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Data-Driven Minimum-Energy Controls
for Linear Systems

Giacomo Baggio , Vaibhav Katewa , and Fabio Pasqualetti

Abstract—In this letter, we study the problem of
computing minimum-energy controls for linear systems
from experimental data. The design of open-loop minimum-
energy control inputs to steer a linear system between two
different states in finite time is a classic problem in con-
trol theory, whose solution can be computed in closed form
using the system matrices and its controllability Gramian.
Yet, the computation of these inputs is known to be ill-
conditioned, especially when the system is large, the con-
trol horizon long, and the system model uncertain. Due to
these limitations, open-loop minimum-energy controls and
the associated state trajectories have remained primarily
of theoretical value. Surprisingly, in this letter, we show
that open-loop minimum-energy controls can be learned
exactly from experimental data, with a finite number of
control experiments over the same time horizon, without
knowledge or estimation of the system model, and with an
algorithm that is significantly more reliable than the direct
model-based computation. These findings promote a new
philosophy of controlling large, uncertain, linear systems
where data is abundantly available.

Index Terms—Linear systems, optimal control, statistical
learning, identification for control, control of networks.

I. INTRODUCTION

CONSIDER the discrete-time linear time-invariant system

x(t + 1) = Ax(t) + Bu(t), (1)

where, respectively, A ∈ R
n×n and B ∈ R

n×m denote the
system and input matrices, and x : N → R

n and u : N → R
m

describe the state and input of the system. For a control hori-
zon T ∈ N and a desired state xf, the minimum-energy control
problem asks for the input sequence u(0), . . . , u(T − 1) with
minimum energy that steers the state from x0 to xf in T steps,
and it can be formulated as

min
u

T−1∑

t=0

‖u(t)‖2
2,

s.t. x(t + 1) = Ax(t) + Bu(t), (2)

x(0) = x0, x(T) = xf.
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As a classic result [1], the minimization problem (2) is feasible
if and only if (xf − ATx0) ∈ Im(WT), where

WT =
T−1∑

t=0

AtBBT(AT)t (3)

is the T-steps controllability Gramian and Im(WT) denotes the
image of the matrix WT . Further, the solution to (2) is

u∗(t) = BT(AT)T−t−1W†
T(xf − ATx0), (4)

where W†
T is the Moore–Penrose pseudoinverse of WT [2].

The controllability Gramian (3) and the minimum-energy
control input (4) identify fundamental control limitations for
the system (1), and have been extensively used to solve
design [3], sensor and actuator placement [4], and control
problems [5] for systems and networks. However, besides their
theoretical value, the optimal control input (4) is rarely used
in practice or even computed numerically because (i) it relies
on the perfect knowledge of the system dynamics, (ii) its
performance is not robust to model uncertainties, and (iii) the
controllability Gramian is typically ill-conditioned, especially
when the system is large [5], [6]. This implies that the control
sequence (4) is numerically difficult to compute, and that its
implementation leads to errors [7]. To the best of our knowl-
edge, efficient and numerically reliable methods to compute
minimum-energy control inputs are still lacking.

Paper Contributions: This letter features two main contri-
butions. First, we show that minimum-energy control inputs
for linear systems can be computed from data obtained from
control experiments with non-minimum-energy inputs, and
without knowledge or estimation of the system matrices. Thus,
optimal inputs can be learned from non-optimal ones, and we
provide three different expressions for doing so. Surprisingly,
we also establish that a finite number of non-optimal control
experiments is always sufficient to compute minimum-energy
control inputs towards any reachable state. Second, we show
that the data-driven computation of minimum-energy inputs
is numerically as reliable as the computation of the inputs
based on the exact knowledge of the system matrices, and
substantially more reliable than using the closed-form expres-
sion based on the Gramian. Further, as minor contributions,
we (i) derive bounds on the number of required control experi-
ments as a function of the dimension of the system, number of
control inputs, and length of the control horizon, (ii) discuss
the effect of noisy data on the data-driven expressions, and
(iii) extend our data-driven framework to the case of output
measurements.
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Our results suggest the tantalizing hypothesis that several
optimal control problems can be solved efficiently and reli-
ably using a combination of data-driven algorithms and system
properties (in our setup, linearity of the dynamics), even when
the system model is uncertain or unknown.

