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a b s t r a c t

In this paper, we study robust stability of sparse LTI systems using the stability radius (SR) as a ro-
bustness measure. We consider real perturbations with an arbitrary and pre-specified sparsity pattern
of the system matrix and measure their size using the Frobenius norm. We formulate the SR problem
as an equality-constrained minimization problem. Using the Lagrangian method for optimization, we
characterize the optimality conditions of the SR problem, thereby revealing the relation between
an optimal perturbation and the eigenvectors of an optimally perturbed system. Further, we use
the Sylvester equation based parametrization to develop a penalty based gradient/Newton descent
algorithm which converges to the local minima of the optimization problem. Finally, we illustrate
how our framework provides structural insights into the robust stability of sparse networks.
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1. Introduction

Guaranteed stability under parameter uncertainty is one of the
central problems in robust design of dynamical systems. Consider
the following Linear Time-Invariant (LTI) dynamical system

Dx(t) = Ax(t), (1)

where x ∈ Rn is the state, A ∈ Rn×n, and D can either be
the continuous-time differential operator (i.e., Dx(t) = ẋ(t)) or
the discrete-time shift operator (i.e., Dx(t) = x(t + 1)). Let the
complex plane C be divided into any two disjoint sets as C =
Cg ∪,Cb, where Cg is open. Stability of (1) requires the eigen-
values of A to lie in the stability region Cg . Assuming that A is
stable, the robust stability analysis of (1) involves characterizing
the eigenvalues of the affine perturbations of A given by

A ⇝ A(∆) ≜ A+ B∆C, (2)

where ∆ ∈ Rm×p is the perturbation matrix and B ∈ Rn×m,
C ∈ Rp×n are structure matrices. The perturbed matrix A(∆) can
also be interpreted as the closed loop matrix of the following
linear system

Dx(t) = Ax(t)+ Bu(t),
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y(t) = Cx(t),

with static feedback u(t) = ∆y(t).
There have been numerous studies on eigenvalue characteri-

zation and stability of the perturbed matrix (2) (see Hinrichsen
& Pritchard, 2005 for a comprehensive treatment). However, an
inherent crucial assumption in these studies (and of the robust
stability theory) is that all entries of the perturbation ∆ are
allowed to be freely perturbed. Clearly, this assumption is not
applicable in modern control systems which are increasingly
networked and distributed in nature and, as a result, exhibit a
specific sparsity structure. In such systems, the matrix A typically
has an associated sparsity pattern, and its certain entries are
fixed/zero, and it is feasible to perturb only the non-fixed entries
of A. Therefore, the perturbations ∆ applied to A cannot be chosen
freely and must satisfy certain sparsity constraints as well.

In this paper, we develop a novel framework to study the
robust stability of LTI systems with sparsity constraints. Let S ∈
{0, 1}m×p be a binary matrix that specifies the sparsity structure
of the perturbation ∆. Specifically,

∆ij =

{
0 if Sij = 0, and
⋆ if Sij = 1,

where ⋆ denotes any real number. Further, let ∆S denote the set
of sparse perturbations given by

∆S = {∆ ∈ Rm×p
: Sc ◦∆ = 0}, (3)

where Sc ≜ 1m×p − S denotes the complementary sparsity struc-
ture matrix and ◦ denotes the Hadamard (element-wise) product.
We consider the notion of Stability Radius (SR) as the measure
of robust stability, which is the minimum-size real perturbation
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that moves an eigenvalue(s) of A(∆) outside the stability region.
Formally, the SR is defined as

r ≜ inf {∥∆∥ : Γ (A(∆)) ∩ Cb ̸= ∅, ∆ ∈ ∆S}, (4)

where Γ (·) denotes the spectrum of a matrix, and ∥ ·∥ can be the
spectral or Frobenius norm (see the discussion in next paragraph).
The SR provides a worst case measure for the robustness of the
system in the sense that all perturbations with ∥∆∥ < r are
guaranteed to preserve the stability of the perturbed system. Note
that while matrices B and C can be chosen to impose certain per-
turbation structures on A (such as zero column(s) or row(s)), they
cannot capture arbitrary sparsity constraints. Thus, we require the
explicit sparsity constraint ∆ ∈ ∆S in (4).

The perturbation size ∥∆∥ can be measured using the spectral
norm or Frobenius norm, and these respective cases are referred
to as 2-norm SR and F-norm SR. The case when ∆ is allowed to
be complex is referred to as complex SR. The case B = C = I and
∆S = Rm×p, where each entry of A is allowed to be perturbed
independently, is referred to as unstructured SR. In this paper, we
study the sparse, real, F-norm SR problem by formulating it as an
equality-constrained optimization problem. The real SR problem
is more suitable for engineering applications where the dynamics
matrix A and its perturbations are typically real. Further, unlike
the spectral norm, the Frobenius norm explicitly measures the
entry-wise perturbations of ∆, which is useful in characterizing
the size and structure of sparse perturbations.
Related work The stability radius problem without sparsity con-
straints has a rich history. Although robust stability problems
have been studied in various forms in the past, the notion of
2-norm stability radius was introduced formally in Hinrichsen
and Pritchard (1986a, 1986b). Various bounds and characteriza-
tions of unstructured, complex, and real SRs were given in Hin-
richsen and Pritchard (1986a) and Van Loan (1985). In Hinrichsen
and Pritchard (1986b), characterizations of structured, complex
SR were presented in terms of the H∞-norm of the associated
transfer function and solutions of parameterized algebraic Riccati
equations. Bisection algorithms to compute the complex SR were
presented in Byers (1988) and Hinrichsen, Kelb, and Linnemann
(1989) and algorithms to compute the H∞-norm were given
in Boyd, Balakrishnan, and Kabamba (1989), Boyd and Balakr-
ishnan (1990) and Bruinsma and Steinbucha (1990). Since the
optimal perturbation for the complex SR problem always has rank
1 (Hinrichsen & Pritchard, 2005), the 2-norm and the F-norm SRs
are equal for the complex case.

