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Abstract—In this paper we consider a security problem for
interconnected dynamical systems, where each subsystem aims
to detect local attacks. Each subsystem has knowledge of only its
local dynamics and, therefore, the subsystems share information
among themselves to aid local attack detection. We develop a
technique that processes the local and shared measurements and
detects attacks with provable guarantees. Interestingly, we show
that for some instances of the attack, the detection performance
deteriorates if the subsystems share their measurements. We
provide an explanation for this counter-intuitive behavior and
illustrate our results through a numerical example.

I. INTRODUCTION

Dynamical systems are increasingly becoming more dis-
tributed, diverse, complex and integrated with cyber com-
ponents. Usually, these systems are composed of multiple
subsystems, which are interconnected among each other via
physical, cyber and other types of couplings [1]. An example
of such system is the smart city, which consists of subsystems
such as the power grid, the transportation network, the water
distribution network, and others. Although these subsystems
are interconnected, it is usually difficult to directly measure
the couplings and dependencies between them [1]. As a result,
they are often operated independently without the knowledge
of the other subsystems’ models and dynamics.

Dynamical systems are usually vulnerable to cyber/physical
attacks that can degrade their performance or may even render
them inoperable [2]. There have been many recent studies on
analyzing the effect of different types of attacks on dynamical
systems and possible remedial strategies (see [3] and the
references therein). A key component of these strategies is
detection of attacks using the measurements generated by the
system. Due to the autonomous nature of the subsystems,
each subsystem is primarily concerned with detection of local
attacks which affect its operation directly. However, local
attack detection capability of each subsystem is limited due
to the absence of knowledge of the dynamics and couplings
of external subsystems. One way to mutually improve the
detection performance is to share information and measure-
ments among the subsystems. In this paper we develop a
local attack detection strategy using the local measurements
and the shared measurements from other subsystems. In some
cases, these measurements may contain some confidential
information about the subsystem and subsystem operators may
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not be willing to share them due to privacy concerns. We
compare the detection performance of this case with the case
when the subsystems share their measurements.
Related Work: Attack detection in dynamical systems has
been studied both in centralized and decentralized settings.
In [4], [5], centralized and decentralized monitor design was
presented for deterministic attack detection and identification.
Stochastic attack detection was studied in [6] and a compar-
ison between centralized and decentralized attack detection
schemes was presented in [7]. There have also been recent
studies related to privacy in dynamical systems in the context
of consensus, filtering and distributed optimization (see [8]
and the references therein). These works develop additive
noise-based privacy mechanisms, and characterize the trade-
offs between the privacy level and the control performance. In
[9], a privacy vs. cooperation trade-off for multi-agent systems
was presented. The authors in [10] showed that the privacy
mechanism can be used by an attacker to execute stealthy
attacks in a centralized setting. In contrast to these studies,
we present attack detection in an interconnected system in a
decentralized manner.
Contributions: The contribution of this paper is two-fold.
First, we propose a local attack detection scheme in an
interconnected dynamical system which uses the local mea-
surements and the measurements received from neighboring
subsystems. Second, we present a comparison of the detection
performance for the case in which the subsystems share
the measurements against case where the subsystems do not
share the measurements. Interestingly, our analysis shows that
in some cases sharing no measurements can lead to better
detection performance. We illustrate our theoretical results
through numerical simulations.
Mathematical notation: Tr(·), Im(·), Null(·) and Rank(·)
denote the trace, image, null space and rank of a matrix,
respectively. (·)T and (·)+ denote the transpose and pseudo-
inverse of a matrix. A positive (semi)definite matrix A is
denoted by A > 0 (A ≥ 0). diag(A1, A2, · · · , An) denotes
a block diagonal matrix whose block diagonal elements are
A1, A2, · · · , An. The identity matrix is denoted by I (or In
to denote its dimension explicitly). ⊗ denotes the Kronecker
product. A zero mean Gaussian random variable y is denoted
by y ∼ N (0,Σy), where Σy denotes the covariance of y. The
(central) chi-square distribution with q degrees of freedom is
denoted by χ2

q and the noncentral chi-square distribution with
noncentrality parameter λ is denoted by χ2

q(λ). For x ≥ 0, let
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Qq(x) and Qq(x;λ) denote the right tail probabilities of a chi-
square and noncentral chi-square distributions, respectively.

