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A Fundamental Performance Limitation
for Adversarial Classification

Abed AlRahman Al Makdah , Vaibhav Katewa , and Fabio Pasqualetti

Abstract—Despite the widespread use of machine
learning algorithms to solve problems of technological,
economic, and social relevance, provable guarantees on
the performance of these data-driven algorithms are crit-
ically lacking, especially when the data originates from
unreliable sources and is transmitted over unprotected and
easily accessible channels. In this letter, we take an impor-
tant step to bridge this gap and formally show that, in
a quest to optimize their accuracy, binary classification
algorithms—including those based on machine-learning
techniques—inevitably become more sensitive to adversar-
ial manipulation of the data. Further, numerical evidence
suggests that the accuracy-sensitivity tradeoff depends
solely on the statistics of the data, and cannot be improved
by tuning the algorithms or increasing their complexity.

Index Terms—Pattern recognition and classification,
machine learning, neural networks.

I. INTRODUCTION

ARTIFICIAL intelligence and machine learning algo-
rithms, including neural networks, are used widely in

technological, social, and economic applications, such as
computer vision, speech recognition, malware detection, and
control design. For control applications, in particular, these
data-driven algorithms are attracting increasingly more atten-
tion, as they promise to overcome the limitations of traditional
model-based approaches, especially when the models are too
complex to be useful, or too difficult to estimate or derive
from first principles [1]–[3]. While these algorithms typically
achieve high performance under nominal and well-modeled
conditions, they are also very sensitive to small, targeted, and
possibly malicious manipulation of the training and execu-
tion data [4]. A theoretical understanding of this unreliable
behavior is still lacking, thus motivating the critical need for
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novel theories to deploy robust, reliable, and safe data-driven
algorithms.

In this letter we formally study a fundamental tradeoff
between the accuracy of a binary classification algorithm
and its sensitivity to arbitrary manipulation of the data. In
particular, we cast a binary classification problem into a
hypothesis testing framework, parametrize classification algo-
rithms – including those based on machine learning techniques
– using their decision boundaries, and show that the accuracy
of the algorithm can be maximized only at the expenses of
its sensitivity. This tradeoff, which applies to general clas-
sification algorithms, depends on the statistics of the data,
and cannot be improved by simply tuning the algorithm. Our
theory explains how simple algorithms can outperform more
complex ones when operating in adversarial environments.

Related Work: Recent work has shown that classification
based on neural networks is vulnerable to adversarial per-
turbations [4], [5], and that these perturbations are universal
and affect a large number of classification algorithms. While
heuristic explanations of this phenomenon have been proposed,
including adversarial learning [5]–[7], black-box [8], and
gradient-based [5], [6], a fundamental analytical understanding
of the limitations of classification algorithms under adversarial
perturbations is critically lacking. We identify these limita-
tions for a binary classification problem in a Bayesian setting.
While in a simple setting, our analysis formally shows that a
fundamental tradeoff exists between accuracy and sensitivity
of any classification algorithm, independently of the complex-
ity of the algorithm. The papers [9], [10] are also related to
this letter, which derive methods to measure robustness of dif-
ferent classifiers against adversarial perturbations and obtain
guarantees against bounded perturbations, as well as [7],
which shows how adversarial training improves the classifier’s
performance against adversarial perturbations while deteriorat-
ing its performance under nominal conditions. Distributionally
robust optimization has also been used to develop robust
classifiers [11]. Yet, this theory does not formally explain
the tradeoff highlighted in this letter. Our approach pro-
vides rigorous support to the empirical evidence obtained in
these works.

Contribution: This letter features three main contributions.
First, we propose metrics to quantify the accuracy of a classi-
fication algorithm and its sensitivity to arbitrary manipulation
of the data. We prove that, under a set of mild technical
assumptions, the accuracy of a classification algorithm can
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only be maximized at the expenses of its sensitivity. Thus, a
fundamental tradeoff exists between the performance of a clas-
sification algorithm in nominal and adversarial settings. While
our results formally apply to binary classification problems,
we conjecture that this fundamental tradeoff in fact applies to
more general classification problems. Second, we show that
a tradeoff between accuracy and sensitivity exists for dif-
ferent classes of classification algorithms, and that simpler
algorithms can sometimes outperform more complex one in
adversarial settings. Third, we numerically show that the accu-
racy versus sensitivity tradeoff depends solely on the statistics
of the data, and cannot be arbitrarily improved by tuning
the classification algorithm (varying classification boundaries)
or increasing its complexity (number of boundaries), includ-
ing using sophisticated adversarial learning techniques. Taken
together, our results suggest that performance and robustness
of data-driven algorithms are dictated by the properties of
the data, and not by the sophistication or intelligence of the
algorithm, a key insight that has critical implications for the
deployment of provably-robust data-driven and learning-based
control algorithms.