The real SR problem is considerably more difficult than its
complex counterpart (Hinrichsen & Pritchard, 1986a). Qiu et al.
presented several lower bounds for the unstructured case in Qiu
and Davison (1991, 1992) and a complete algebraic characteri-
zation of the structured case was presented in Qiu et al. (1995).
Based on this characterization, a level-set algorithm was devel-
oped in Sreedhar, Van Dooren, and Tits (1996) for the structured
case and an implicit determinant method was provided for the
unstructured case in Freitag and Spence (2014). For a compre-
hensive treatment of the 2-norm SR problem, see Hinrichsen and
Pritchard (2005, Chapter 5).

While the 2-norm SR problem has been studied extensively,
there are limited studies on the F-norm SR problem. Note that
due to the fundamental difference between the spectral and
Frobenius norms, the procedure in Qiu et al. (1995) to charac-
terize the real, 2-norm SR cannot be used to characterize the
real, F-norm SR. In Bobylev, Bulatov, and Diamond (1999, 2001),
lower bounds on the real, F-norm SR were provided for the un-
structured and structured cases, respectively. Recently, a number
of works have appeared that use iterative algorithms to approx-
imate the 2-norm/F-norm real SR (Guglielmi, 2016; Guglielmi,
Gurbuzbalaban, Mitchell, & Overton, 2017; Guglielmi & Lubich,

2013; Guglielmi & Manneta, 2015; Rostami, 2015). Typically,
these algorithms use two levels of iterations. The inner itera-
tion approximates the rightmost (outermost, for discrete-time
case) points of spectral value sets, and the outer iteration veri-
fies the intersection of these points with the stability boundary.
All of these aforementioned studies consider the non-sparse SR
problem.

In a very recent paper (Johnson, Wicks, Zefran, & DeCarlo,
2018), which was developed independently and concurrently
with our paper, the authors study the structured distance of an
LTI system from the set of systems that do not exhibit a general
property P , such as controllability, observability, and stability.
They provide necessary conditions for a locally optimal perturba-
tion and develop an algorithm to obtain such solution. Since the
framework in Johnson et al. (2018) is developed for a general class
of problems, the provided necessary conditions are implicit in
terms of abstract linear maps. On the other hand, we use a differ-
ent approach to obtain stronger and explicit necessary conditions
for the sparse SR problem. In addition, we provide sufficient con-
ditions for a local minimum, thereby completely characterizing
the local minima. Finally, our gradient/Newton descent algorithm
is simpler than the algorithm proposed in Johnson et al. (2018).
Contributions The contribution of the paper is two-fold. First,
we propose a novel approach to compute the sparse SR by for-
mulating the SR problem as an equality-constrained minimiza-
tion problem. We characterize its local optimality conditions,
thereby revealing important geometric properties of the optimal
perturbed system. Second, using the Sylvester equation based
parametrization, we develop a penalty-based gradient algorithm
to solve the optimization problem that is guaranteed to converge
to a local minimum. Numerical studies are included to illustrate
various properties of the optimal perturbations and the algo-
rithm, and to highlight the usefulness of the framework for sparse
networks.
Paper organization In Section 2 we present our mathematical
notation and some properties that we use in the paper, and
formulate the SR problem as an optimization problem with equal-
ity constraints. Section 3 contains the local optimality condi-
tions of the SR problem. In Section 4 we develop a gradient
based algorithm to compute local solutions. Numerical examples
are presented in Section 5. Finally, we conclude the paper in
Section 6.

2. Problem formulation

2.1. Mathematical notation and properties

We use the following notation throughout the paper: ∥ · ∥F
and ∥ · ∥2 denote the Frobenius and spectral norm of a matrix,
respectively. ◦ and ⊗ denote the Hadamard and Kronecker prod-
uct, respectively. The identity matrix is denoted by I . Γ (·), (·)T
and tr(·) denote the spectrum, transpose and trace of a matrix,
respectively. (·)+ and α(·) denote the pseudo-inverse and spectral
abscissa of a matrix, respectively. A positive-definite matrix A
is denoted by A > 0. x∗ and xH denote the complex conjugate
and the conjugate transpose, respectively of a vector x. Re(·) and
Im(·) denote the real and imaginary parts of a complex number,
respectively. vec(·) denotes the vectorization of a matrix. diag(a)
denotes a n× n diagonal matrix with diagonal elements given by
a ∈ Rn. 1m×n denotes a m×n matrix of all ones. Finally, j =

√
−1

denotes the unit imaginary number.
We use the following mathematical properties for the deriva-

tion of our results (Magnus & Neudecker, 1999; Petersen & Ped-
ersen, 2012):

P.1 ∥A∥2F = tr(ATA) = vec(A)Tvec(A),
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P.2 vec(AB) = (I ⊗ A)vec(B) = (BT
⊗ I)vec(A),

P.3 vec(ABC) = (CT
⊗ A)vec(B),

P.4 (A⊗ B)T = AT
⊗ BT and (A⊗ B)H = AH

⊗ BH,
P.5 (A⊗ B)(C ⊗ D) = (AC ⊗ BD) and (A⊗ B)+ = A+ ⊗ B+,
P.6 vec(A ◦ B) = vec(A) ◦ vec(B), (A ◦ B)T = AT

◦ BT,
P.7 d

dX tr(AX) = AT, d
dX tr(X

TX) = 2X , d
dx (Ax) = A,

P.8 Let Dxf and D2
x f be the gradient and Hessian of

f (x) : Rn
→ R. Then, df = (Dxf )Tdx and,

d2f = (dx)T(D2
x f )dx,

P.9 vec(AT) = Tm,nvec(A), where A ∈ Rm×n and
Tm,n ∈ {0, 1}mn×mn is a binary permutation matrix.

2.2. Sparse stability radius as an optimization problem

In this subsection we formulate the real, sparse, F-norm SR
problem as an equality-constrained optimization problem. Due
to space limitations, we present the analysis only for continuous-
time systems in this paper. The analysis for discrete-time systems
is analogous and can be obtained using a similar procedure. Since
the stability region of continuous-time systems is the open left-
half complex plane, we have the following definition of the SR.

Definition 1 (Sparse Stability Radius). The stability radius of the
continuous-time system (1) is given by

rC ≜ inf {∥∆∥F : α(A(∆)) ≥ 0, ∆ ∈ ∆S ⊂ Rm×p
}, (5)

where A(∆) = A + B∆C , and ∆S in (3) is the set of sparse
perturbations characterized by the structure matrix S. □

We make the following assumption regarding the stability of
the nominal system (1).
A1: The matrix A is stable, i.e., α(A) < 0.