II. PROBLEM FORMULATION

Let S , {1, 2, · · · , N} and S−i , {1, · · · , i − 1, i +
1, · · · , N}. We consider an interconnected discrete-time LTI
dynamical system composed of N individual sub-subsystems.
The dynamics of the subsystems are given by:

xi(k + 1) = Aixi(k) +A−ix−i(k) + wi(k), (1)
yi(k) = Cixi(k) + vi(k) i ∈ S, (2)

where xi ∈ Rni and yi ∈ Rpi are the state and out-
put/measurement of subsystem i, respectively. Let n ,∑N
i=1 ni. Subsystem i is coupled with other subsystems

through the interconnection term A−ix−i(k), where x−i ,
[xT1 , · · · , xTi−1, x

T
i+1, · · · , xTN ]T ∈ Rn−ni denotes the aggre-

gated states of all other subsystems. We refer to x−i as the
interconnection signal. Further, wi ∈ Rni and vi ∈ Rpi are the
process and measurement noise, respectively. We assume that
wi(k) ∼ N (0,Σwi

) and vi(k) ∼ N (0,Σvi) for all k ≥ 0, with
Σwi

> 0 and Σvi > 0. The process and measurement noise are
assumed to be white and independent for different subsystems.
Finally, we assume that the initial state xi(0) ∼ N (0,Σxi(0))
is independent of wi(k) and vi(k) for all k ≥ 0.

We make the following assumption regarding the intercon-
nected system:
Assumption 1: Subsystem i has perfect knowledge of its
dynamics, i.e., it knows (Ai, A−i, Ci), the statistical properties
of wi, vi and xi(0). However, it does not have the knowledge
of the dynamics, states and the statistical properties of the
noises of the other subsystems. �

Remark 1: (Control input) The dynamics in (1) typically
includes a control input. However, since each subsystem has
the knowledge of its control input, its effect can be easily
included in the attack detection procedure. Therefore, for the
ease of representation, we omit the control input. �

We consider the scenario where each subsystem can be
under attack. We model the attacks as external linear additive
input to the subsystems. Specifically, the dynamics of the
subsystems under attack are given by

xi(k + 1) = Aixi(k)+A−ix−i(k)+Biai(k) + wi(k), (3)
yi(k) = Cixi(k) + vi(k) i ∈ S, (4)

where ai ∈ Rri is the attack input for subsystem i. We assume
ai to be a deterministic but unknown signal for all i ∈ S.

Each subsystem i is equipped with an attack monitor
whose goal is to detect the local attack ai using the local
measurements yi. The detection procedure requires the knowl-
edge of the statistical properties of yi which depend on the
interconnection signal x−i. Since the subsystems do not have
the knowledge of the interconnection signals (c.f. Assumption
1), they share their outputs among each other to aid the
local detection of attacks (see Fig. 1). Let the parameters
corresponding to the limited measurements of subsystem i

1

2 3

4

a1
a2 a3

a4

Attack
monitor

y1(k)

y2(k) y3(k)

y4(k)

Attack absent/present

{P2, y2(k)} {P3, y3(k)}

Fig. 1. An interconnected system consisting of N = 4 subsystems. The solid
lines represent state coupling among the subsystems. For attack detection
by Subsystem 1, its neighboring agents 2 and 3 communicate their output
information to 1 (denoted by dashed lines). The attack monitor associated
with Subsystem 1 uses the received information and the local measurements
to detect attacks.

be denoted by Pi , {Ci,Σvi}. We make the following
assumption regarding measurement sharing:
Assumption 2: Each subsystem i shares its measurements yi
in (4) and the parameters Pi with the other subsystems1. �

Under Assumptions 1 and 2, the goal of each subsystem i
is to detect the local attack ai using its local measurements
yi and the measurements {yj}j∈S−i

received from the other
subsystems (see Fig. 1).