Related Work: Several works investigate the problem of esti-
mating optimal controls for linear systems from input-output
data. The classic model-based approach [8] consists of (i) iden-
tifying a model of the system from the available data, and
(ii) using the estimated model to design the optimal control
inputs. Data-driven algorithms have been proposed in [9]–[12]
for the LQR/LQG problem. In particular, the approach pur-
sued in these papers relies on the estimation of the Markov
parameters of the system, thereby bypassing the identifica-
tion step of the model-based approach. Differently from the
above approaches, in this letter we focus on computing open-
loop minimum-energy inputs from experimental data, without
reconstructing the system matrices and where the experiments
use arbitrary control inputs. To the best of our knowledge,
this letter addresses a novel problem and provides new and
numerically more reliable expressions for the computation of
minimum-energy control inputs.

II. LEARNING MINIMUM-ENERGY CONTROL INPUTS

In vector form, the minimum-energy control problem asks
to find the minimum-norm solution to the following equation:

xf = ATx0 + [
B AB · · · AT−1B

]
︸ ︷︷ ︸

CT

u,

where the vector u ∈ R
mT contains the control inputs over the

control horizon [0, T −1], namely u = [u(T −1)T . . . u(0)T]T,
and CT denotes the T-steps controllability matrix.1 Then, if
the controllability matrix CT is known, the minimum-energy
control input to reach xf is

u∗ = C†
T(xf − ATx0). (5)

Instead of using (5), in this letter we aim to compute
minimum-energy control inputs leveraging a set of N control
experiments and assuming that the system matrices, and thus
the controllability matrix, are not available. The i-th control
experiment consists of applying the input sequence ui to (1),
and measuring the system state at time T , namely xi, where

xi = ATx0 + CTui. (6)

We remark that the inputs ui are arbitrary and not necessarily
of minimum-norm. In vector form, the available data is

X = [
x1 · · · xN

]
, and U = [

u1 · · · uN
]
, (7)

where xi is the state at time T with input ui as in (6).2

A. Data-Driven Minimum-Energy Controls

Because we only rely on the experimental data (X, U) to
learn the minimum-energy control input to reach a desired
state, we postulate that such input can be computed as a linear

1To simplify the technical treatment and without compromising generality,
we assume that xf is reachable in T-steps, i.e., (xf − AT x0) ∈ Im(CT ).

2While the full state trajectory could be measured [13], here we show that
measuring the final state is sufficient to compute minimum-energy inputs.

combination of the inputs U. Thus, we formulate and study
the following constrained minimization problem:

α∗ = arg min
α

‖Uα‖2
2,

s.t. xf = Xα,
(8)

where α ∈ R
N is the optimization variable. As we show in

Theorem 1, a first data-driven expression for the minimum-
energy control input derives from a solution to (8). We start
with the expression of the minimum-energy control input for
the case x0 = 0, and we postpone the general case x0 �= 0
to Remark 2. Let Im(M) and Ker(M) denote the range-space
and the null-space of the matrix M, respectively. With a slight
abuse of notation, we write K = Im(A) (resp. K = Ker(A))
to say that K is a basis of Im(A) (resp. Ker(A)). A matrix is
full row rank if the dimension of its range-space equals the
number of its rows.