II. PROBLEM SETUP AND PRELIMINARY NOTIONS

To reveal a fundamental tradeoff between the accuracy of
a classification algorithm and its robustness against malicious
data manipulation, we consider a binary classification problem
where the objective is to decide whether a scalar observation
x ∈ R belongs to one of the classes H0 and H1. We assume
that the distribution of the observations satisfy

H0 : x ∼ f0(x; θ0), and H1:x ∼ f1(x; θ1), (1)

where f0(x; θ0) and f1(x; θ1) are arbitrary, yet known, probabil-
ity density functions with parameters θ0 ∈ R

m0 and θ1 ∈ R
m1 ,

respectively. We assume that the partial derivatives of fk with
respect to x and θk exist and are continuous over the domain of
the distributions, for k = 0, 1. Let p0 and p1 denote the prior
probabilities of the observations belonging to the classes H0
and H1, respectively. Different (machine learning) algorithms
can be used to solve the above binary classification problem.
Yet, because of the binary nature of the problem, any classifi-
cation algorithm can be represented by a suitable partition of
the real line, and it can be written as

C(x; y) =
{
H0, x ∈ R0,

H1, x ∈ R1,
(2)

where1 y = [yi] denotes a set of boundary points, with
y0 ≤ · · · ≤ yn+1, y0 = −∞, yn+1 = ∞, and

R0 = {z : yi < z < yi+1, with i = 0, 2, . . . , n},
R1 = {z : yi ≤ z ≤ yi+1, with i = 1, 3, . . . , n − 1}.

We refer to (2) as general classifier. We measure the
performance of a classification algorithm through its accuracy,
that is, its probability of making a correct classification.

1For simplicity and without affecting generality, we assume that n is even.
Further, an alternative configuration of the classifier (2) assigns H0 and H1
to R1 and R0, respectively. However, because accuracy and sensitivity of
the two configurations can be obtained from each other, we consider only the
configuration in (2) without affecting the generality of our analysis.

Definition 1 (Accuracy of a Classifier): The accuracy of
the classification algorithm C(x; y) is

A(y; θ) = p0P[x ∈ R0|H0] + p1P[x ∈ R1|H1], (3)

where θ = [θT
0 θT

1 ]T contains the distribution parameters.
Using Equation (3) and the distributions in (1), we obtain

A(y; θ) = p0

( n∑
l=1

(−1)l+1

yl∫
−∞

f0(x; θ0)dx + 1

)

+ p1

( n∑
l=1

(−1)l

yl∫
−∞

f1(x; θ1)dx

)
. (4)

Clearly, the accuracy of a classification algorithm depends
on the position of its boundaries, which can be selected to
maximize the accuracy of the classification algorithm. To this
aim, let L(x) denote the Likelihood Ratio defined as

L(x) = p1f1(x; θ1)

p0f0(x; θ0)
.

The Maximum Likelihood (ML) classifier is

CML(x; η) =
{
H0, L(x) < η,

H1, L(x) ≥ η,
(5)

where the threshold η > 0 is a design parameter that deter-
mines the boundary points and, thus, the accuracy of the
classifier. As a known result in statistical hypothesis test-
ing [12], the accuracy of the ML classifier with η = 1 is
the largest among all possible classifiers. The value and the
number of boundary points of the ML classifier depend on
the distributions f0(x; θ0) and f1(x; θ1), the threshold η, and
the prior probabilities through the equation

p1f1(x; θ1) − ηp0f0(x; θ0) = 0. (6)

Another important class of classifiers is the class of linear
classifiers, which are less complex and often achieve a compet-
itive performance compared to nonlinear classifiers (see [13]
for more details). In our setting, a linear classifier consists of
one decision boundary y ∈ R, and is given by

CL(x; y) =
{
H0, x < y,

H1, x ≥ y.
(7)