Assumption A1 ensures that the SR is strictly greater than zero.
Since the eigenvalues of A(∆) are a continuous function of ∆, the
infimum in (5) is achieved on the imaginary axis of the complex
plane (Hinrichsen & Pritchard, 2005). Thus, we have

rC = min {∥∆∥F : α(A(∆)) = 0, ∆ ∈ ∆S}. (6)

This motivates the reformulation of the sparse SR problem as
the following optimization problem:

SR : min
∆∈Rm×p, x∈Cn, ω∈R

1
2
∥∆∥2F (7)

s.t. (A+ B∆C)x = jωx, (7a)

xHx = 1, (7b)

Sc ◦∆ = 0, (7c)

where the eigenvalue–eigenvector constraint (7a) is a reformula-
tion of the spectral constraint in (6) in terms of an eigenvalue–
eigenvector pair (jω, x). The normalization constraint (7b) is added
to ensure uniqueness of the eigenvector (up to unitary scaling).
The sparsity constraint (7c) is a reformulation of ∆ ∈ ∆S (c.f. (3)).

Several remarks are in order for the optimization problem SR.
First, the eigenvalue–eigenvector constraint (7a) is not convex.
As a result, the optimization problem SR is not convex, and it
may have multiple local minima. This is a typical property of all
2-norm/F-norm, complex/real SR problems, as well as most other
minimum distance problems (Kressner & Voigt, 2015).

Second, besides assigning an eigenvalue(s) on the imaginary
axis, the equality constraint in (6) also requires the remaining
eigenvalues of A(∆) to lie in the open left-half complex plane.
However, we have omitted this constraint in SR because it will
be inherently satisfied by the global minimum of SR due to
(i) Assumption A1, (ii) the continuity properties of the eigen-
values of A(∆), and (iii) the definition of SR in (6). However, a

local minimum of SR need not satisfy this constraint necessarily.
Thus, all the local minima ∆̂ of SR should be verified against the
constraint α(A(∆̂)) = 0 (see Section 5 for an example).

Third, it may be possible that SR is non-feasible and there
does not exist any ∆ that satisfies constraints (7a)–(7c).1 Such
non-feasible cases are universally robust in the sense that no per-
turbation with the given sparsity structure can make the system
unstable, and thus rC = ∞. To avoid such cases, we make the
following assumption:
A2: SR is feasible, i.e., there exists at least one perturbation ∆ that
satisfies (7a)–(7c).

Finally, since A(∆) is real, its eigenvalues are symmetric with
respect to the real axis. Hence, if (∆̂, ω̂, x̂) is a local minimum of
(7), then (∆̂,−ω̂, x̂∗) is also a local minimum.

Let δ ≜ vec(∆) ∈ Rmp and let ns denote the number of non-
trivial sparsity constraints (i.e. number of 1’s in Sc). Then, (7c) can
be vectorized as:

Sδ = 0, (8)

where S ∈ {0, 1}ns×mp is a binary matrix given by S = [es1 , es2 ,
. . . , esns ]

T with {s1, . . . , sns} = supp(vec(Sc)) being the set of
indices indicating the 1’s in vec(Sc) and ei being the ith standard
basis vector of Rmp. Next, we present an algebraic condition to
verify Assumption A2. We omit the proof, which follows from
vectorizing (7a).

Lemma 2.1 (Feasibility). The optimization problem (7) is feasible if
and only if there exist x ∈ Cn and ω ∈ R satisfying: (A − jωI)x ∈
Range

(
[(Cx)T ⊗ B][I − S+S]

)
, where Range(·) denotes the column

space of a matrix over the field of real numbers.

3. Solution to the optimization problem

In this section we present the optimality conditions for the
local solutions of the optimization problem SR, and characterize
an optimal perturbation. We use the theory of Lagrange multipli-
ers for equality-constrained minimization to derive the optimality
conditions. We begin with the following assumption:
A3: Let (∆̂, ω̂, x̂) be a local minimum of SR. Then, ω̂ ̸= 0.

Assumption A3 is necessary to differentiate between the cases
when constraint (7a) is complex or real (if ω̂ = 0). We present
the analysis for the complex case and will discuss the real case
later in this section (see Remark 2).

Remark 1 (Complex Variables). Since x may be a complex vari-
able, the constraint (7a) also induces the following conjugate
constraint:

(A+ B∆C)x∗ = −jωx∗. (9)

We use the formalism wherein a complex number and its con-
jugate are treated as independent variables (Brandwood, 1983;
Hjørungnes & Gesbert, 2007) and, thus, we treat x and x∗ as
independent variables. □

In the theory of equality-constrained optimization, the first-
order optimality conditions are meaningful only when the opti-
mal point satisfies the following regularity condition: the Jacobian
of the constraints, defined by Jb, has full rank. This regular-
ity condition is mild and usually satisfied for most classes of
problems (Luenberger & Ye, 2008). Before presenting the main
result, we derive the Jacobian, which depends on the order-
ing of the constraints and the variables. Recalling Remark 1, let
z ≜ [xT, xH, δT, ω]T be the vector containing all the variables of
optimization problem SR.

1 A trivial example is: A =
[
−1 2
0 −2

]
, B = C = I2 and S =

[
0 1
0 0

]
. In this case,

since only A12 is allowed to be perturbed, the eigenvalues of A(∆) will always
be {−1,−2} and cannot lie on the imaginary axis.
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Lemma 3.1 (Jacobian of the Constraints). The Jacobian of the equal-
ity constraints (7a), (9), (7b), (8) is

Jb(z) =

⎡⎢⎣A(∆)− jωI 0 (Cx)T ⊗ B −jx
0 A(∆)+ jωI (Cx∗)T ⊗ B jx∗
xH xT 0 0
0 0 S 0

⎤⎥⎦ .

Proof. We construct the Jacobian Jb by taking the derivatives of
the constraints (7a), (9), (7b), and (8) with respect to z. Using P.3,
constraint (7a) can be written as

(A− jωI)x+ [(Cx)T ⊗ B]δ = 0. (10)

Differentiating (7a) w.r.t. x, ω and (10) w.r.t δ yields the first
(block) row of Jb. Similar derivatives of the conjugate constraint
(9) w.r.t. z yields the second (block) row of Jb. Differentiating
constraint (7b) w.r.t. x and x∗ yields the third (block) row of
Jb. Finally, differentiating (8) w.r.t. z yields the last (block) row
of Jb. □

Next, we provide the local optimality conditions for the opti-
mization problem SR.

