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Abstract— Understanding the fundamental mechanisms en-
abling fast and reliable communication in the brain is one of
the outstanding key challenges in neuroscience. In this work,
we address this problem from a systems and information
theoretic perspective. Specifically, we first develop a simple
and tractable framework to model information transmission
in networks driven by linear dynamics. We then resort to the
notion of Shannon capacity to quantify the information transfer
performance of these networks. Building on this framework,
we show that it is possible to increase Shannon capacity via
two fundamentally different mechanisms: either by decreasing
the degree of stability of the network adjacency matrix, or
by increasing its degree of non-normality. We illustrate and
validate our findings by means of simple, insightful examples.

I. INTRODUCTION

The proper functioning of many biological and techno-
logical network systems relies on their ability to efficiently
process and propagate information across their units [1], [2].
For instance, cortical circuits in the brain are capable of
integrating and broadcasting large volumes of sensory data
in a remarkably fast and reliable way [3]. However, the fun-
damental network principles underlying robust and seamless
communication in the brain are still poorly understood [4].

In this paper, we seek to understand the impact of network
structure on the quality of information transmission through
the network. To this end, we focus on networks governed by
noisy linear dynamics, which have been employed, e.g., to
model the firing-rate evolution of neuronal networks around
equilibrium points [5, Chapter 7], [6], [7]. Drawing inspira-
tion from observed patterns of cortical activity in the brain
[7], [8], we assume that packets of information are suitably
encoded in impulsive inputs. These inputs transiently excite
the network dynamics, generating modulated waveforms that
propagate the information through the network. The overall
transmission process can be modeled as the transmission
through a Gaussian channel, whose performance can be
measured via the notion of Shannon channel capacity [9,
Chapter 7]. Building on this framework, we examine how
the network architecture affects the capacity of the network.
Related work Over the past sixty years, many experimental
works have addressed the problem of quantifying the infor-
mation transfer performance of the brain or other biological
networks by leveraging information theoretic notions, e.g.,
see [10] and references therein. However, to the best of our
knowledge, only a limited number of works have proposed a
systematic and analytical framework to tackle this problem.
In particular, in [11], the authors use the notion of Fisher
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information to measure the memory storage capacity of linear
dynamical networks. In [12], [13] the authors investigate
flexible mechanisms of information routing in networks gov-
erned by oscillatory dynamics. In [14], the authors study the
interplay between network dynamics and flow patterns of in-
formation. In our earlier work [15], we consider a communi-
cation model which includes the contribution of inter-symbol
interference. However, due to the intrinsic complexity of the
resulting model, only the information transfer performance
of a limited class of networks is analytically characterized.
Paper contribution The contribution of this paper is
threefold. First, we propose a novel and tractable model of
information transmission in networks driven by noisy linear
dynamics, which can serve as a simple model of information
transfer through neuronal networks. Second, we derive an
expression for the Shannon channel capacity of our com-
munication model subject to an input power constraint, and
characterize the corresponding optimal power distribution.
Third, we link the information transfer performance of the
network to its structure, as described by the adjacency matrix
of the network, and establish lower and upper bounds on the
Shannon capacity for some classes of networks. Our results
suggest that both closeness to instability and departure from
normality of the network adjacency matrix play a key role in
enhancing the Shannon capacity of the network. Further, as
minor contributions, we analyze the dependence of Shannon
capacity on the transmission time window and noise level,
and characterize its behavior for high-dimensional networks.
Mathematical notation Given a matrix A ∈ Rn×n, we
denote with A>, tr(A), det(A), and diag(A), the transpose,
the trace, the determinant, and the diagonal matrix composed
by the diagonal entries of A, respectively. Matrix A is said
to be Hurwitz stable if all of the eigenvalues of A have
strictly negative real part. If AA> = A>A then A is said to
be normal, otherwise A is said to be non-normal. We write
A ≥ 0 (A > 0) to mean that the symmetric matrix A ∈ Rn×n
is positive semidefinite (positive definite, respectively). The
space of n×n positive semidefinite symmetric matrices is de-
noted by Sn+. We denote with G = (V, E) the (directed) graph
with vertex set V = {1, 2, . . . , n} and edge set E ⊆ V × V .
The (weighted) adjacency matrix A ∈ Rn×n corresponding
to the graph G satisfies [A]ij 6= 0 if and only if (j, i) ∈ E ,
where [A]ij denotes the (i, j)-th entry of A. We denote
with N (µ,Σ) the n-dimensional Gaussian distribution with
mean µ ∈ Rn and covariance Σ ∈ Sn+, and with E[·] the
expectation of a random variable. Lp2[t1, t2] stands for the
Hilbert space of p-dimensional square integrable functions in
[t1, t2], t2 > t1, equipped with the inner product 〈f, g〉L2 :=∫ t2
t1
f>(t)g(t) dt and norm ‖f‖L2