Following Definition 1, the accuracy of CL is

A(y; θ) = p0

y∫
−∞

f0(x; θ0)dx − p1

y∫
−∞

f1(x; θ1)dx + p1. (8)

The optimal boundary y∗
L that maximizes A(y; θ) is

y∗
L = arg max

yi

A(yi; θ)

s.t. yi is a solution of (6) with η = 1. (9)

While the boundaries are difficult to compute for gen-
eral distributions, they can be computed explicitly when the
observations are Gaussian (see below). Let N (x;μ, σ) =

1√
2πσ 2

e
− (x−μ)2

2σ2 be the p.d.f. of a normal random variable with
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Fig. 1. The distributions of x under Gaussian hypotheses with μ0 = 0,
σ0 = 9, μ1 = 9, σ1 = 4, and p0 = p1 = 0.5. The dashed red lines
represent the decision boundaries of the CML(x; η = 1), which divide
the space into R0 (represented by the blue region) and R1 (orange
region).

mean μ and variance σ , and Q(z) = ∫ z
−∞

1√
2π

e
−x2

2 dx the c.d.f.
of the standard normal distribution.

Remark 1 (ML and Linear Classifiers for Gaussian
Distributions): For the Gaussian distributions fi(x; θi) =
N (x;μi, σi), i = 0, 1, the boundaries of ML classifier satisfy

ax2 + bx + c = 0 where, (10)

a = 1

2

(
1

σ 2
0

− 1

σ 2
1

)
, b =

(
μ1

σ 2
1

− μ0

σ 2
0

)
, and

c = log

(
σ0

σ1

)
+ log

(
p1

p0

)
+ μ2

0

2σ 2
0

− μ2
1

2σ 2
1

− log(η).

Equation (10) has at most two real solutions, implying that
the ML classifier has at most two decision boundaries (see
Fig. 1). The ML classifier with boundaries corresponding to
the solutions of (10) with η = 1 has maximum accuracy [12].
The solution of (10) which maximizes the accuracy in (8) is
the boundary for the optimal linear classifier.

In this letter, we consider adversarial manipulations of the
observations in which an attacker is capable of adding deter-
ministic or random perturbations to the observations in order
to degrade the performance of the classifier. We model such
manipulations as modification to the parameters of distri-
butions in (1), i.e., the attacker can change the parameter
θ . To characterize the robustness of a classifier to these
adversarial manipulations of the observations, we define the
following sensitivity metric, which captures the degradation
of the classification accuracy following data manipulation.

Definition 2 (Sensitivity of a Classifier): The sensitivity of
the classification algorithm2 C(x; y) is

S(y; θ) =
∥∥∥∥∂A(y; θ)

∂θ

∥∥∥∥∞
, (11)

where θ contains the parameters of the distributions in (1),
and A(y; θ) denotes the accuracy of C(x; y).

From Definition 2, a higher value of sensitivity implies that
the adversary can affect the classifier’s performance to a larger
extent, whereas a lower sensitivity implies that the classifier is
more robust to adversarial manipulation. Further, the ∞−norm
captures the worst case in terms of the largest sensitivity with
respect to the components of θ . Finally, the sensitivity vec-
tor ∂A(y;θ)

∂θ
can be used to determine a perturbation to θ that

maximizes (locally) the degradation of the classifier.

2Definition 2 is also valid for the ML and the linear classifier.

Remark 2 (Comparison With Adversarial Classification):
In adversarial classification, the attacker designs a perturbation
for a given observation (e.g., an image) to induce misclassifica-
tion [4], [7]. Such observation can be viewed as a realization of
a multi-dimensional distribution. In contrast, we consider per-
turbations of the distribution, which affect all the realizations,
and focus on the average reduced performance of the classi-
fier over all realizations. Despite this difference, our sensitivity
vector and its norm capture the direction and the extent of the
worst-case perturbation, similar to the worst-case smallest per-
turbation in adversarial classification, allow us to obtain formal
guarantees, and provide additional insight into the performance
limitations of adversarial classification.