Theorem 1 (Data-Driven Minimum-Energy Control Inputs
When x0 = 0): If the matrix U in (7) is full row rank, then,
for any final state xf, the minimum-energy input equals

u∗ = (I − UK(UK)†)UX†xf, (9)

where K = Ker(X) and X is as in (7).
Proof: We first show that (8) is feasible, and that u∗ =

Uα∗. Notice that, because U is full row rank, there exists α∗
such that u∗ = Uα∗, where u∗ is the minimum-energy control
input to reach xf. Additionally, α∗ satisfies the constraint in (8)
because Xα∗ = CTUα∗ = CTu∗ = xf. Finally, because u∗ is
unique [1], α∗ is also a solution to (8), and its computation is
equivalent to computing the input u∗.

To compute α∗ we solve the constraint xf = Xα and sub-
stitute it in the cost function. Namely, α = X†xf − Kw, where
K = Ker(X) and w is an arbitrary vector. Equating to zero the
derivative of the cost function with respect to w, we obtain
w∗ = (UK)†UX†xf. This implies that α∗ = X†xf − Kw∗, from
which (9) follows by letting u∗ = Uα∗.

Theorem 1 provides an expression of the minimum-energy
control input, which only uses data originated from a set
of control experiments, and does not require the knowledge
of the system matrices. Importantly, Theorem 1 shows that
minimum-energy control inputs can be directly computed
based on a number of control experiments with arbitrary, thus
not minimum-energy, inputs. Further, Theorem 1 assumes that
U is full row rank, which guarantees the computation of the
minimum-energy input for any final state xf. When U is not
full row rank but u∗ ∈ Im(U), the minimum-energy control
input can still be computed as in Theorem 1. Instead, when
u∗ �∈ Im(U), the minimum-energy input cannot be computed
as a (linear) combination of the experimental data (7). In this
case, the data-driven input (9) reaches the desired final state
xf, if xf ∈ Im(X), or the final state x̃f ∈ Im(X) that is closest to
xf, if xf �∈ Im(X). To see this, let u∗ be as in (9) and note that

x̃f = CTu∗ = CT(I − UK(UK)†)UX†xf

= CTUX†xf − CTUK(UK)†UX†xf︸ ︷︷ ︸
=0 because CT UK=XK=0

= XX†xf,

which shows that x̃f is the orthogonal projection of xf onto
Im(X). This in particular implies that the error ‖xf − x̃f‖2 is
non-increasing in the number of experiments N, and it van-
ishes when the experimental data satisfies xf ∈ Im(X). Finally,
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Fig. 1. Panel (a) illustrates the state trajectory x(t) = [x1(t) x2(t)]T,
t ∈ [0,T ], of the system described by matrices A, B as in (b) and driven
by the data-driven input û (9), for four values of the number of experi-
ments N. We choose T = 4 and denote the initial state x0 = [0 0]T and
final state xf = [0 1]T with a blue and red circle, respectively. The other
markers correspond to the values of the trajectories in the interval [0, T ].
The data-driven input û has been computed using input data ui as in (c),
and xi = CT ui . Panel (d) shows the norm of the minimum-energy input
and the norm of the data-driven input û (9) as N varies (color-coded).

Theorem 1 can be used to quantify the number of experiments
needed to compute minimum-energy inputs.

Corollary 1 (Required Number of Control Experiments to
Compute Minimum-Energy Inputs): Let n be the dimension of
the system, m the number of inputs, T the control horizon,
and N the number of control experiments. Then,

(i) N ≥ n is necessary to compute minimum-energy control
inputs towards any arbitrary final state xf;

(ii) N = mT is sufficient to compute minimum-energy con-
trol inputs towards any arbitrary final state xf, provided
that the inputs ui are linearly independent.

Proof: (Necessity) Assume by contradiction that the number
of experiments is strictly less than n. Then, Rank(X) < n, and
there exists xf �∈ Im(X). Then, the minimization problem (8)
is infeasible, and the minimum-energy control input cannot be
computed from the inputs U.

(Sufficiency) Let the experimental inputs be linearly inde-
pendent. Then, U is invertible and, for any xf, there exists
a solution α∗ such that u∗ = Uα∗. This shows that the
minimum-energy input can be computed from the data.