Theorem 3.2 (Optimality Conditions). Let (∆̂, x̂, ω̂) (equivalently
ẑ = [x̂T, x̂H, δ̂T, ω̂]T) satisfy the constraints (7a)–(7c), and let l̂
denote the left eigenvector of A(∆̂) corresponding to the eigenvalue
jω̂. Let Jb(z) be defined in Lemma 3.1, and let P(z) = I − J+b (z)Jb(z).
Further, let N̂ ≜ C ⊗ (BT l̂), and let

D̂ ≜

⎡⎢⎢⎣
0 0 N̂H ĵl∗

0 0 N̂T
−ĵl

N̂ N̂∗ 2I 0
−ĵlT ĵlH 0 0

⎤⎥⎥⎦ . (11)

Then, (∆̂, x̂, ω̂) is a local minimum of the optimization problem SR
if and only if

∆̂ = −S ◦
[
BTRe(l̂x̂T)CT

]
, (11a)

(A+ B∆̂C)x̂ = jω̂x̂, (11b)

(A+ B∆̂C)T l̂ = jω̂l̂, (11c)

Im(l̂Tx̂) = 0, (11d)

Jb(ẑ) has full rank, (11e)

P(ẑ)D̂P(ẑ) > 0. (11f)

Proof. We prove the result using the Lagrange multiplier method
for equality-constrained minimization. Let l ∈ Cn, l∗, h ∈ R and
M ∈ Rm×p be the Lagrange multipliers associated with constraints
(7a), (9), (7b) and (7c), respectively.2 The Lagrangian function is
given by

L P.1
=

1
2
tr(∆T∆)+ h(xHx− 1)+

1
2
lT(A+ B∆C − jωI)x

+
1
2
lH(A+ B∆C + jωI)x∗ + 1T

m[M ◦ (S
c
◦∆)]1p  

=tr[(M◦Sc )T∆]

.

Part 1 — First-order necessary conditions (11a)–(11e): Differentiat-
ing L w.r.t. x and setting to 0, we get

d
dx

L P.7
=

1
2
lT(A+ B∆C − jωI)+ hxH = 0 (12)

2 The multipliers associated with (7a) and (9) are conjugate to each other to
make the Lagrangian real (see Brandwood, 1983, Section 4).

⇒
1
2
lT(A+ B∆C − jωI)x+ hxHx = 0

(7a),(7b)
H⇒ h = 0,

and thus, from (12), we get (11c). Eq. (11b) is a restatement of (7a)
for the optimal (∆̂, x̂, ω̂). Differentiating L w.r.t. ∆ and setting to
0, we get

d
d∆

L P.7
= ∆+ Re(BTlxTCT)+M ◦ Sc = 0. (13)

Taking the Hadamard product of (13) with Sc , and using (7c) and
Sc ◦ Sc = Sc , we get

Sc ◦ Re(BTlxTCT)+M ◦ Sc = 0. (14)

Replacing M ◦ Sc from (14) in (13), we get (11a). Finally, differen-
tiating L w.r.t. ω and setting to 0, we get

d
dω

L =
1
2
jlHx∗ −

1
2
jlTx = Im(lTx) = 0.

Eq. (11e) is the necessary regularity condition and follows from
Lemma 3.1.

Part 2 — Second-order sufficient condition (11f): We compute
the Hessian (denoted by D) of L w.r.t. z by expressing the second-
order differential of L as d2L = dzTDdz (c.f. P.8). Taking differen-
tial of L twice, we get

d2L = tr[(d∆)Td∆] + lTB(d∆)Cdx− j(dω)lT(dx)
+ lHB(d∆)C(dx∗)+ j(dω)lH(dx∗)+ 2h(dx)H(dx),
P.1,h=0
= (dδ)Tdδ + vec

[
CT(d∆)TBTl

]T(dx)− j(dω)lT(dx)

+ vec
[
CT(d∆)TBTl∗

]T(dx∗)+ j(dω)lH(dx∗),
P.2,P.4
= (dδ)Tdδ + (dδ)TN(dx)− j(dω)lT(dx)

+ (dδ)TN∗(dx∗)+ j(dω)lH(dx∗) =
1
2
(dz)TD(dz),

where D is the Hessian defined in (11) and N = C ⊗ (BTl).
The sufficient second-order optimality condition requires Hessian
to be positive-definite in the kernel of the Jacobian at optimal
point (Luenberger & Ye, 2008). That is, yTDy > 0, ∀y : Jb(z)y = 0.
This condition is equivalent to PT(z)DP(z) > 0, since Jb(z)y = 0
iff y = P(z)s for a complex s, where P(z) is the projection matrix
onto the null space of Jb(z) (Luenberger & Ye, 2008). Since the
projection matrix P(z) is symmetric, (11f) follows. □

The local optimality conditions in Theorem 3.2 reveal the
inherent properties of an optimal perturbation and the stability
radius. First, (11a) presents the explicit relations between the
optimal perturbation ∆̂ and left and right eigenvectors of the
optimally perturbed matrix A(∆̂). Second, (11d) shows that the
inner product of the left-conjugate and right eigenvectors of the
optimal perturbation is always real. Third, notice that the optimal
perturbation in (11a) always satisfies the sparsity constraint (7c)
(since S ◦ Sc = 0). The optimality condition (11a) can also be
re-written as ∆̂ = −S ◦ [BTL̂X̂TCT

], where L̂ ≜ [Re(l̂),−Im(l̂)] and
X̂ ≜ [Re(x̂), Im(x̂)]. This shows that, although rank(BTL̂X̂TCT) ≤ 2,
the rank of ∆̂ can be greater than 2. In contrast, the optimal
perturbation for real, non-sparse, 2-norm/F-norm SR always has
rank less that or equal to 2 (Qiu et al., 1995).