Remark 3 (Accuracy and Sensitivity of the ML Classifier
for Gaussian Distributions): The accuracy and the sensitivity
of the ML classifier are obtained by substituting the expression
of the normal distributions N (x;μi, σi) in (3) and (11):

A(y; θ) = p0

(
Q

(y1 − μ0

σ0

)
− Q

(y2 − μ0

σ0

)
+ 1

)
+ p1

(
− Q

(y1 − μ1

σ1

)
+ Q

(y2 − μ1

σ1

))
and,

S(y; θ) =

∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎣

p0

(
f0

(
y2; θ0

) − f0(y1; θ0)
)

p0

(
μ0−y1

σ0
f0(y1; θ0) − μ0−y2

σ0
f0(y2; θ0)

)
p1

(
f1(y1; θ1) − f1(y2; θ1)

)
p1

(
μ1−y2

σ1
f1(y2; θ1) − μ1−y1

σ1
f1(y1; θ1)

)

⎤
⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥∞

,

where θi = [μi σi]T and i = 0, 1.
A classification algorithm should have high accuracy and

low sensitivity, so as to exhibit robust performance against
adversarial manipulation. Unfortunately, we show that accu-
racy and sensitivity are directly related, so that optimizing the
accuracy of a classifier inevitably increases its sensitivity.

III. A FUNDAMENTAL TRADEOFF BETWEEN ACCURACY

AND SENSITIVITY OF CLASSIFICATION ALGORITHMS

In this section, we characterize a tradeoff between accu-
racy and sensitivity of a classification algorithm for the binary
classification problem in (1). We prove that, under some mild
conditions, there exist a classifier that is less accurate than
CML(x; 1), yet more robust to adversarial manipulation of the
data. This shows that there exist a tradeoff between accuracy
and sensitivity at the configuration of maximum accuracy.

Let y∗ = [y∗
1 y∗

2 · · · y∗
n]T be the vector of the boundaries

of CML(x; 1), which maximizes A(y; θ). Let θ(i) be the ith

component of θ . We make the following assumptions:

A1: The vector ∂A(y;θ)
∂θ

∣∣∣
y∗ has a unique largest absolute

element, located at index j.
A2: There exist at least one boundary y∗

i such that(
p0

∂

∂yi
f0(yi; θ0)

∣∣∣∣
y∗

i

− p1
∂

∂yi
f1(yi; θ1)

∣∣∣∣
y∗

i

)
∂y∗

i

∂θ(j)

= 0.

Assumption A1 is specific to our definition of sensitivity
in (11), and is not required if 2−norm is used (see Remark 5).
Further, A2 is mild and typically satisfied in most problems.
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Theorem 1 (Accuracy-Sensitivity Tradeoff for General
Classifier (2)): Let y∗ contain the boundaries of the classifier
CML(x; 1). Then, under Assumptions A1 and A2, it holds

∂S(y; θ)

∂y

∣∣∣∣
y∗


= 0. (12)

Proof: Assumption A1 guarantees that S(y; θ) is differen-
tiable with respect to y at y∗. Let g

(
y; θ

)
� ∂A(y;θ)

∂y . Since
y∗ maximizes A(y; θ), g

(
y∗; θ

) = 0. Differentiating g
(
y∗; θ

)
with respect to θ(j), and noting that y∗ depends on θ , we get:

dg
(
y∗; θ

)
dθ(j)

= ∂g
(
y; θ

)
∂θ(j)

∣∣∣∣
y∗

+ ∂g
(
y; θ

)
∂y

∣∣∣∣
y∗

∂y∗

∂θ(j)
= 0,

⇒ ∂

∂y

∂A(y; θ)

∂θ(j)

∣∣∣∣
y∗

= −∂2A(y; θ)

∂y2

∣∣∣∣
y∗

∂y∗

∂θ(j)
, (13)

where the last equation follows by substituting g
(
y; θ

) =
∂A(y;θ)

∂y and switching the order of partial differentiation.
Using (11), it can be easily observed that the left side of (13)
equals ± ∂S(y;θ)

∂y

∣∣∣
y∗ . Further, differentiating (4) twice, we get

∂2

∂y2 A(y; θ) = diag(w1(y1), . . . , wn(yn)) , where

wi(yi) = p0(−1)i+1 ∂

∂yi
f0(yi; θ0) + p1(−1)i ∂

∂yi
f1(yi; θ1).