=
√
〈f, f〉L2 . The i-th

canonical vector of Rn is denoted with ei, and the Dirac delta
function with δ(t). Finally, we let x+ = max{0, x}, x ∈ R.
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Fig. 1. Schematic of the communication model considered in this paper.

II. MODELING FRAMEWORK

Let G = (V, E) be a directed graph with weighted
adjacency matrix A ∈ Rn×n. We consider continuous-time,
linear, time invariant network dynamics{

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) + n(t),
(1)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp denote the
vectors of nodes’ states, inputs, and outputs at time t ≥ 0,
respectively. The term n(t) ∈ Rp represents a white Gaussian
noise process, n(t) ∼ N (0, σ2Ip), n(t) ⊥ n(s) for t 6= s,
t, s ≥ 0. We let x(0) = 0, and form B ∈ Rn×m and C ∈
Rp×n so as to select two subsets of nodes in V , namely,

B = [ek1 , . . . , ekm ], C = [et1 , . . . , etp ]>,

where K := {ki}mi=1 ⊆ V and T := {ti}pi=1 ⊆ V .
We model information transmission through the network

G as in Fig. 1. In our framework, the packet of information to
be transmitted at time t = 0 is represented by the symbol a,
which belongs to an alphabet A of finite cardinality. The
duration of a transmission is denoted with T > 0. The
proposed communication protocol consists of two steps:

1) Encoding and modulation. The symbol a is first mapped
to a vector ū ∈ Rm (codeword) which acts as an
impulsive input u(t) = ū δ(t) that transiently excites the
linear system in (1). The corresponding forced response
of the system (modulated waveform)

yf (t) = CeAtBū, t ∈ [0, T ],

propagates the packet of information encoded in ū
across the network.

2) Demodulation and decoding. The (noisy) output trajec-
tory of the system in (1), i.e.,

y(t) = yf (t) + n(t), t ∈ [0, T ],

is demodulated and decoded to recover an estimate â ∈
A of the transmitted symbol.

In what follows, we will focus on the information transfer
performance of a single transmission in the interval [0, T ]
and will make use of the following two assumptions:
A1) The dynamics in (1) is stable, i.e., A is Hurwitz stable.
A2) The power available at the sender is limited. This

implies that all of the input codewords ū’s have bounded
norm ‖ū‖ ≤ P , for P > 0.

Remark 1: (Multiple transmissions and interference)
When transmissions are performed consecutively, modulated
waveforms corresponding to previous symbols may interfere
with the current one. A framework taking into account this
inter-symbol interference phenomenon has been investigated
in [15]. In the present work, the noise term coming from
inter-symbol interference is assumed to be negligible. �

III. SHANNON CHANNEL CAPACITY

We use Shannon channel capacity as a measure of in-
formation transmission efficiency. In fact, Shannon capacity
provides a tight upper bound on the amount of information
(measured in bits per channel use) that can be sent reliably,
that is, with arbitrarily small decoding error probability, over
a communication channel (e.g., see [9] for further details).

Theorem 1: (Shannon channel capacity) Let T > 0. The
Shannon capacity of the communication channel in Sec. II is

CT =
1

2
max

Σ∈Sm
+

tr Σ≤P

log2 det

(
Im +

1

σ2
ΣB>OTB

)
, (2)

where OT :=
∫ T

0
eA
>tC>CeAtdt denotes the observability

Gramian of the system (1) over the interval [0, T ].
It is worth noting that B>OTB quantifies the energy of

the impulse response of the linear system in (1). Specifically,
for a given codeword vector ū ∈ Rm, it holds

‖yf (t)‖2L2
= ū>B>OTB ū.

This observation suggests that linear networks featuring a
highly energetic impulse response in the interval [0, T ] are
likely to transmit packets of information more efficiently.

