (2e). Thus, to obtain a solution
to the minimization problem (2), we perform an iterative
procedure (starting from some random initial condition) that
solves numerically the constraint equations (2b)-(2d) and the
optimality equations (6a)-(6c). We then verify that these so-
lutions satisfy the regularity and local minima equations (6d)
and (6e), respectively. We repeat this procedure for several
initial conditions to improve upon local solutions. However,
due to the non-convexity of the minimization problem (2),
convergence to a global minimum is not guaranteed. �

To conclude this section, we present a short numerical
example that illustrates the conditions in Theorem 3.2.

Example 1: (Structured controllability radius of a line
network) Consider a network with adjacency matrix

A =

0 1 0
1 0 2
0 2 0


and input matrix B =

[
1 0 0

]T
. Notice that this is a line

network controlled by the first node, which is known to be
strongly structurally controllable [26]. We are interested in
modifying only the existing edges of the line, that is, H = G.
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With this sparsity constraint, the symmetric perturbation with
the minimum Frobenius norm (global minimum) that renders
the network uncontrollable is the one that removes the edge
with the smallest weight [19]:

∆∗global =

 0 −1 0
−1 0 0
0 0 0

 .
To verify our procedure against this result, we
solve the constraint and optimality equations in
Theorem 3.2. In addition to the above global
minimum (with v∗global = [0, 0.7071, 0.7071]T, l∗global =

[5.6569,−1.7038, 1.7038]T, λ∗global = 2), we also obtain the
following two local minima, where λ∗1 = λ∗2 = 0, and

∆∗1, v
∗
1 , l
∗
1 =

0 0 0
0 0 −2
0 −2 0

 ,
0

0
1

 ,
8.1341

8
2.5228

 , and

∆∗2, v
∗
2 , l
∗
2 =

 0 −1 0
−1 0 −2
0 −2 0

 ,
 0

0.9711
−0.2387

 ,
4.1191

5.1020
9.4922

 ,
which correspond to removing the edges between node 2 and
3, and all the edges of the network, respectively. �

IV. THE CONTROLLABILITY RADIUS OF SYMMETRIC
BRAIN AND RANDOM NETWORKS

In the remainder part of the paper we focus on the
numerical analysis and comparison of the controllability
radius of brain and random networks. We focus on the case
H = G, and consider the following network models.
Structural brain network (SBN). We use brain networks
modeled by (1), where the anatomical connectivity matrices
represent weighted adjacency matrices. To obtain the connec-
tivity matrices, anatomical scans of 15 healthy subjects were
parcellated according to the Lausanne atlas [8], and n = 129
regions are chosen as regions of interest. Figure 2 shows
the main steps performed to obtain the connectivity matrices
of structural brain networks. These network dynamics can
be derived as a linearization of brain processes [27], and
have been used, for instance, in [2], [6], [28]. Among these,
[2] has numerically shown that this class of brain networks
constructed from diffusion MRI data is controllable from one
single node, which will support our assumption of selecting
only one control node in our numerical study.
Random network (RN). Starting from a structural brain
network, we generate a set of symmetric adjacency matrices
by randomly permuting its edges, while maintaining connec-
tivity and controllability from the selected control node.

In our study, we consider 15 SBN’s and 10 RN’s generated
from each SBN, for a total of 165 networks. For each
network, the solution to the optimization problem (2) is
computed numerically. To do so, we run an extensive number
of minimizations from random initial conditions. Finally, we
compare the controllability radius of each SBN with the
mean controllability radius of the 10 corresponding RN’s.

We run two sets of numerical studies. First, we compare
the structured controllability radius of brain and random
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Fig. 3. Comparison between the controllability radii of 15 SBN’s and
150 RN’s. (a) The control node maximizes λmin(W ) for the i-th SBN, and
the same control node is employed for the 10 randomized brain networks
corresponding to the i-th SBN, i = 1, . . . , 15. (b) The control node is
selected differently in each network to maximize λmin(W ).

networks for a fixed choice of control node, that is, the
control node in a brain network and in all its random
permutations is the same. Second, we compare brain and
random networks after varying the control node to maximize
the smallest eigenvalue of the controllability Gramian. The
results of our studies are reported in Fig. 3.

In both our sets of numerical studies, the results show
that the controllability radius of structural brain networks
is on average smaller than the controllability radius of the
respective randomized versions. This result suggests that
the topology of brain networks may not be accidental.
Furthermore, the peculiar architecture of the brain could have
evolved to favor dynamic features different from controlla-
bility by single regions [29]. This raises several questions,
including characterizing the cost functions optimized by the
anatomical structure of the brain [30].

The controllability radius of structural brain networks can
be further exploited to provide interesting information on
the effectiveness of network control from a certain area. In
fact, it is possible to understand which areas make a better
position for a control node without incurring in numerical
artifacts that affect the spectral analysis of the controllability
Gramian. For instance, when the brain network of subject 1 is
controlled by the right superiorparietal-3 region3 (node 30),
it displays the smallest controllability radius: ‖∆‖F ≈ 10−7.
When the brain network of subject one is controlled by the
left isthmus of cingulate (node 88), it displays the largest

3See [8] for the atlas with labels of the regions of interest in the brain.
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Fig. 4. Average magnitude of the weight changes among all the perturba-
tions ∆i for subject 1 when controlled by single brain regions, i = 1, . . . , n.

controllability radius: ‖∆‖F ≈ 2.5 ·10−2. This insight could
inform the design of novel brain stimulation techniques.

To conclude, we noticed that the most perturbed inter-
connections correspond to entries with a small magnitude
in the connectivity matrix. Furthermore, when comparing
the mean perturbation for subject 1 (see Fig. 4) with the
brain atlas, the areas where the most changes occur among
all the perturbation matrices turn out to be the frontal pole
(node 4 and 68) and the pars orbitalis (node 67). These two
areas are indeed important for cortico-cortical control [2].
Assessing which interconnections tend to be more fragile
toward uncontrollability of the brain and further enhancing
the role that network controllability plays in the correct
functioning of this complex organ opens new challenges for
future research and may ultimately lead to the development
of innovative personalized clinical therapies [1], [29].

V. CONCLUSION

In this paper we propose and analyze a novel notion of
controllability for symmetric networks, namely the structured
controllability radius. In particular, we quantify the control-
lability degree of a network with the smallest norm of a
symmetric perturbation that renders the network uncontrol-
lable and satisfies a pre-specified set of sparsity constraints.
We derive a set of equations for the computation of the
structured controllability radius, and illustrate our results
through various examples including networks approximating
a class of brain dynamics. Our numerical results show
that brain networks feature a controllability radius that is
consistently smaller than the one of random networks with
similar weights, further highlighting the fundamental role of
the organization of the brain for its dynamic functions.
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