Corollary 1 characterizes the number of control experiments
that are required to compute minimum-energy control inputs
from experimental data. In particular, as few as n experiments
are needed, in which case the experiments must contain n
linearly independent minimum-energy control inputs, and as
many as mT experiments are sufficient, in which case the con-
trol inputs can be selected arbitrarily provided that they form
a linearly independent set of vectors. This also shows that
optimal control inputs can be learned from a finite number of
non-optimal control inputs.

Example 1 (Data-Driven Control Inputs When N ≤ mT):
We consider a two-dimensional system with matrices A and B
as in Fig. 1(b), control horizon T = 4, initial state x0 = [0 0]T,
and final state xf = [0 1]T. We vary the number of con-
trol experiments N from 1 to 4, where the inputs are as in
Fig. 1(c). For each number of control experiments, we com-
pute the data-driven input (9), and report the corresponding
state trajectory and norm in Fig. 1(a) and Fig. 1(d), respec-
tively. Notice that, when N = 1, the data-driven input does

not steer the system state to xf. Instead, for N = 2, 3, 4 the
state trajectory reaches xf. Finally, the data-driven input has
minimum norm only when N = 4.

Remark 1 (Geometric Properties of (9)): Several geomet-
ric properties of (9) can be highlighted. First, UK = Ker(CT)

when U is full row rank. In fact, CTUK = XK = 0, showing
that Im(UK) ⊆ Ker(CT). Further, if CTu = 0 and u = Uα,
then, Xα = CTUα = CTu = 0, showing that α ∈ Im(K) and
Ker(CT) ⊆ Im(UK). Thus, Im(UK) = Ker(CT) when U is
full row rank. Second, I − UK(UK)† is the orthogonal projec-
tion onto the kernel of (UK)T and, consequently, u∗ = (I −
UK(UK)†)UX†xf is orthogonal to Ker(CT). This is expected,
because u∗ is the minimum-energy input to reach the state xf.

B. Alternative Expression of Minimum-Energy Controls

In this subsection, we present a different optimization
problem that can be used to derive an equivalent expres-
sion of the data-driven minimum-energy control input (9).
Specifically, we consider the following problem, which
encodes the problem of estimating the controllability matrix
from data:

C∗
T = arg min

C
‖X − CU‖2

F, (10)

where ‖ · ‖F denotes the Frobenius norm of a matrix. The
above problem has a unique solution, which equals C∗

T = XU†.
Notice that the minimization problem (10) returns an estimate
of the controllability matrix, which can be used to compute
the input as û = (C∗

T)†xf = (XU†)†xf. We next show that û
coincides with the control input (9).

Theorem 2 (Equivalent Expressions of Data-Driven
Minimum-Energy Inputs): Let X and U be as in (7). Then,

(I − UK(UK)†)UX†xf = (XU†)†xf. (11)

Proof: We show that (XU†)† = (I − UK(UK)†)UX†. That
is, we show that (I − UK(UK)†)UX† satisfies the four condi-
tions [2] defining the Moore–Penrose pseudoinverse of XU†.
To this aim, let K = I − X†X. Since P = I − UK(UK)† is the
orthogonal projection onto Ker((UK)T),

(UK)TP = 0
P=PT=⇒ PUK = 0 ⇒ PUX†X = PU. (12)

Because X = CTU, we have Ker(U) ⊆ Ker(X). Since I−U†U
is the orthogonal projection onto Ker(U), we have

X(I − U†U) = 0 ⇒ XU†U = X. (13)

Further, using XK = 0, we obtain

XU†(I − P) = XU†UK(UK)† (13)= XK(UK)† = 0. (14)

Finally, since I − UU† denotes the orthogonal projection
onto Ker(UT), and UK(UK)† the orthogonal projection onto
Im(UK) ⊆ Im(U) ⊥ Ker(UT), we have