Remark 2: (Shannon capacity and transmission window)
Shannon capacity (2) is a monotonically increasing function
of the transmission window T . This follows from the fact
that, for any T1, T2 > 0 such that T2 ≥ T1, it holds
OT2

≥ OT1
. Intuitively, as T increases, a longer portion

of the modulated signal yf (t) reaches the receiver, allowing
for a more accurate decoding of the transmitted symbol. �

The following result characterizes the optimal Σ which
yields the solution of the maximization problem in (2).

Theorem 2: (Optimal power allocation and decomposi-
tion into independent subchannels) Let {µi}mi=1 be the
eigenvalues of B>OTB and let {ui}mi=1 be the orthonormal
set of corresponding eigenvectors. Let U := [u1, . . . , um] ∈
Rm×m. The optimal Σ in (2) has the form

Σ? = U diag(P1, . . . , Pm)U>,

where

Pi =


(
ν − σ2

µi

)+

, if µi 6= 0,

0, if µi = 0,
(3)

and ν > 0 is chosen such that
∑m
i=1 Pi = P . Moreover, the

Shannon capacity in (2) can be equivalently rewritten as

CT =
1

2

m∑
i=1

log2

(
1 +

Piµi
σ2

)
. (4)
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Fig. 2. Example of optimal power allocation for m = 10. Note that more
power (gray bars) is alloted to the subchannels with higher ratio µi/σ2,
whereas no power is assigned to the most noisy subchannels (3, 7, and 10).

Intuitively, Equations (3) and (4) suggest that the com-
munication channel of Section II can be decoupled into m
parallel independent subchannels, and the optimal power
distribution assigns more power to the subchannels with
higher “signal-to-noise” ratio µi/σ

2. Following a standard
waterfilling argument in information theory [9, Chapter 9],
ν can be thought of as the waterfill level that marks the height
of the power that is poured into the water vessel composed
by m cylinders with heights equal to σ2/µi (see also Fig. 2).

Remark 3: (Shannon capacity in high/low SNR regimes)
Define the overall channel signal-to-noise as SNR = P/σ2.
In the high SNR regime (SNR ≈ ∞), the optimal power
distribution allocates approximately equal power to the sub-
channels associated with the non-zero eigenvalues of OT . In
this case, the capacity in (4) can be approximated as

CT ≈
1

2

r∑
i=1

log2

(
1 + SNR

µi
r

)
≈ r

2
log2 SNR +

1

2

r∑
i=1

log2

(µi
r

)
≈ r

2
log2 SNR,

where r denotes the rank of B>OTB. Therefore, for large
values of SNR, the capacity depends only weakly on the
network architecture (described by the adjacency matrix
A).1 In the low SNR regime (SNR ≈ 0), in view of (3),
the optimal power distribution allocates all power to the
subchannel with largest ratio µi/σ2. Thus, from (4), we have

CT ≈
1

2
log2 (1 + SNRµmax) ≈ µmax

2 ln 2
SNR,

where µmax := maxi µi and we used the approximation
ln(1+x) ≈ x for x ≈ 0. From the above expression, for low
SNR, it is apparent that the capacity depends on the network
structure via the largest eigenvalue of B>OTB. �

Remark 4: (Shannon capacity of high-dimensional net-
works) Consider a sequence of directed graphs of increasing
dimensions {Gn}n>0, Gn = (Vn, En), and assume that the
input and output nodes subsets of Gn coincide with Vn for
all n. Let An ∈ Rn×n be the adjacency matrix of Gn, OT,n
be the [0, T ] observability Gramian of the pair (An, In),
and Pn > 0 be the total input power associated with Gn.
We assume that the input power scales linearly with the
network size, i.e., Pn = nP , with P > 0, and the density
of the eigenvalues of {OT,n}n>0 converges to a continuous

1More precisely, the dependence is via the rank of B>OTB, which is
in turn related to the structural observability properties of the network [16].
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Fig. 3. Eigenvalue density f(λ) (dotted lines) and optimal asymptotic
power density p(λ) (solid lines) for the Toeplitz line network of Example 1
with γ = 3 and β = 1 (left panel), and the Erdős–Rényi random network
of Example 2 with ε = 3 (right panel). In all plots, we fixed P = T = 1.

function f : [0,∞) → R+. Then, for large n, CT grows
linearly with n and can be approximated as (see also [17])