Remark 2 (Optimality at ω̂ = 0). If ω̂ = 0 (Assumption
A3 is violated), a similar analysis can be performed to compute
the optimality conditions by using the following real eigenvalue
assignment equation instead of (7a)

(A+ B∆C)x = 0, (15)

where x ∈ Rn. □
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Next, we present a brief comparison of our optimality con-
ditions with those in Johnson et al. (2018). Since Johnson et al.
(2018) considers perturbations of the form A − ∆, we assume
B = −C = −I . In the current setting, condition (1a) of Theorem 1
in Johnson et al. (2018) becomes: ∆̂ is a real matrix that satisfies
the sparsity constraints (7c) and is the minimum-norm matrix
that minimizes ∥l̂T∆x̂ − l̂T(A − jω̂I)x̂∥F . Further, condition (1b)
in Johnson et al. (2018) can be stated as follows: d̂ω = 0, where
d̂ω minimizes ∥D̄(dω) − ∆̂∥F and D̄(dω) is a real matrix that
satisfies the sparsity constraints (7c) and is the minimum-norm
matrix that minimizes ∥l̂TDx̂− jdωl̂Tx̂∥F . We can observe that the
above conditions are implicit and involve solving optimization
problems, whereas our conditions (11a)–(11d) are more explicit.

The solution of the optimization problem SR can be obtained
by numerically/iteratively solving the optimality equations (11a)–
(11d) using any non-linear equation solving technique. The regu-
larity and local minimum property of the solution can be verified
using (11e) and (11f), respectively. Finally, the local minimum
should be verified against α(A(∆̂)) = 0. Since the optimization
problem is not convex, only local minima can be obtained via this
procedure. To improve upon the local solutions and to capture
the global minimum, the above procedure can be repeated for
different initial conditions. Clearly, finding the global minimum is
not guaranteed in all cases. In this case, the procedure provides
an upper bound to the SR.

Instead of solving the optimality equations, we use a penalty
based approach using gradient descent to obtain the local solu-
tions. Details of this approach and the corresponding algorithm
are provided in the next section.

4. Gradient based solution algorithm

In this section, we present an iterative gradient based algo-
rithm to obtain a local solution to optimization problem SR. We
use the penalty based optimization approach and the Sylvester
equation based parametrization to convert the constrained
optimization problem (7) into an unconstrained optimization
problem. Note that we ignore the eigenvector normalization
constraints (7b) hereafter.

Using the penalty based optimization approach (Luenberger &
Ye, 2008), we modify the cost function to include a penalty when
the sparsity constraints are violated. The penalty is imposed by
weighing individual entries of the perturbation using a weighing
matrix W ∈ Rm×p given by

Wij =

{
1 if Sij = 1, and
w≫ 1 if Sij = 0.

Using the weighing matrix W , the penalized cost is JW = 1
2 ∥W ◦

∆∥2F . Next, we reformulate (7a) as a purely real constraint. Let
X ≜ [Re(x), Im(x)] ∈ Rn×2. Then, (7a) is equivalent to

(A+ B∆C)X = ωXĪ, (16)

where Ī ≜
[

0 1
−1 0

]
. Next, we use the Sylvester equation based

parametrization (Bhattacharyya & De Souza, 1982) and define
G ≜ ∆CX ∈ Rm×2. It follows that (16) is equivalent to

AX − ωXĪ = −BG, (17a)

G = ∆CX . (17b)

Note that (17a) is a Sylvester equation in X . Due to Assumption
A1, Γ (A) ∩ Γ (−ωĪ) = ∅ and, thus, (17a) has a unique solution
for any given (G, ω). Further, for any (G, ω), (17b) has a solu-
tion if CX ∈ Rp×2 has rank two. Thus, we make the following
assumption.
A4: For any (G, ω), CX has full column rank, where X is the unique
solution of (17a). This requires p ≥ 2.

For a given (G, ω) and under Assumption A4, we can solve
(17b) to obtain ∆, which, in general, may not be unique. Since we
aim to minimize the norm of the weighted perturbation (W ◦∆),
given a (G, ω), we choose ∆ as the solution of the following
quadratic optimization problem:

min
∆∈Rm×p

JW =
1
2
∥W ◦∆∥2F (18)

s.t. (17b) holds.

Because the entries of W are positive, the optimization problem
(18) is convex. Further, under Assumption A4, (18) has a unique
global minimum (see the proof of Lemma 4.1 in the Appendix
for more details), which can be obtained by solving the following
Lagrange conditions:

W ◦W ◦∆+Λ(CX)T = 0, (19a)

∆CX = G, (19b)

where Λ ∈ Rm×2 is the Lagrange multiplier of the problem (18).
To summarize, using the Sylvester equation based parametriza-
tion, we can freely vary (G, ω) (under Assumption A4) and com-
pute the corresponding unique X using (17a) and unique ∆ using
(19a)–(19b).

Thus, the constrained optimization problem (7) can be refor-
mulated as the following optimization problem in free variables
G, ω:

min
G∈Rm×2, ω∈R

JW =
1
2
∥W ◦∆∥2F (20)

s.t. (17a), (19a) and (19b) hold.

We aim to solve problem (20) using a gradient descent ap-
proach. The next result provides analytical expressions for the
gradient and Hessian of the cost in (20). Let g ≜ vec(G) ∈
R2m, xv = vec(X) ∈ R2n, λ = vec(Λ) ∈ R2m, and let the free
variables of (20) be denoted by z̄ ≜ [gT, ω]T. Further, let e2m+1 =
[0, . . . , 0, 1]T ∈ R2m+1 and W̄ ≜ diag(vec(W ◦W )).

Lemma 4.1 (Gradient and Hessian). Define the following Kronecker
products:

B̃ = I2 ⊗ B, Ĩ = Ī ⊗ In, Ã(ω) = I2 ⊗ A+ ωĨ,

∆̃ = I2 ⊗ (∆C), X̃ = (CX)T ⊗ Im, X̄ =
[
W̄ X̃T

X̃ 0

]
,

and E =
[
(C ⊗Λ)Tn,2

∆̃

]
. Let U =

[
U1 U2

]
and V be the unique

solutions of, respectively,

UX̄ =
[
Imp 0

]
, and Ã(ω)V =

[
B̃ Ĩxv

]
.