III. LOCAL ATTACK DETECTION

In this section we present the local attack detection pro-
cedure of the subsystems and characterize their detection
performance. For the ease or presentation, we describe the
analysis for Subsystem 1 and remark that the procedure is
same for other subsystems.

A. Measurement collection

We employ a batch detection scheme in which each sub-
system collects the measurements for k = 1, 2, · · · , T , with
T > 0 and performs detection based on the collected mea-
surements. In this subsection, we model the collected local
and shared measurements for Subsystem 1.
Local measurements: Let the time-aggregated local mea-
surements, interconnection signals, attacks, process noises
and measurement noises corresponding to Subsystem 1 be

1To be precise, this information sharing is required only between neighbor-
ing subsystems, i.e., between subsystems that are directly coupled with each
other in (1).
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respectively denoted by

yL , [yT1 (1), yT1 (2), · · · , yT1 (T )]T,

x , [xT−1(0), xT−1(1), · · · , xT−1(T − 1)]T,

a , [aT1 (0), aT1 (1), · · · , aT1 (T − 1)]T,

w , [wT
1 (0), wT

1 (1), · · · , wT
1 (T − 1)]T,

v , [vT1 (1), vT1 (2), · · · , vT1 (T )]T.

By using (3) recursively and (4), the local measurements
can be written as

yL = Ox1(0) + Fxx+ Faa+ Fww + v, where, (5)

Fx ,


C1A−1 0 · · · 0
C1A1A−1 C1A−1 · · · 0

...
...

. . .
...

C1A
T−1
1 A−1 C1A

T−2
1 A−1 · · · C1A−1

 ,

Fa ,


C1B

a
1 0 · · · 0

C1A1B
a
1 C1B

a
1 · · · 0

...
...

. . .
...

C1A
T−1
1 Ba1 C1A

T−2
1 Ba1 · · · C1B

a
1

 ,

Fw ,


C1 0 · · · 0
C1A1 C1 · · · 0

...
...

. . .
...

C1A
T−1
1 C1A

T−2
1 · · · C1

, O ,

C1A1

C1A
2
1

...
C1A

T
1

 .
Note that w ∼ N (0,Σw) and v ∼ N (0,Σv) with

Σw = IT ⊗ Σw1 > 0 and Σv = IT ⊗ Σv1 > 0.

Let vL , Ox1(0) + Fww + v denote the effective local
noise in the measurement equation (5). Using the fact that
{x1(0), w, v} are independent, the overall local measurements
of the subsystem are given by

yL = Fxx+ Faa+ vL, where (6)

vL ∼ N (0,ΣvL), ΣvL = OΣx1(0)O
T + FwΣwF

T
w + Σv > 0.

Shared measurements: Let y−1(k) ,
[yT2 (k), yT3 (k), · · · yTN (k)]T denote the measurements received
by Subsystem 1 from all the other subsystems at time k.
Further, let v−1(k) , [vT2 (k), vT3 (k), · · · , vTN (k)]T. Then,
from (4) we have

y−1(k) = Cx−1(k) + v−1(k), where (7)

C , diag(C2, C3, · · · , CN ), and
v−1(k) ∼ N (0,Σv−1), Σv−1 = diag(Σv2 , · · · ,ΣvN ) > 0.

Further, let the time-aggregated measurements
received by the subsystem be denoted by
yR , [yT−1(0), yT−1(1), · · · , yT−1(T − 1)]T, and let
vR = [vT−1(0), vT−1(1), · · · , vT−1(T − 1)]T. Then, from

(7), the overall measurements received by Subsystem 1 are
given by

yR = Hx+ vR, where (8)

H , IT ⊗ C, and
vR ∼ N (0,ΣvR) with ΣvR = IT ⊗ Σv−1

> 0.