CT ≈
n

2

∫ ∞
0

log2

(
1 +

P (µ)µ

σ2

)
f(µ) dµ, (5)

where P : [0,∞)→ R+ is defined as P (µ) =
(
ν − σ2/µ

)+
,

and ν > 0 is determined by the integral constraint∫∞
0
P (µ)f(µ) dµ = P . Furthermore, it is interesting to

note that, if An ∈ Rn×n is symmetric, then µi =
(e2λiT − 1)/(2λi), where {λi}ni=1 and {µi}ni=1 denote the
eigenvalues of An and OT,n, respectively. Using the above
relation, it is possible to rewrite the asymptotic capacity in
(5) and the corresponding optimal power density p(µ) :=
P (µ)f(µ) in terms of the eigenvalue density of limn→∞An
(assuming it exists). We illustrate this in the next examples.�

Example 1: (Optimal power distribution for high-
dimensional Toeplitz line networks) Consider the line net-
work Gn described by the symmetric tridiagonal adjacency
matrix An ∈ Rn×n defined as

[An]ij :=


−γ, if i = j,

β, if i = j ± 1,

0, otherwise,

for γ > 0, β > 0 and −γ + 2β < 0. This ensures that An is
stable. As n→∞, it is possible to show that the eigenvalue
density of the sequence {An}n>0 converges to (see [18])

f(λ) =

{
1

π
√

4β2−(λ+γ)2
, −γ − 2β ≤ λ ≤ −γ + 2β,

0, otherwise.

Hence, in view of Remark 4, the optimal power density reads
as p(λ) =

(
ν − 2λσ2/(e2λT − 1)

)+
f(λ), where ν > 0 is

fixed by
∫ γ+2β

γ−2β
p(λ) dλ = P . In the left panel of Fig. 3, we

plot the profiles of f(λ) and p(λ) for three different values
of the noise variance σ2. It is interesting to note that, as σ2

grows, the mean of the optimal power density shifts towards
the eigenvalue that is closest to instability. �

Example 2: (Optimal power distribution for high-
dimensional Erdős–Rényi networks) Let ER(n, pn) denote
the (undirected) Erdős–Rényi graph ensemble with n nodes
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and edge probability pn. Let An be the (symmetric) adja-
cency matrix corresponding to a realization of ER(n, pn),
and let Ãn := 1

σAn−E[An]−εIn, with σ =
√
npn(1− pn)

and ε > 2, denote the centralized and stabilized version
of An. If limn→∞ npn → ∞ then the eigenvalue density
of the sequence {Ãn}n>0 converges (in distribution) to the
Wigner’s semicircle distribution (see [19])

f(λ) =

{
1

2π

√
4− (λ+ ε)2, −2− ε ≤ λ ≤ 2− ε,

0, otherwise.
.

We can apply the formula in Remark 4 to compute the
optimal asymptotic power density p(λ). In Fig. 3, right panel,
we illustrate the profiles of f(λ) and p(λ) for three different
levels of the noise variance σ2. Similarly to the behavior
observed in Example 1, as σ2 increases, the optimal power
density concentrates around the subchannels associated with
the eigenvalues that are closer to instability. �

IV. THE ROLE OF NETWORK STRUCTURE

In this section, we investigate how the network architec-
ture, as described by the adjacency matrix A, affects the
performance of information transfer across the network.

Proposition 1: (Upper bound on CT for normal net-
works) Assume that A ∈ Rn×n is normal and Hurwitz stable
with eigenvalues {λi}ni=1. For all T > 0, it holds

CT ≤
1

2

n∑
i=1

log2

(
1 +

Pi(e
2ReλiT − 1)

2σ2 Reλi

)
, (6)

where Pi =
(
ν − (2σ2 Reλi)/(e2ReλiT − 1)

)+
, i =

1, . . . , n, and ν > 0 is chosen s.t.
∑n
i=1 Pi = P . Moreover,

the inequality in (6) is satisfied with equality if K = T = V .
The above proposition sets a fundamental limit on the

capacity of normal networks in terms of the spectrum of A.
Indeed, from (6), the capacity of a normal network cannot
increase unless the real part of some eigenvalues approaches
zero. In particular, in the limit Reλi → 0 for all i = 1, . . . , n,
the bound in (6) becomes

CT ≤
n

2
log2

(
1 +

SNRT
n

)
,

where SNR = P/σ2 and we used the fact that eTx−1 ≈ Tx
for x ≈ 0. In addition, when K = T = V , then the
above bound is attained with equality. In this case, for
large transmission windows (T → ∞), the capacity grows
unbounded as A approaches instability. This is in sharp
contrast with the findings of [15], where the contribution of
interference generated by previous transmissions is included
in the communication model. As a matter of fact, in the latter
framework, the information transmission performance of the
network always degrades as tr(A) approaches zero.