Assumption A2 guarantees that there exist a boundary y∗
i such

that wi(y∗
i )

∂y∗
i

∂θ(j) 
= 0. The result follows from (13).
Theorem 1 implies that the sensitivity of the classifier

C(x; y) can be decreased by modifying the boundaries y∗. Yet,
because C(x; y∗) exhibits the largest classification accuracy
among all classifiers, the reduction of sensitivity inevitably
decreases the accuracy of classification. In other words, for
any classification problem (1) satisfying Assumptions A1 and
A2 and for any classification algorithm (2), there exists an
arbitrarily small δ such that3

S(y∗ + δ; θ) < S(y∗; θ) and A(y∗ + δ; θ) ≤ A(y∗; θ).

Thus, a fundamental tradeoff exists between the accuracy of a
classifier and its robustness to adversarial manipulation. Note
that the result of Theorem 1 holds for all distributions that
satisfy Assumptions A1 and A2. Further, we show next that
such tradeoff also exists for linear and ML classifiers, and for
multi-dimensional digit classifier based on a neural network
(Section IV). This tradeoff is observed for a large class of
problems, thereby highlighting its fundamental nature.

Corollary 1 (Accuracy-Sensitivity Tradeoff for the Linear
Classifier (7)): Let y∗

L be the boundary given in (9) that max-
imizes the accuracy (in (8)) of the linear classifier CL(x; y).
Then, under Assumptions A1 and A2, it holds

∂S(y; θ)

∂y

∣∣∣∣
y∗

L


= 0. (14)

Proof: Since y∗
L corresponds to one of the boundaries

contained in y∗, the proof follows from Theorem 1.
Next, we show that this tradeoff also exists for the

Maximum Likelihood classifier. This fact does not follow triv-
ially from Theorem 1, because the general classifier in the

3The inequality for accuracy is strict for most distributions.

theorem has independent boundaries, while the boundaries of
the ML classifier are dependent on one another via (6). We
make the following mild technical assumption.

A3: The vectors ∂y(η,θ)
∂η

∣∣∣
η=1

and ∂S(y;θ)
∂y

∣∣∣
y∗ are not orthog-

onal, where y(η, θ) contains the boundaries of
CML(x; η).

Lemma 1 (Accuracy-Sensitivity Tradeoff for the ML
Classifier (5)): Let y(η, θ) contain the boundaries of the clas-
sifier CML(x; η). Then, under Assumptions A1, A2 and A3, it
holds

∂S(y(η, θ); θ)

∂η

∣∣∣∣
η=1


= 0.

Proof: Let y∗ contain the boundaries of the classifier
CML(x; η = 1). The derivative of S(

y(η, θ); θ
)

with respect
to η can be written as:

∂S(
y(η, θ); θ

)
∂η

∣∣∣∣∣
η=1

= ∂S(
y; θ

)
∂yT

∣∣∣∣∣
y∗

∂y(η, θ)

∂η

∣∣∣∣
η=1

.

We conclude following Theorem 1 and Assumption A3.
In what follows we numerically show that a tradeoff

between accuracy and sensitivity also exists when the classi-
fication boundaries are not selected to maximize the accuracy
of the classifier. To this aim, first we compute the accuracy
and sensitivity of the ML classifier CML(x; η), for different
values of η. Notice that, by varying 0 < η < ∞, Equation (6)
returns different classification boundaries and, thus, different
classification algorithms. Similarly, we compute the accuracy
and sensitivity of linear classifier CL(x; y) by varying the single
boundary y. Second, we numerically solve

min
y

S(y; θ)

s.t. A(y; θ) = ζ, (15)

for different values of ζ ranging from 0.5 to A(y∗; θ). Notice
that the minimization problem (15) returns the classifier with
lowest sensitivity and accuracy equal to ζ , and that the
boundaries solving the minimization problem (15) may not
satisfy (6). Further, for a given number of classification bound-
aries, the minimization problem (15) returns a fundamental
tradeoff curve relating accuracy and sensitivity over the range
of ζ , which is independent of the choice of classification algo-
rithm. Finally, the minimization problem (15) is not convex,
because of its nonlinear equality constraint.