The goal of Subsystem 1 is to detect the local attack using
the local and received measurements given by (6) and (8),
respectively. Note that the subsystem knows (Fx,ΣvL) (c.f.
Assumption 1) and (H,ΣvR) (c.f. Assumption 2). Further,
the random variables vL and vR are independent, because
they depend exclusively on the local and external subsystems’
noises, respectively.

B. Measurement processing
Since Subsystem 1 does not have access to the inter-

connection signal x, it uses the received measurements to
obtain an estimate of x. Note that x is stochastic since it
depends on the process and measurement noise present in the
external subsystems. However, since Subsystem 1 is oblivious
to its statistics, it computes the estimate assuming x to be a
deterministic signal.

The maximum likelihood (ML) estimate of x using the
received measurements in (8) is given by (using Lemma A.1)

x̂ = H̃+HTΣ−1
vR yR + (I − H̃+H̃)d, where (9)

H̃ , HTΣ−1
vRH,

and d is any real vector of appropriate dimension. Note that if
H̃ is not full column rank, then the estimate can lie anywhere
in the null space of H̃ (shifted by H̃+HTΣ−1

vR y). Thus, the
component of x that lies in the null space of H̃ cannot be
estimated. We decompose x as:

x = (I − H̃+H̃)x+ H̃+H̃x

= (I − H̃+H̃)x+ H̃+HTΣ−1
vRHx

(8)
= (I − H̃+H̃)x+ H̃+HTΣ−1

vR (yR − vR). (10)

Substituting x from (10) in (6), we get

yL = Fx(I − H̃+H̃)x+ FxH̃
+HTΣ−1

vR (yR − vR)

+ Faa+ vL. (11)

Next, we process the local measurements in two steps.
First, we subtract the known term FxH̃

+HTΣ−1
vR yR. Second,

we eliminate the component (I − H̃+H̃)x (which cannot be
estimated) by premultiplying (11) with a matrix MT, where

M = Basis of Null
(

[Fx(I − H̃+H̃)]T
)
,

⇒MTFx(I − H̃+H̃) = 0. (12)

Note that since the columns of M are basis vectors, M is
full column rank. The processed measurements are given by

z = MT(yL − FxH̃+HTΣ−1
vR yR)

(11),(12)
= MTFaa+MT(vL − FxH̃+HTΣ−1

vR vR),︸ ︷︷ ︸
, vP

(13)
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where vP ∼ N (0,ΣvP ). Since vL and vR are independent,
we have

ΣvP = MT
[
ΣvL + FxH̃

+HTΣ−1
vR ΣvRΣ−TvR H(H̃+)TFT

x

]
M

H̃T=H̃
= MTΣvLM +MTFxH̃

+FT
xM

(a)
> 0. (14)

where (a) follows from the facts that M is full column rank
and ΣvL > 0. The processed measurements z in (13) depend
only on the local attack a and the Gaussian noise vP , whose
statistics is known to Subsystem 1, i.e. z ∼ N (MTFaa,ΣvP ).
Thus, Subsystem 1 uses z to perform attack detection.

C. Statistical hypothesis testing

The goal of Subsystem 1 is to determine whether it is
under attack or not (attack detection) using the processed
measurements z in (13). We cast the attack detection problem
as a binary hypothesis testing problem. Since Subsystem
1 does not know the attack a, we consider the following
composite (simple vs. composite) testing problem

H0 : a = 0 (Attack absent) vs
H1 : a 6= 0 (Attack present)

We use the generalized likelihood ratio test (GLRT) criterion
[11] for the above testing problem, which is given by

f(z|H0)

sup
a
f(z|H1)

H0

≷
H1

τ ′ where, (15)

f(z|H0) =
1√

2π|ΣvP |
e−

1
2 z

TΣ−1
vP
z and,

f(z|H1) =
1√

2π|ΣvP |
e−

1
2 (z−MTFaa)TΣ−1

vP
(z−MTFaa),

are the pdf of the multivariate Gaussian distribution of z
under hypothesis H0 and H1, respectively, and τ ′ is a suitable
threshold. Using the result in Lemma A.1 to compute the
denominator in (15) and taking the logarithm, the test (15)
can be equivalently written as

t(z) , zTΣ−1
vP M

TFaM̃
+FT

aMΣ−1
vP z

H1

≷
H0

τ, (16)

where M̃ = FT
aMΣ−1

vP M
TFa.