UK(UK)† = I − P = 0

⇒ (I − P)(I − UU†) = [(I − P)(I − UU†)]T

⇒ UU†P = PUU†, (15)

where the last implication follows because I − P and I − UU†

are symmetric. To conclude, we show that PUX† = (XU†)†

by proving the four Moore–Penrose conditions [2]:
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(i) PUX†XU†PUX† (12)= PUU†PUX† (15)= P2UU† · UX† =
PUX†;

(ii) XU†PUX†XU† (12)= XU†PUU† = XU†UU† − XU†(I −
P)UU† (14)= XU†;

(iii) XU†PUX† = XU†UX† − XU†(I − P)UX† (13), (14)=
XX† = (XX†)T;

(iv) PUX†XU† (12)= PUU† (15)= UU†P = (PUU†)T.

C. Asymptotic Expression of Minimum-Energy Controls
The minimization problem (10) reconstructs the forward

controllability matrix CT , from which minimum-energy con-
trol inputs can be derived by subsequently computing C†

T . To
avoid the computation of C†

T and obtain a potentially sim-
pler expression, we next consider the problem of directly
estimating C†

T from the experimental data:

M∗ = arg min
M

‖MX − U‖2
F. (16)

Notice that the latter problem is equivalent to estimating the
inverse map from X to U, and it is typically more difficult
than the problem of estimating the map from U to X. In fact,
while the forward map is unique, the inverse map is typically
not.3 Further, the control input M∗xf obtained by solving the
minimization problem (16) is not guaranteed to be of minimum
norm and to steer the system to xf, as these constraints do not
appear in the minimization problem. In what follows, we say
that a sequence of random matrices {Xn}n∈N converges almost
surely (a.s.) to a matrix X, and denote it with Xn

a.s.−→ X, if
Pr(limn→∞ Xn = X) = 1.

Theorem 3 (Asymptotically Equivalent Expression to (9)):
Let X and U be as in (7). The unique solution to the
minimization problem (16) is

M∗ = UX†, (17)

and the corresponding control input can be written as

û = M∗xf = UX†xf. (18)

Further, if X is full row rank, then CTM∗xf = xf. That is, the
control û steers the system from x0 = 0 to x(T) = xf. Finally,
if the entries of U are i.i.d. random variables with zero mean
and nonzero finite variance, then UX† a.s.−→ C†

T as N → ∞.
That is, as the number of control experiments increases, the
input û converges a.s. to the optimal input u∗.

Proof: The expression (17) follows from the properties of
the Moore–Penrose pseudoinverse. For the second claim, we
note that CTû = CTUX†xf = XX†xf = xf, where we have
used that X is full row rank and X = CTU. To prove the third
statement, let N → ∞, and let the control experiments be
chosen so that the entries of U are i.i.d. random variables with
zero mean and finite variance σ 2. Let Uij denote the (i, j)-th
entry of U, and observe that the (i, j)-th entry of 1

N UUT equals
1
N

∑N
k=1 UikUjk. Because {UikUjk}k∈N is an i.i.d. sequence of

random variables, for all i, j ∈ {1, . . . , N} and, due to the

3In particular, the inverse map is not unique whenever mT > n.

Strong Law of Large Numbers [14, p. 6], when N → ∞ we
have

1

N

N∑

k=1

UikUjk
a.s.−→ E [Ui1Uj1] =

{
σ 2, if i = j,
0, if i �= j,

where E [ · ] denotes the expected value operator. Then,

1

N
UUT a.s.−→ σ 2I as N → ∞. (19)

Next, consider the function f : R
mT×mT → R

mT×n, Y �→
YCT

T (CTYCT
T )†. Note that f (Y) is continuous at Y = αI, α >

0,4 and f (αI) = CT
T (CTCT

T )† = C†
T [2, p. 49]. To conclude,

we employ the Continuous Mapping Theorem [14, Th. 2.3(iii)]
and (19) to obtain, as N → ∞,

UX† = U(CTU)† = 1

N
UUTCT

T

(
CT

1

N
UUTCT

T

)†

= f

(
1

N
UUT

)
a.s.−→ f

(
σ 2I

)
= C†

T .