Fig. 2(a) shows the accuracy-sensitivity tradeoff for the
Gaussian hypothesis testing problem discussed in Remark 3.
In this case, since the ML classifier has 2 boundaries, we also
consider general classifiers with 2 boundaries. We observe
that the general classifier exhibits the tradeoff at the maxi-
mum accuracy point (identified by the red dot) in accordance
with Theorem 1. Several comments are in order. First, the
ML and linear classifiers also exhibit tradeoff at their respec-
tive maximum accuracy points in accordance with Lemma 1
and Corollary 1. Second, the tradeoff for the ML classifier
is not strict and there exist points where reducing accuracy
increases sensitivity (green dot in the figure). On the other
hand, the tradeoff for the general classifier is strict. This might
be because the decision boundaries of the general classifier can
be varied independently, whereas the boundaries of the ML
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Fig. 2. Accuracy-sensitivity tradeoff curves for a general classifier with 2 boundaries (black dashed line), the ML classifier (blue line), and a linear
classifier (orange dash-dotted line) corresponding to the Gaussian hypothesis testing problem. The parameters of the two distributions for (a)-(b)
are μ0 = 0, σ0 = 9, μ1 = 9, and σ1 = 4, and for (c) are μ0 = 0, σ0 = 4, μ1 = 5, and σ1 = 3. The red dot represents CML(x; 1) (maximum
accuracy point) and the green dot represents CML(x; 0.46). The red square represents CL(x; y = 3.65), which is the linear classifier with maximum
accuracy. The sensitivity in (a) and for the black dashed line in (c) is computed using Definition 2, while the sensitivity in (b) and for the red line in (c)
is computed using (16).

classifier are related to each other since they are the solutions
of (6). Thus, the general classifier provides more flexibility
in choosing the boundaries, which induces lower sensitivity
as compared to the ML classifier, and ultimately, results in a
strict tradeoff. Similarly, the tradeoff for the linear classifier
is not strict. Third, the tradeoff curve for the general classifier
is below the tradeoff curves for the ML and linear classifiers,
again, due to the aforementioned reason.4 Fourth, the max-
imum accuracy of the linear classifier (corresponding to red
square) is smaller than that of the ML classifier (corresponding
to the red dot), but its sensitivity at the maximum accuracy
configuration is also smaller than that of the ML classifier.
This explains the observed phenomena that in some cases,
linear models are more robust to adversarial attacks than non-
linear models (for example, neural networks) [14]. Finally, the
curves are not smooth because of the ∞-norm in Definition 2.

Next, we present two remarks on using the 2-norm to define
sensitivity and on the necessity of Assumption A1.

Remark 4 (Classification Sensitivity Using the 2–Norm):
In Definition 2, the ∞-norm captures the largest change in
accuracy with respect to a change in a single component of
parameters vector θ . Instead, using the 2-norm to define the
sensitivity of a classification algorithm leads to

S(y; θ) =
∥∥∥∥∂A(y; θ)

∂θ

∥∥∥∥
2
, (16)

which captures the change in accuracy with respect to changes
in all the components of θ . Fig. 2(b) shows the sensitivity
versus accuracy tradeoff when sensitivity is defined using (16)
instead of (11). For this case, a strict tradeoff is observed for
all classifiers, although this may not be the case in general.
Further, the tradeoff curves are smooth.

Remark 5 (Necessity of Assumption A1): Assumption A1
is required to ensure differentiability of the sensitivity in (11),
and thus, it is required for Theorem 1. In contrast, the sensi-
tivity defined in (16) is always differentiable, and A1 is not
required in this case. We illustrate this in Fig. 2(c), where the
vector ∂A(y∗;θ)

∂θ
= [0.043, 0.024, −0.043, 0.040]T has two

elements with maximum absolute value, violating Assumption

4ML and linear classifiers are particular instances of the general classifier.

Fig. 3. Accuracy-sensitivity tradeoff curves for general classifiers with
different number of boundaries for the Gaussian hypothesis testing
problem. The parameters of the distributions are μ0 = 0, σ0 = 9,
μ1 = 9, σ1 = 4.

A1. We observe that a tradeoff at the maximum accuracy point
(denoted by the red dot) does not exist in this case using (11),
while it still exists using (16).

Next, we numerically analyze the effect of the complex-
ity (determined by the number of boundaries) of the general
classifier on the tradeoff. Fig. 3 shows the tradeoff curves
corresponding to ∞−norm sensitivity for different number of
boundaries. Ideally, the tradeoff should improve as the num-
ber of boundaries increase. Interestingly, we observe that, for
high values of accuracy (> 0.72), increasing the number of
boundaries does not improve the tradeoff, and all curves for
9 ≥ n ≥ 4 coincide. For low values of accuracy, we face
numerical difficulties in obtaining the global minimum of (15),
and therefore, we do not observe smooth and ordered points on
the curve. However, we still observe that the curves are close to
each other, and the tradeoff does not seem to improve beyond
a certain number of boundaries. Based on this, we conjecture
that there exists a fundamental tradeoff curve which cannot be
improved by increasing the number of boundaries arbitrarily.