Next, we derive the distribution of the test statistics t(z) under
both hypothesis.

Lemma 3.1: (Distribution of test statistics) The distribu-
tion of test statistics t(z) in (16) is given by

t(z) ∼ χ2
q under H0, (17)

t(z) ∼ χ2
q(λ , a

TFT
aMΣ−1

vP M
TFaa) under H1, (18)

where q = Rank(MTFa).
Proof: See [12].

Remark 2: (Interpretation of detection parameters
(q, λ)) The parameter q denotes the number of independent
observations of the attack vector a in (13). The parameter λ
can be interpreted as the signal to noise ratio (SNR) of the

processed measurements in (13), where the signal of interest
is the attack. �

Next, we characterize the performance of the test (16). Let
the probability of false alarm and probability of detection for
the test be respectively denoted by

PF = Prob(t(z) > τ |H0) and,
PD = Prob(t(z) > τ |H1).

Inspired by the Neyman-Pearson test framework, we fix the
desired size (PF ) of the test and determine the threshold τ
which provides the desired size. Then, we use the threshold to
perform the test and compute the detection probability. From
Lemma 3.1, we have

τ(q) = Q−1
q (PF ), (19)

PD(q, λ) = Qq(τ(q);λ). (20)

The detection probability is an indicator of the detection
performance of Subsystem 1 and it depends on the detection
parameters (q, λ). The next result characterizes this depen-
dence.

Lemma 3.2: (Dependence of detection performance on
parameters (q, λ)) For a fixed false alarm probability PF ,
the detection probability PD(q, λ) is decreasing in q and
increasing in λ.

Proof: It is a standard result that for a fixed q (and
τ(q)), the CDF (= 1 − Qq(τ(q);λ) = 1 − PD(q, λ)) of a
noncentral chi-square random variable is decreasing in λ [12].
Thus, PD(q, λ) is increasing in λ.

Next, we have [12]

PD(q, λ) = e−λ/2
∞∑
j=0

(λ/2)j

j!
Qq+2j(τ(q)).

From [13, Corollary 3.1], it follows that Qq+2j(τ(q)) =
Qq+2j(Q−1

q (PF )) is decreasing in q for all j > 0. Thus,
PD(q, λ) is decreasing in q.

Lemma 3.2 implies that for a fixed q, a higher SNR (λ)
leads to a better detection performance, which is intuitive.
However, for a fixed λ, an increase in the number of indepen-
dent observations (q) results in degradation of the detection
performance. This is due to the fact that the GLRT in (15) is
not an uniformly most powerful (UMP) test for all values of
the attack a.2 This suboptimality is an inherent property of the
GLRT in (15). It arises due to the composite nature of the test
and the fact that the value of the attack vector a is not known
to the attack monitor.

Next, we compare the above measurement sharing case with
the case when the subsystems do not share information among
each other, denoted as case 0. In the latter case, H̃ = 0
and M is basis of Null(Fx). Let (q0, λ0) denote the detection
parameters for case 0. Clearly, when the subsystems do not
share information, both the SNR and number of observations
at the detector decreases, i.e., q0 ≤ q and λ0 ≤ λ. By Lemma
3.2, this implies that PD(q0, λ0) can be greater or smaller than

2A UMP test does not exist in this case [14].
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PD(q, λ) depending on the detection parameters. Intuitively, if
the decrease in PD due to the decrease in the SNR3 (λ→ λ0)
is larger than the increase in PD due to the decrease in the
number of measurements (q → q0), then the the detection
performance decreases, and vice versa.

This is an interesting and counter-intuitive property and it
implies that in certain cases sharing information can lead to
worse detection performance. This phenomenon occurs be-
cause the GLRT for the considered hypothesis testing problem
is a suboptimal test, as explained before. Next, we illustrate
this behavior using a numerical example.