Further, let Ū1 ∈ Rm×p and Ū2 ∈ Rm×2 be such that vec(Ū1) =
UT
1 W̄δ and vec(Ū2) = UT

2 W̄δ. Define Y =
[ 0 0
I2m 0

]
+ EV , Z = (UY )T,

and

M =V T
[
(ŪT

2 ⊗ CT)Tm,p T2,n(CTŪT
1 ⊗ I2)Tm,2

]
X̄−1Y

− V T ĨTÃ(ω)−TETUTW̄δeT2m+1.

Then, the gradient and Hessian of JW in (20) satisfy
dJW
dz̄
= ZW̄ δ, and (21)

d2JW
d2z̄

≜ H = ZW̄ZT
+M +MT. (22)

Proof. See the Appendix.

Using Lemma 4.1, we present a gradient/Newton descent
Algorithm 1 to solve the optimization problem (20).
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Algorithm 1: Gradient/Newton descent for SR
Input: A, B, C,W , g0, ω0.

Output: Local minimum (∆, X, ω) of (20).

Initialize: z̄0=
[
gT
0 , ω0

]T, (x0, δ0)← See line 4-5
repeat

1 β ← Update step size (see below) ;
2 z̄ ← z̄ − βZW̄δ or ;
3 z̄ ← z̄− βd, where (H + K )d = ZW̄δ ;

4 x← Vectorization of solution of (17a) ;
5 δ← Vectorization of solution of (19a)–(19b) ;
until convergence;
return (∆, X, ω)

Steps 2 and 3 of Algorithm 1 represent gradient and damped
Newton descent steps, respectively. In the Newton descent step,
the Hessian H is required to be positive-definite. To satisfy this
property, we add the term K = ϵI − M − MT to the Hessian
with 0 < ϵ ≪ 1 (Luenberger & Ye, 2008). Further, the step
size β can be updated using backtracking line search or Armijo’s
rule (Luenberger & Ye, 2008). In general, the Newton descent
converges faster as compared to gradient descent. For a detailed
discussion of the two algorithms, the interested reader is referred
to Luenberger and Ye (2008). Finally, if Assumption A4 is not
satisfied in any iteration of Algorithm 1, (i.e., CX does not have
full column rank), then we can slightly modify (g, ω) to ensure
that A4 is satisfied and continue the iterations.

Since the modified Hessian is H + K = ZW̄ZT
+ ϵI , the matrix

M in (22) need not be computed in every iteration. The com-
putational complexity of step 2 is dictated by solving Sylvester
equations in Lemma 4.1 to obtain U and V , and is given by
O(n3
+ m3p3). The complexity of step 3 is same as step 2, since

the complexity to compute d is O(m3). The complexity of step
4 is O(n3). In step 5, δ (and λ) can be obtained by vectorizing
(19a)–(19b) (see (26) in the Appendix), and its complexity is
O(m3p3).

Remark 3 (Algorithm when ω̂ = 0). The perturbation ∆ computed
at each iteration of Algorithm 1 assigns two eigenvalues of A(∆) at
±jω. As a consequence, in cases where ω̂ = 0 is a local minimum
of (20), the algorithm converges to a local minimum ∆̂ such that
A(∆̂) has eigenvalue 0 with multiplicity two. This may not be
a desired local minimum since instability results from at least
one (and not necessarily two) eigenvalue of A(∆̂) being at the
origin. In this case, we can use (15) instead of (16) to develop
an analogous algorithm. □

Remark 4 (Choice of Weights). As the weight w increases, an
optimal solution of (20) satisfies the sparsity constraints (7c) with
increasing accuracy. However, an increase in the weights also
reduces the convergence speed of Algorithm 1. Thus, there exists
a trade-off between the accuracy of the sparse solutions and the
convergence time of the algorithm. □

Remark 5 (Alternative Optimization Techniques). We emphasize
that more sophisticated and efficient optimization procedures
to solve the SR problem can be used. For instance, alternative
choices of the Hessian modification term V that result in better
conditioning can be used. Quasi-Newton methods like BFGS (Lu-
enberger & Ye, 2008) to compute approximate Hessian using
the expressions in Lemma 4.1 can also be employed. Augmented
Lagrangian methods that provide accurate solutions can be ex-
plored. Software packages like GRANSO (Curtis, Mitchell, & Over-
ton, 2017) and low-rank solvers for Sylvester equations (Benner,

Kohler, & Saak, 2011) can be used for large-scale problems. A
detailed study of these methods is not the primary focus of this
paper, and is left as the subject of future research.

5. Simulation studies

In this section, we present numerical simulation studies of our
algorithm. We perform the simulations using MATLAB R2019a
installed on Macbook Pro 2019 with Intel Core i5 processor and
16 GB of RAM. To begin, we consider the following example
from Qiu et al. (1995):

A =

⎡⎢⎣ 79 20 −30 −20
−41 −12 17 13
167 40 −60 −38
33.5 9 −14.5 −11

⎤⎥⎦, B =

⎡⎢⎣0.2190 0.9347
0.0470 0.3835
0.6789 0.5194
0.6793 0.8310

⎤⎥⎦ ,

C =
[
0.0346 0.5297 0.0077 0.0668
0.0535 0.6711 0.3848 0.4175

]
.

The eigenvalues of A are {−1 ± j,−1 ± 10j}. We consider two
cases:
Case 1: No sparsity constraints, i.e., S =

[
1 1
1 1

]
,

Case 2: Only the diagonal entries of ∆ are allowed to be perturbed,
i.e., S =

[
1 0
0 1

]
.

The weight in the weighing matrix W is chosen as w =

100. Table 1 shows the local minima of optimization problem
(7) obtained by Algorithm 1 for both the cases. The first local
minimum is also the global minimum for both the cases. The
initial conditions are randomly selected as ω0,gl = 2.5 and G0,gl =[
1.0582 1.4115
0.4363 −0.0146

]
for the global minima for both cases, and

as ω0,lo = 1 and G0,lo =

[
0.5201 −0.0348
−0.0200 −0.7982

]
for the local

minima for both cases. The stopping criteria for all simulations
in this section are ∥ dJWdz̄ ∥F = ∥ZW̄δ∥F < 10−5 and the maximum
number of iterations is set at 1000. Note that the second local
minimum for case 1 satisfies α(A(∆̂(2))) = 0, whereas the second
local minimum for case 2 does not satisfy this constraint (c.f.
discussion after (7c)). Thus, it is not a valid local minimum.