Proposition 2: (Lower bound on CT for a class of non-
normal networks) Assume that A ∈ Rn×n has the form
A = DSD−1, where S ∈ Rn×n is a Hurwitz stable matrix
and D := diag(1, α, . . . , αn−1), α > 0. For any K and T
such that 1 ∈ K and n ∈ T , it holds

CT ≥
1

2
log2

(
1 + α2(n−1)SNR [ÕT ]11

)
, (7)

1 2 3 n
· · ·

α
−γ

0.5 1 1.5
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C ∞

1 2 3
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n

Fig. 4. Shannon capacity C∞ for the directed line network topology of
Example 3 with K = T = V and SNR = P/σ2 = 1 (solid lines) and
the corresponding lower bounds of Proposition 2 (dotted lines) for different
values of the parameters γ, α > 0 and n ∈ N>0. In the left plot, we fixed
α = 1.5, n = 8, and let γ vary. In the middle plot, we fixed γ = 1, n = 8,
and let α vary. In the right plot, we fixed γ = 1, α = 1.5, and let n vary.

where SNR = P/σ2 and ÕT is the [0, T ] observability
Gramian of the pair (S, e>n ). Moreover, the inequality in (7)
is satisfied with equality if K = {1} and T = {n}.

The latter result suggests that the “degree of non-
normality” of A [20] also enhances the performance of
information transmission. In fact, for the class of non-normal
networks in Proposition 2, it is possible to increase CT by
increasing the parameter α and/or the network dimension
n (if [ÕT ]11 does not decrease too quickly with n). These
two parameters α, n regulate the degree of non-normality
of the network, in the sense that they quantify the spread
and intensity of directional paths in the network [21]. In the
next example, we illustrate the relation between capacity and
degree of non-normality of A for a simple network topology.

Example 3: (Shannon capacity of directed line networks)
Consider a directed line network G described by the adja-
cency matrix A ∈ Rn×n,

[A]ij :=


−γ, if i = j,

α, if i = j + 1,

0, otherwise,

where α > 0 and γ > 0, and assume that T → ∞.
Notice that A can be written in the form A = DSD−1

where D = diag(1, α, . . . , αn−1) and S ∈ Rn×n satisfies
[S]ij = −γ if i = j, [S]ij = 1 if i = j + 1, and
[S]ij = 0, otherwise. Following [22], it can be shown that
the infinite horizon observability Gramian Õ∞ of the pair
(S, e>n ) admits a closed-form expression in terms of a Pascal
matrix, and its first diagonal element can be expressed as
[Õ∞]11 = 1

(2γ)2n−1

(
2n−2
n−1

)
. Thus, by Proposition 2, if the

input and output nodes K and T are such that 1 ∈ K and
n ∈ T , n ≥ 2, we have

C∞ ≥
1

2
log2

(
1 + SNR

2γ

α2

(
α

2γ

)2n(
2n− 2

n− 1

))

>
1

2
log2

(
1 +

SNR γ
α2
√
π(n− 1)

(
α

γ

)2n
)
, (8)

where in the last step we used the bound
(

2x
x

)
> 1

2
4x
√
πx

, x ∈
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N>0, which follows from Stirling’s approximation formula.2

From (8), it is apparent that the capacity grows unbounded
if (i) A approaches instability (γ → 0), or (ii) A is strongly
non-normal (α → ∞). Interestingly, the bound (8) goes to
infinity also when the entries of A are bounded, α/γ > 1,
and the network dimension is very large (in the limit n →
∞). This is actually another way to increase the degree of
non-normality of A. In Fig. 4, we illustrate the behavior of
the Shannon capacity C∞ when K = T = V , and the bounds
of Proposition 2 for different values of γ, α, and n. �

V. CONCLUSION

In this paper, we present a theoretical framework for
modeling information transfer through networks governed by
noisy linear dynamics. We turn to the notion of Shannon
channel capacity to measure the performance of information
transfer across the network, and derive an expression for the
capacity of our communication model. We then investigate
how the network structure affects the capacity of the network.