Theorem 3 contains a data-driven expression of the
minimum-energy control input for a linear system, which does
not rely on the estimation of the system matrices or the
controllability matrix. As we show in the next section, the
expression (18) is not only conceptually simpler than the clas-
sic Gramian-based expression of the minimum-energy control
input and our other data-driven expressions (9) and (11), but
it is also numerically more reliable as it requires a smaller
number of operations. Yet, differently from (9) and (11), the
expression (18) coincides with the minimum-energy control
only asymptotically in the number of experiments, and assum-
ing that the entries of the input matrix U are zero-mean i.i.d.
random variables with nonzero finite variance.

Remark 2 (Data-Driven Minimum-Energy Control Inputs
When x0 �= 0): When x0 �= 0, the computation of the
minimum-energy control input to reach xf is more involved,
as the unknown matrix A and vector x0 enter the relation (6).5

Yet, under a mild assumption on the experimental inputs U,
minimum-energy inputs can still be computed with a finite
number of experiments. To see this, consider the problem

min
α

‖Uα‖2
2,

s.t. xf = Xα and 1 = 1Tα,
(20)

Assume that the matrix U is full row rank, and that there
exists a vector w such that Uw = 0 and 1Tw �= 0. The first
assumption guarantees that there exists α∗ such that u∗ = Uα∗,
and thus the computation of the minimum-energy control for
any final state xf (see Theorem 2.1). The second assump-
tion ensures that there exists α∗ satisfying 1 = 1Tα∗, which
allows us to correctly reconstruct the term ATx0 from X.6 In
fact, let α∗ = U†u∗ + w (1 − 1TU†u∗)/(1Tw), and notice
that u∗ = Uα∗, where u∗ is the minimum-energy control

4In fact, since Rank(CT YCT
T ) = Rank(CT CT

T ) for any positive definite Y , it
holds limk→∞(CT YkCT

T )† = (α CT CT
T )† for any sequence of positive definite

matrices {Yk}k∈N such that limk→∞ Yk = αI [2, p. 238].
5Notice that the term AT x0 remains unknown even if the exact value of

x0 �= 0 is known. Thus knowledge of x0 does not modify the expressions we
obtain when x0 �= 0 is treated as an unknown variable.

6These assumptions can always be satisfied by properly designing the
experimental inputs, or by running sufficiently many random experiments.
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input to reach xf. Further, using (6) and 1 = 1Tα∗, we
have Xα∗ = ∑N

i=1 Xiα
∗
i = ATx0

∑N
i=1 α∗

i + CT
∑N

i=1 α∗
i Ui =

ATx0 +CTu∗ = xf. Then, similarly to the proof of Theorem 1,
a solution to (20) determines the minimum-energy input.

To solve the minimization problem (20), let X̄ = [XT 1]T

and x̄f = [xT
f 1]T. Then, similarly to Theorem 1, we obtain

α∗ = X̄†xf − K(UK)†UX̄†x̄f, where K = Ker(X̄), and

u∗ = (I − UK(UK)†)UX̄†x̄f. (21)

Because the matrix U is required to have a nontrivial null-
space, a sufficient number of linearly-independent non-optimal
experiments for the computation of the minimum-energy
control input to any arbitrary final state is mT + 1.

Finally, from the above reasoning and the proof of
Theorem 2 and Theorem 3, the minimum-energy input (21)
can be written equivalently as u∗ = (X̄U†)†x̄f = UX̄†x̄f, where
the last equality holds asymptotically for any choice of inputs
satisfying the assumptions in Theorem 3.