IV. ILLUSTRATIVE EXAMPLES

In this section we illustrate numerically the implications of
Theorem 1. In particular, we consider two classification algo-
rithms with different accuracy and sensitivity, and show how
their performance degrades differently when the observations
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TABLE I
NUMERICAL RESULTS FOR BINARY CLASSIFICATION

are corrupted by an adversary. This implies that, when robust-
ness to adversarial manipulation of the observations is a
concern, classification algorithms should be designed to simul-
taneously optimize accuracy and sensitivity, and should not
operate at their point of maximum accuracy.

Consider the classification problem (1), and let

f0(x, θ0) = N (x;μ0, σ0), f1(x, θ1) = N (x;μ1, σ1). (17)

Let C1 = CML(x; 1) and C2 = CML(x; 0.46) be the classi-
fication algorithms identified by the red and green points in
Fig. 2(a), respectively. Notice that, when the observations are
not manipulated and follow the distributions (17), C1 achieves
higher accuracy and sensitivity than C2. This is also the case
when using definition (16), as illustrated in Fig. 2(b). While
the nominal distributions (17) are used to design the classi-
fiers C1 and C2, we consider an adversary that manipulates
the observations so that their true distributions are

f0(x, θ0) = N (x;μ0 + μ̄0, σ0 + σ̄0), and

f1(x, θ1) = N (x;μ1 + μ̄1, σ1 + σ̄1), (18)

where μ̄0, μ̄1, σ̄0, and σ̄1 are unknown parameters selected by
the adversary to deteriorate the accuracy of the classifiers.

To evaluate the accuracy of C1 and C2, we generate 10000
observations obeying the modified distributions (18), and com-
pute the accuracy of the classifiers as the ratio of the number
of correct predictions to the total number of observations.
We repeat this experiment 100 times, and then compute the
average accuracy of the classifiers over all trials.

Table I summarizes the results of the classification prob-
lems with C1 and C2 on the altered observations. In particular,
y1 and y2 are the decision boundaries of the classifiers, while
S(y; θ) and A(y; θ) denote their nominal sensitivity and accu-
racy. Instead, Aadv1 and Aadv2 denote the average accuracy of
the classifiers when, respectively, the adversarial parameters
are μ̄1 = μ̄0 = σ̄0 = 0, σ̄1 = 3, and μ̄0 = 1, σ̄0 = 2,
μ̄1 = −2, σ̄1 = 1.5. The results show that, although C1

exhibits higher accuracy than C2 when the observations fol-
low the nominal distributions (17), C2 outperforms C1 in both
adversarial scenarios, as supported by our analysis.

Next, we illustrate that the results of Theorem 1 can be
observed for more complex and multidimensional classifica-
tion problems. We consider the classification of hand-written
digits (0-9) using a neural network (NN). We consider a NN
with 6 layers, which uses cross entropy loss function, and we
use the MNIST dataset [15] for its training. We add a regu-
larization term to the loss function to increase the robustness
of the NN against adversarial perturbations. We train 4 NNs
using unperturbed images - NN1 without any regularization
term, and NN2, NN3 and NN4 with increasing regulariza-
tion weight coefficients. The adversarial images are computed
using the framework of [4]. The results are reported in Table II,
where Anom and Aadv denote the accuracy of a NN under clean

TABLE II
NUMERICAL RESULTS FOR DIGIT CLASSIFICATION

and adversarial images, respectively. We observe that a NN
with larger robustness (Aadv) exhibits lower accuracy (Anom),
indicating the existence of an accuracy-sensitivity tradeoff.

V. CONCLUSION AND FUTURE WORK

In this letter we show that a fundamental tradeoff exists
between the accuracy of a binary classification algorithm
and its sensitivity to adversarial manipulation of the data.
Thus, accuracy can only be maximized at the expenses of
the sensitivity to data manipulation, and this tradeoff cannot
be arbitrarily improved by tuning the algorithm’s parameters.
Directions of future interest include the extension to M-ary
testing problems, as well as the formal characterization of
the relationships between the complexity of the classification
algorithm and its accuracy versus sensitivity tradeoff.
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