From our analytical and numerical results, two network
properties that can significantly affect the quality of infor-
mation transmission are the distance to instability and the
degree of non-normality of the network adjacency matrix.
Specifically, networks that are close to instability or strongly
non-normal yield a better information transfer performance.
Our findings are also interesting when compared to recent
works that examine the interplay between controllability
and fragility of networks [24], and the importance of non-
normality in neuronal [6], [7] and real-world networks [25].

APPENDIX

Proof of Theorem 1: We first address the case K = V , i.e.
B = In, and then extend the argument to the general case
K ⊆ V . With reference to the communication channel of
Section II, consider the modulated signal yf (t) = CeAtū,
0 ≤ t ≤ T , containing the to-be-transmitted information.
Notice that yf (t) belongs to the finite-dimensional subspace
Q of the space of square integrable function Lp2[0, T ] gener-
ated by the functions {CeAtei, t ∈ [0, T ]}ni=1. Thus, yf (t)

can be written as yf (t) =
∑M
i=1 yifi(t), where {fi(t)}Mi=1

is any orthonormal basis in Q and

yi := 〈fi(t), yf (t)〉L2
=

∫ T

0

f>i (t)CeAt dt︸ ︷︷ ︸
=:F>i

ū.

Let us define F := [F1, . . . , FM ]> and Yf := [y1, . . . , yM ]>.
For all ū ∈ Rn, it holds

〈yf (t), yf (t)〉L2
= Y >f Yf = ū>F>Fū.

This in turn implies that F>F = OT where OT =∫ T
0
eA
>tC>CeAt dt is the [0, T ] observability Gramian of

the system (1). The covariance between two components

2Specifically, using the Stirling’s estimate [23] x! =
√
2πx(x/e)xeθ(x),

with x ∈ N>0 and 1/(12x+ 1) ≤ θ(x) ≤ 1/(12x), we can write
(2x
x

)
=

4xeθ(2x)−2θ(x)/
√
πx, where θ(x) satisfies the previous inequalities. Thus,

the desired bound follows from the fact that θ(2x)− 2θ(x) > − ln 2.

yh and y`, h, ` = 1, 2, . . . ,M , is given by E[yhy`] =
E
[
F>h ūū

>F`
]

= F>h ΣF`, where Σ := E[ūū>] is the covari-
ance of the codewords distribution. Thus, the covariance of
yf (t) is given by Σyf := E[YfY

>
f ] = FΣF>. The channel

noise n(t) can be written as, w.r.t. the previously introduced
orthonormal basis {fi(t)}Mi=1 of Q, n(t) =

∑M
i=1 nifi(t) +

n⊥(t), where n⊥(t) belongs to the orthogonal complement
of Q. The covariance of nh, n`, h, ` = 1, 2, . . . ,M , is

E[nhn`] = σ2

∫ T

0

∫ T

0

f>h (t)f`(τ)δ(t− τ) dtdτ = σ2δh,`,

where δh,` denotes the Kronecker delta function. By defining
N := [n1, . . . , nM ]>, we have that the covariance of the
“projected” noise is Σn := E[NN>] = σ2In.

Next, we note that the channel of Section II coincides
with an Additive White Gaussian Noise (AWGN) channel
with input yf (t) ∈ Lp2[0, T ] and output yf (t) + n(t) ∈
Lp2[0, T ]. Thus, by exploiting the closed-form expression of
the channel capacity of an AWGN channel [9, Chapter 9]
with the power input constraint introduced in Assumption
A2), it follows that

CT =
1

2
max
Σ∈Sn

+

tr Σ≤P

log2

det(Σyf + Σn)

det Σn
,

=
1

2
max
Σ∈Sn

+

tr Σ≤P

log2 det

(
In +

1

σ2
ΣOT

)
, (9)

where, in the last step, we used the similarity invariance of
the determinant, and the fact that F>F = OT . We consider
now the general case K ⊆ V , with |K| = m. In this case,
ū ∈ Rm and the search space {Σ ∈ Sn+, tr Σ ≤ P} in
the maximization in (9) must be replaced by {BΣB> :
Σ ∈ Sm+ , tr Σ ≤ P}. By further noting that tr(BΣB>) =
tr(B>B Σ) = tr Σ, this yields the equivalent expression

CT =
1

2
max

Σ∈Sm
+

tr Σ≤P

log2 det

(
Im +

1

σ2
BΣB>OT

)
.