Remark 3 (Data-Driven Expressions With Noisy Data): Let
the measurements of the input ui and the final state xi be
corrupted by noise. Let Ũ = [u1 + w1 · · · uN + wN] and X̃ =
[x1+v1 · · · xN+vN] be the matrices obtained by concatenating
all noisy measurements. The data-driven estimates (9), (11),
and (18) computed from the noisy data (Ũ, X̃) are typically
biased. To see this, consider the system x(t + 1) = ax(t) +
u(t), a ∈ R, x0 = 0, and T = N = 1. In this simple case,
expressions (9), (11), and (18) are equivalent and, assuming
that x1 + v1 �= 0, read as û = u1+w1

x1+v1
xf. If w1 and v1 are

independent random variables uniformly distributed in [−ε, ε],
with 0 < ε < |u1|, it holds

Bias[û] = Ew1,v1 [û] − u∗ = Ev1

[
u1

u1 + v1

]
xf − xf

=
[

1

2ε
u1 ln

(
u1 + ε

u1 − ε

)
− 1

]
xf,

where Ez[ ·] denotes the expected value with respect to z. It
can be shown that, if u1 and xf are nonzero, the previous equa-
tion vanishes only in the limit ε → 0. This implies that all
data-driven expressions in this simple case are biased. When
n > 1, a quantitative characterization of the bias (and covari-
ance) of the data-driven expressions appears to be difficult, due
to the presence of pseudoinverse operations. However, numer-
ical simulations with i.i.d. normally distributed noise (see also
Fig. 2) suggest that (i) all data-driven expressions are biased
in the case of noisy measurements, (ii) the magnitude of the
bias is proportional to the standard deviation σ of the noise
for (11) and (18), while it increases rapidly as σ grows and
sets to a constant value for (9).

Remark 4 (Data-Driven Expressions With Output
Measurements): Consider the system

x(t + 1) = Ax(t) + Bu(t), y(t) = Cx(t),

where C ∈ R
p×n, and assume that for each experimental input

ui, i ∈ {1, . . . , N}, we can measure the output of the system at
time T , namely, yi = Cxi. Let Y = [y1 · · · yN] ∈ R

p×N be the
matrix concatenating all output measurements, and assume that
the system is output controllable in T steps. That is, the T-steps
output controllability matrix CO,T = [CB CAB · · · CAT−1B]
has full row rank [15]. The minimum-energy input to reach
the output yf ∈ R

p in T steps is u∗ = C†
O,T(yf − CATx0).

Fig. 2. This figure shows the magnitude of the bias of the data-driven
expressions (9), (11), and (18) as a function of the standard deviation

of the noise σ . We choose A =
[ −0.8 0 0

2 0.1 0
0.2 1 0.5

]
, B =

[
1
0
0

]
, xf =

[
0.3
1

0.5

]
,

T = 8, and N = 10. The entries of U and X have been chosen ran-
domly and then corrupted by i.i.d. Gaussian noise with zero mean and
standard deviation σ . The bias has been computed as the average over
100 noise realizations.

All results discussed in this letter apply to the case of output
control after substituting X and xf with Y and yf, respectively.

III. NUMERICAL ANALYSIS

What remains unclear from the previous analysis is the ben-
efit, if any, in collecting a large number of control experiments.
We next show that increasing the number of control experi-
ments can improve the numerical reliability and accuracy of
computing minimum-energy control inputs.