IV. SIMULATION EXAMPLE

Consider an interconnected system with N = 3 subsystems
with the following parameters:

A1 =
1

3


−1 −16 2 −4
0 −6 1 −1
0 2 1 1
1 28 −3 6

 , A12 =


0 0 0
0 0 0
0 1 2
1 0 0

 ,

A13 =


0 0
1 0
0 2
0 0

 , B1 =


1 0
0 0
0 0
0 2

 , C1 =

1 0 0 0
0 1 0 0
0 0 1 0

 ,
A−1 =

[
A12 A13

]
, Σx1(0) = 0.2I4, Σw1

= 0.1I4, C2 = I3

C3 = I2, Σv1 = Σv2 = I3, Σv3 = I2, T = 6.

We focus on the attack detection for Subsystem 1. The
detection performance is completely characterized by PF and
the detection parameters (q, λ). Recalling (18), λ can vary
between [0,∞) depending on the value of a. Thus, we present
the results in this section in terms of λ.

First, we consider the case in which Subsystems 2 and 3
share their measurements with Subsystem 1 and denote it by
case 1. In this case, we have q = 11. Fig. 2 shows the detection
performance as a function of false alarm probability (typically
known as the ROC curve) for different values of λ. We observe
that for any given PF , the detection performance becomes
better as λ increases (c.f. Lemma 3.2).

Next, we compare the detection performance of case 0 (no
measurement sharing) and case 1. The detection parameter
q0 = 1 for case 0 is less than q = 11 for case 1. Further, as
stated previously, λ ≥ λ0. We choose PF = 0.05 for both the
cases for a fair comparison. Fig. 3 presents a comparison of
the detection performance of cases 0 and 1. The blue circle
region is characterized by pairs (λ0, λ) for which PD(q, λ) ≥
PD(q0, λ0), and vice versa with red square region. We observe
that case 1 performs better than case 0 if ∆λ = λ−λ0

λ0
is large,

and vice versa. This shows that if the attack vector a is such
that ∆λ is small, then not sharing measurements can improve
the detection performance. This counter-intuitive result is due
to the suboptimality of the GLRT used to perform detection,
as explained before.

3Note that the SNR depends upon the attack vector a (via (18)), which we
do not know a-priori. Thus, depending on the actual attack value, the SNR
can take any positive value.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 2. Detection performance as a function of PF for different values of
λ.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

$P
D
(q, )  P

D
(q

0
,

0
)$

$P
D
(q, )< P

D
(q

0
,

0
)$

Fig. 3. Comparison between detection performance of case 0 and case 1. In
the blue circle region, case 1 performs better than case 0, and vice versa in
red square region. Since λ ≥ λ0, the white region is inadmissible.

V. CONCLUSION

We study an attack detection problem in interconnected
dynamical systems wherein each subsystem is tasked with
detection of local attacks without any knowledge of the dy-
namics of other subsystems and their interconnection signals.
We present a measurement processing method which enables
each subsystem to eliminate the unknown interconnection
signal and perform attack detection using a composite hy-
pothesis testing framework. The subsystems aid each other in
attack detection by sharing measurements among each other.
Interestingly, we show that in some cases, not sharing the
measurements can improve the attack detection performance.
This counter-intuitive behaviour is due to the sub-optimality
of the composite nature of the considered hypothesis test.
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APPENDIX

Consider the following weighted least squares problem for
a given y and Σ > 0:

min
x

J(x) = (y −Hx)TΣ−1(y −Hx). (21)

Lemma A.1: The optimal solutions of the weighted least
squares problem in (21) are given by

x∗ = H̃+HTΣ−1y + (I − H̃+H̃)d,

where H̃ = HTΣ−1H, and d is any real vector of appropriate
dimension. Further, the optimal value of the cost is given by

J(x∗) = yT(Σ−1 − Σ−1HH̃+HTΣ−1)y.
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