Next, we illustrate the relation between the local minima of
our optimization problem and the geometry of the spectral value
sets. Spectral value set captures the region in which all possible
eigenvalues of the perturbed system matrices can lie, and for
η ≥ 0, is defined as:

Sη ≜ {Γ (A+ B∆C) : ∥∆∥F ≤ η, ∆ ∈ ∆S}.

Fig. 1 shows the spectral value sets in the complex plane corre-
sponding to the local minima in Table 1. We observe that the local
minima are precisely the cases when the locally right-most points
of the spectral value sets3 intersect with the imaginary axis.

Fig. 2 presents a sample run of Algorithm 1 for the case 2 of the
above example. It is initialized with ω0,gl and G0,gl and takes 24
iterations to converge to the global minimum using the Newton
descent steps. Fig. 2 shows the penalized cost (scaled), spectral
abscissa of the perturbed matrix A(∆), and ω at each iteration.
Observe that, at the start of the algorithm, α(A(∆)) > 0 indi-
cating that A(∆) has two eigenvalues in the right-half complex
plane (the other two are at ±jω). As iterations progress, these
unstable eigenvalues move towards the left-half plane and, at the
global minimum, all eigenvalues are in closed left-half plane (c.f.
discussion after (7c)). Further, the optimization cost decreases
monotonically during the iterations.

3 Sη for this example was visualized by performing an exhaustive search over

∆ =

[
∆11 0
0 ∆22

]
such that ∆2

11 +∆2
22 ≤ η2 , and plotting Γ (A(∆)).
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Table 1
Minima obtained via Algorithm 1.
Case 1 Case 2

∆̂1 =

[
−0.0332 −0.0717
0.1975 0.4700

]
∆̂1 =

[
−0.0418 0.0000
0.0000 0.5638

]
rC = ∥∆̂1∥F = 0.5159 rC = ∥∆̂1∥F = 0.5653

ω̂1 = 1.3753 ω̂1 = 1.3365

x̂1 =

⎡⎢⎣ 0.1340− 0.0022j
0.3692+ 0.0456j
0.7733+ 0.2579j
−0.2504− 0.3411j

⎤⎥⎦ x̂1 =

⎡⎢⎣0.0905− 0.0971j
0.2152− 0.3108j
0.3295− 0.7459j
0.0799+ 0.4099j

⎤⎥⎦

l̂1 =

⎡⎢⎣−1.3796+ 0.4056j
−0.5825− 0.1855j
0.4576− 0.1326j
0.2771− 0.4659j

⎤⎥⎦ l̂1 =

⎡⎢⎣−0.7660− 1.5362j
−0.6177− 0.3611j
0.2590+ 0.5098j
−0.1785+ 0.6099j

⎤⎥⎦
Time (ms.) = 42.1 Time (ms.) = 45.2

∆̂2 =

[
0.1841 0.5173
−0.8050 −0.4151

]
∆̂2 =

[
4.8818 0.0000
0.0000 −0.8898

]
∥∆̂2∥F = 1.0592 ∥∆̂2∥F = 4.9622

ω̂2 = 10.8758 ω̂2 = 11.0790

x̂2 =

⎡⎢⎣ 0.2032+ 0.3252j
0.0505− 0.2331j
0.7184+ 0.4695j
−0.0532+ 0.2381j

⎤⎥⎦ x̂2 =

⎡⎢⎣−0.1927− 0.3320j
0.2084+ 0.0795j
−0.0770− 0.8566j
−0.2483− 0.0397j

⎤⎥⎦

l̂2 =

⎡⎢⎣ 8.4752+ 9.7446j
1.8464+ 2.4744j
−3.6880− 3.0693j
−2.4960− 1.8877j

⎤⎥⎦ l̂2 =

⎡⎢⎣ 435.71+ 76.99j
112.50− 0.98j
−153.99− 56.91j

95.93− 42.90j

⎤⎥⎦
Time (ms.) = 19.2 Time (ms.) = 24.7

Fig. 1. The spectral value sets corresponding to the local minima in Table 1.
Figures (a)–(b) correspond to Case 1, and (c)–(d) correspond to Case 2.

Next, we present a comparison of the global minimum ob-
tained by Algorithm 1 for different penalty weights. Table 2
shows the global minima for three values of weight w. Further,
Fig. 3 shows the sparsity error E ≜ ∥∆− S ◦∆∥F and norm of the
optimal perturbation as a function of weight w. The algorithm
is initialized with ω0,gl and G0,gl for all weights. Observe that as
the weight w increases, the sparsity error decreases and optimal
perturbations become more sparse. Furthermore, the norm of the
optimal perturbations increases with w, since a larger weight
implies a tighter constraint on the perturbation entries.

Fig. 2. A sample iteration run of Algorithm 1.

Fig. 3. Variation of (a) sparsity error log(E), and (b) norm of the optimal
perturbation ∆̂, as a function of weight w.

Table 2
Approximately-sparse solutions.

w ∆̂ ∥∆̂∥F ω̂ Time (ms)

5
[
−0.0414 −0.0036
0.0095 0.5593

]
0.5609 1.3385 28.1

10
[
−0.0417 −0.0009
0.0024 0.5627

]
0.5642 1.3370 34.5

20
[
−0.0418 −0.0002
0.0006 0.5635

]
0.5651 1.3367 40.1

Finally, we illustrate that our sparse SR framework provides
structural insights into the stability of dynamical networks. We
consider symmetric line and circular networks as shown in Fig. 4,
where the nodes represent the scalar states and the edges rep-
resent the non-zero couplings. All self loops have weight −2.5
and all inter-node edges have weight 1. The weighted incidence
matrix A of a network can be easily constructed using these
weights, and it is stable.

We are interested in identifying the edge(s) that are most
critical for the stability of the network. This can be characterized
by assigning a sparsity pattern corresponding to a subset of
edges that are perturbed, and computing the sparse SR using the
developed framework. Then, the most critical edge set is the one
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Fig. 4. Two symmetric networks. The bold edge(s) is/are most critical and result
in the smallest sparse SR.

which results in the least SR. For the line network, we allow only
a singe edge to be perturbed. It implies that only one entry of ∆

is allowed to be perturbed. For the circular network, we allow for
two inter-node edges to be perturbed (self loop edges are fixed).
This implies that only two non-diagonal entries of ∆ are allowed
to be perturbed. We set B = C = I for both the networks.