In Fig. 3 we compare the numerical performance of the
model-based expressions of the minimum-energy controls
u∗ = C†

Txf and u∗ = CT
T W†

Txf (Gramian-based), with our
data-driven expressions in (9), (11), and (18). In particu-
lar, in Fig. 3(a)-(b) we plot the norm of the control inputs
and the numerical errors in reaching the final state xf, for
all strategies and as a function of the number N of con-
trol experiments. Here, we focus on a “worst-case” analysis
and choose a small input dimension (m = 2), since a large
value of m certainly improves the conditioning of all expres-
sions. Fig. 3(a) shows that the norm of the data-driven control
inputs (9) and (11) equals its minimum value when N ≥ mT
(as predicted by Theorems 1 and 2), whereas the norm of the
data-driven input (18) converges to its minimum value only
asymptotically (as predicted by Theorem 3). Fig. 3(b) shows
that, for sufficiently large N, the final state reached by the
three data-driven control strategies is almost as close to xf as
the one computed via the model-based formula u∗ = C†

Txf,
and considerably closer to xf than the state reached by the
Gramian-based control input, with expressions (9) and (18)
being the most accurate, showing that the computation of the
minimum-energy control input via our data-driven expression
is as reliable as the computation of the input based on the
exact knowledge of the system matrices, and numerically more
reliable than the model-based Gramian formula. Instead, in
Fig. 3(c)-(d) we plot the norm of the control inputs obtained
through the different strategies described above and their cor-
responding errors in the final state as a function of the system
dimension n. As expected, the accuracy of the Gramian-based
control input deteriorates rapidly as n increases. Yet, sur-
prisingly, the data-driven expressions of the minimum-energy
control inputs remain accurate for systems of considerably
larger dimension. Further, the data-driven control (18) yields
the smallest error in the final state among the three data-driven
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Fig. 3. Panels (a)-(b) show the norm of the control input û computed via the model-based formula (5) (dotted line), via inversion of the controllability
Gramian (dashed line), and via the data-driven expressions (9), (11), and (18) extended for x0 �= 0 as in Remark 2 (colored lines), and the
corresponding error in the final state, as the number of data N varies. We choose n = 20, m = 2, and T = 40. The matrix A (possibly unstable) has
been populated with random i.i.d. normal entries and then normalized by

√
n, the entries of B, x0 and xf have been chosen randomly according to a

normal distribution. The curves represent the average over 100 experiments with data pairs (xi ,ui ), where ui has random i.i.d. normal entries, and
xi = CT ui . Panels (c)-(d) show the norm of the inputs û computed as above, and the corresponding errors in the final state, as a function of the
system dimension n. We choose m = 2, T = n, and N = mT + 20. The matrices A and B have been generated as above. The curves represent the
average over 1000 experiments with data (xi ,ui ) and states x0, xf generated as above. All the computations have been carried out using standard
built-in MATLAB 2016b linear algebra routines.

strategies. This could be due to the simpler form of (18), which
requires the computation of only one pseudoinverse, or to the
fact that the energy of (18) reaches the minimum value only
asymptotically in N. Finally, Fig. 3(c)-(d) show that expres-
sion (9) becomes numerically unreliable for smaller values of
the system dimension compared to (11) and (18). This is likely
because of the additional computations in (9).

IV. CONCLUSION AND FUTURE WORK

In this letter, we derive data-driven expressions of open-loop
minimum-energy control inputs for linear systems. Leveraging
linearity of the dynamics, we show that such optimal controls
can be learned from a finite number of control experiments,
without knowing or reconstructing the system matrices, and
where the control experiments are conducted with non-optimal
and arbitrary inputs. We derive three different data-driven
expressions of minimum-energy controls: while (11) appears
to be the simplest exact data-driven expression, (9) con-
stitutes a radically different and new way of computing
minimum-energy controls, and highlights several geomet-
ric connections between the minimum-energy solutions and
the experimental data, and (18) provides a simple way of
computing a family of data-driven, sub-optimal, minimum-
energy controls. We further illustrate that our data-driven
expressions of the minimum-energy inputs are simpler and
numerically more reliable than the classic Gramian-based
expression, especially when the dimension of the system
increases.

The results of this letter support the intriguing idea of
combining model-based control methods with data-driven
techniques, showing that this new framework has the potential
to considerably increase the reliability and effectiveness of the
two parts alone. This letter also creates several directions of
future research, including the extension to closed-loop, noisy,
and model predictive control problems.
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