To conclude, the channel capacity formula in (2) follows
from the determinant identity det(I+XY ) = det(I+Y X),
where X and Y are matrices of compatible dimensions. �

Proof of Theorem 2: The proof follows a quite standard
information-theoretic argument, e.g., see [9, Section 9.4].
The main steps are reported below for the sake of complete-
ness. Consider the function

cT : Sm+ → R+, Σ 7→ log2 det

(
Im +

1

σ2
ΣB>OTB

)
,

and let U be the (orthogonal) matrix of eigenvectors of
B>OTB. For any Σ ∈ Sm+ , it holds

cT (UΣU>) = log2 det

(
Im +

1

σ2
UΣU>B>OTB

)
= log2 det

(
Im +

1

σ2
ΣU>B>OTBU

)
= log2 det

(
Im +

1

σ2
Σ diag(µ1, . . . , µm)

)
,
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where {µi}mi=1 are the eigenvalues of B>OTB. Further, by
Hadamard’s inequality [26, Theorem 7.8.1],

cT (UΣU>) ≤
m∑
i=1

log2

(
1 +

µi
σ2

[Σ]ii

)
,

with equality when Σ is diagonal. Thus, the matrix
Σ? maximizing cT (Σ) must be of the form Σ? =
U diag(P1, . . . , Pm)U>, with Pi ≥ 0. Moreover, we have

cT (Σ?) =

m∑
i=1

log2

(
1 +

µiPi
σ2

)
.

Under the constraint
∑m
i=1 Pi ≤ P , the computation of the

optimal Pi’s boils down to a standard constrained optimiza-
tion problem that can be solved via Lagrange multipliers [9,
Section 9.4]. The solution of the latter problem yields the
optimal power distribution of Equation (3). �

The following lemma is used to prove Proposition 1 and 2.
Lemma 1: (Monotonicity of CT in K and T ) Given any

two sets K1,K2 ⊆ V such that K1 ⊆ K2 and T1, T2 ⊆ V such
that T1 ⊆ T2. It holds CT (K1, T1) ≤ CT (K2, T2), ∀T > 0,
where we made explicit the dependence of CT on the input
and output sets K and T , respectively.

Proof: We can rewrite the capacity in (2) as

CT (K, T ) =
1

2
max
Σ∈EK

log2 det

(
In +

1

σ2
Σ1/2OT,T Σ1/2

)
,

where EK := {BΣB> : Σ ∈ Sm+ , tr Σ ≤ P} and we used
the notation OT,T to make explicit the dependence of OT on
T . Next, we notice that: (i) if K1 ⊆ K2, then EK1

⊆ EK2
, and

(ii) if T1 ⊆ T2, then OT,T1 ≤ OT,T2 . Together, the latter two
facts and the above expression of the capacity imply that, if
K1 ⊆ K2 and T1 ⊆ T2, then CT (K1, T1) ≤ CT (K2, T2). �

Proof of Proposition 1: If K = T = V and A is normal,
then OT and A are diagonalizable in the same unitary
basis, and it holds µi = (e2ReλiT − 1)/(2Re(λi)). Thus, by
substituting the latter µi’s in Equation (4), we obtain

CT =
1

2

n∑
i=1

log2

(
1 +

Pi(e
2ReλiT − 1)

2σ2 Reλi

)
,

where Pi =
(
ν − (2σ2 Reλi)/(e2ReλiT − 1)

)+
, i =

1, . . . , n, and ν > 0 is s.t.
∑n
i=1 Pi = P . If K ⊂ V or

T ⊂ V , the bound in (6) follows from Lemma 1. �

Proof of Proposition 2: Consider first the case K = {1}
and T = {1}. Since B = e1, it holds

CT =
1

2
log2

(
1− P

σ2
e>1 OT e1

)
.

Further, since C = e>n and A = DSD−1, with D =
diag(1, α, . . . , αn−1) and α > 0, we have

e>1 OT e1 = e>1

(∫ T

0

eA
>tene

>
n e

Atdt

)
e1

= e>1 D
−1

(∫ T

0

eS
>tDene

>
nDe

Stdt

)
D−1e1

= α2(n−1)e>1 ÕT e1 = α2(n−1)[ÕT ]11,

where ÕT =
∫ T

0
eS
>tene

>
n e

St dt is the observability
Gramian of the pair (S, e>n ). For general K, T satisfying
1 ∈ K, n ∈ T , the bound in (7) follows from Lemma 1. �
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