For the line network, we observe that the most critical edge is
the self loop of the node in the center of the line (node 4).4 The SR
corresponding to this edge is 1.5118. For the circular network, the
two most critical inter-node edges are the edges between any two
neighboring nodes. The optimal perturbations for the two edges
are 0.9724 and 0.9814 (in any order) and the corresponding SR is
1.3816. Due to the circular symmetry, there exist 7 pairs of critical
edges in the network. These examples highlight that our sparse
SR framework is useful in studying the robust stability of sparse
networks, which was not possible using the previous non-sparse
SR theory.

6. Conclusion

In this paper we study the real, sparse, F-norm stability ra-
dius of a linear time-invariant system, which measures its abil-
ity to maintain stability in the presence of structured additive
perturbations. We formulate the stability radius problem as an
equality-constrained minimization problem, and characterize its
optimality conditions. These conditions reveal important geomet-
ric properties of the stability radius and the associated pertur-
bation, and allow us to design a penalty based Newton descent
algorithm that provably converges to locally optimal values of
the stability radius and the associated perturbation. Using the
Frobenius norm to measure the size of perturbations is not only
convenient for the analysis, but it also provides selective infor-
mation regarding which system entries have a greater effect on
system stability. Further, imposing an arbitrary sparsity pattern
to the perturbation becomes crucial when studying the stability
radius of network systems and, more generally, systems where
only a subset of the entries can be perturbed. Numerical examples

4 If there is an even number of nodes, then there are two most critical edges
corresponding to the self loops of the two center nodes.

are shown to highlight the utility of our framework for character-
izing structural fragility of networks. Future research directions
include the exploration of more efficient, accurate and reliable
optimization procedures, especially for large-scale systems.

Appendix. Proof of Lemma 4.1

Part 1 — Gradient: We derive the gradient by expressing the
first order differential of JW in terms of the differential of free
variables dz̄. Using JW

P.1,P.6
=

1
2 (vec(W ) ◦ δ)T(vec(W ) ◦ δ) = 1

2δ
TW̄δ,

we get

dJW = δTW̄ (dδ). (23)

Next, we derive an expression for dδ. Taking the differential of
(17a) and vectorizing (using ĪT = −Ī) yields

A(dX)− ω(dX)Ī − (dω)XĪ = −B(dG) (24)

⇒ Ã(ω)dxv = −Ĩxvdω − B̃dg

⇒ dxv = −Vdz̄. (25)

Vectorizing and combining (19a)–(19b) using P.2 and the re-
lation vec(W ◦W ◦∆) = W̄δ, we get

X̄
[
δ

λ

]
=

[
0
g

]
. (26)

Since W̄ > 0 and X̃ is full column rank (Assumption A4), X̄ is
invertible and (26) has a unique solution. Taking the differential
of (26) and using P.2, P.3, P.9, we get

X̄
[
dδ
dλ

]
=

[
0
dg

]
− dX̄

[
δ

λ

]
=

[
0
dg

]
−

[
dX̃Tλ

dX̃δ

]
=

[
0
dg

]
−

[
vec(Λ(CdX)T)
vec(∆CdX)

]
=

[
0
dg

]
− Edxv

(25)
= Ydz̄. (27)

Next, we have

dδ =
[
I 0

] [
dδ
dλ

]
(27)
=

[
I 0

]
X̄−1  

U

Ydz̄ = ZTdz̄.

Substituting dδ = ZT(dz̄) in (23) and using P.8, we get the
gradient in (21).

Part 2 — Hessian: We derive the Hessian by expressing the
second order differential of JW as d2JW = (dz̄)T(·)(dz̄). Taking the
differential of (23), we get

d2JW = (dδ)TW̄ (dδ)+ (d2δ)TW̄δ. (28)

Using dδ = ZT(dz̄) from the first part of the proof, the first term
in (28) becomes (dz̄)TZW̄ZT(dz̄). Next, we compute the second
term in (28). Since G and ω are free variables, their second order
differentials d2G and d2ω are zero (Magnus & Neudecker, 1999).
Taking the differential of (24) and vectorizing, we have

A(d2X)− ω(d2X)Ī − 2(dω)(dX)Ī = 0
P.2
⇒ d2xv = −2(dω)Ã(ω)−1 Ĩ(dxv)

(25)
= 2(dω)Ã(ω)−1 ĨV (dz̄). (29)

Taking the differential of (27), we get

X̄
[
d2δ
d2λ

]
= −dX̄

[
dδ
dλ

]
− dEdxv − Ed2xv

= −Ed2xv − 2dEdxv

⇒ d2δ =
[
I 0

] [
d2δ
d2λ

]
= −

[
I 0

]
X̄−1  

U

(Ed2xv + 2dEdxv)

⇒ (d2δ)TW̄δ = −(d2xv)TETUTW̄δ − 2(dEdxv)TUTW̄δ. (30)
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Using (29) and dω = eT2m+1(dz̄), the first term on the right side of
(30) is

−(d2xv)TETUTW̄δ

= −2dz̄TV T ĨTÃ(ω)−TETUTW̄δeT2m+1dz̄. (31)

The second term on the right side of (30) is

− 2(dEdxv)TUTW̄δ

(25)
= 2dz̄TV T

[
T2,n(CT

⊗ dΛT) I2 ⊗ CTd∆T
] [

UT
1 W̄δ

UT
2 W̄δ

]
= 2dz̄TV T

[T2,n(CT
⊗ dΛT)vec(Ū1)+ (I2 ⊗ CTd∆T)vec(Ū2)]

P.3
= 2dz̄TV T

[T2,n((Ū1C)T ⊗ I2)Tm,2dλ+ (ŪT
2 ⊗ CT)Tm,pdδ]

(27)
= 2dz̄TV T

[
(ŪT

2 ⊗ CT)Tm,p T2,n(CTŪT
1 ⊗ I2)Tm,2

]
X̄−1Ydz̄ (32)

Using (30), (31) and (32) in (28), we get

d2JW = dz̄TZW̄ZTdz̄ + 2(dz̄)TM(dz̄)

= (dz̄)T
[
ZW̄ZT

+M +MT
]
(dz̄).

The expression of Hessian H in (22) follows from P.8. □
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