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Minimum-Gain Pole Placement With Sparse
Static Feedback
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Abstract—The minimum-gain eigenvalue assignment/
pole placement problem (MGEAP) is a classical problem in
linear time-invariant systems with static state feedback. In
this article, we study the MGEAP when the state feedback
has arbitrary sparsity constraints. We formulate the sparse
MGEAP problem as an equality-constrained optimization
problem and present an analytical characterization of its
locally optimal solution in terms of eigenvector matrices
of the closed-loop system. This result is used to provide
a geometric interpretation of the solution of the nonsparse
MGEAP, thereby providing additional insights for this clas-
sical problem. Furthermore, we develop an iterative pro-
jected gradient descent algorithm to obtain local solutions
for the sparse MGEAP using a parameterization based on
the Sylvester equation. We present a heuristic algorithm
to compute the projections, which also provides a novel
method to solve the sparse eigenvalue/pole assignment
problem. Also, a relaxed version of the sparse MGEAP is
presented and an algorithm is developed to obtain approx-
imately sparse local solutions to the MGEAP. Finally, nu-
merical studies are presented to compare the properties of
the algorithms, which suggest that the proposed projection
algorithm converges in most cases.

Index Terms—Eigenvalue assignment, minimum-gain
pole placement, optimization, sparse feedback, sparse lin-
ear systems.

I. INTRODUCTION

THE eigenvalue/pole assignment problem (EAP) using
static state feedback is one of the central problems in

the design of linear time invariant (LTI) control systems (e.g.,
see [1], [2]). It plays a key role in system stabilization and
shaping its transient behavior. Given the following LTI system:

Dx(k) = Ax(k) +Bu(k) (1a)

u(k) = Fx(k) (1b)
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where x ∈ Rn is the state of the LTI system, u ∈ Rm is the con-
trol input,A ∈ Rn×n,B ∈ Rn×m, andD denotes either the con-
tinuous time differential operator or the discrete-time shift oper-
ator, the EAP involves finding a real feedback matrixF ∈ Rm×n

such that the eigenvalues of the closed-loop matrix Ac(F ) �
A+BF coincide with a given set S = {λ1, λ2, . . . , λn} that is
closed under complex conjugation.

It is well known that the existence of F depends on the
controllability properties of the pair (A,B). Furthermore, for
single input systems (m = 1), the feedback vector that assigns
the eigenvalues is unique and can be obtained using Acker-
mann’s formula [3]. On the other hand, for multi-input systems
(m > 1), the feedback matrix is not unique and there exists a
flexibility to choose the eigenvectors of the closed-loop system.
This flexibility can be utilized to choose a feedback matrix that
satisfies some auxiliary control criteria in addition to assigning
the eigenvalues. For instance, the feedback matrix can be chosen
to minimize the sensitivity of the closed-loop system to pertur-
bations in the system parameters, thereby making the system
robust. This is known as robust eigenvalue assignment problem
(REAP) [4]. Alternatively, one can choose the feedback matrix
with minimum gain, thereby reducing the overall control effort.
This is known as minimum-gain eigenvalue assignment problem
(MGEAP) [5], [6].

Recently, considerable attention has been given to the study
and design of sparse feedback control systems, where certain
entries of the matrixF are required to be zero. Feedback sparsity
typically arises in decentralized control problems for large-scale
and interconnected systems with multiple controllers [7], where
each controller has access to only some partial states of the
system. Such constraints in decentralized control problems are
typically specified by information patterns that govern which
controllers have access to which states of the system [8], [9].
Sparsity may also be a result of the special structure of a
centralized control system, which prohibits feedback from some
states to the controllers.

The feedback design problem with sparsity constraints is
considerably more difficult than the unconstrained case. There
have been numerous studies to determine the optimal feedback
control law for H2/LQR/LQG control problems with sparsity,
particularly when the controllers have access to only local
information (see [7]–[10] and the references therein). While
the optimal H2/LQR/LQG design problems with sparsity have
a rich history, studies on the REAP/MGEAP in the presence
of arbitrary sparsity constraints are lacking. Even the problem
of finding a particular (not necessary optimal) sparse feedback
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matrix that solves the EAP is not well studied. In this article, we
study the EAP and MGEAP with arbitrary sparsity constraints
on the feedback matrix F . We provide analytical characteri-
zation for the solution of sparse MGEAP and provide iterative
algorithms to solve the sparse EAP and MGEAP. We also briefly
discuss the feasibility of the sparse EAP problem.

A. Related Work

There have been numerous studies on the optimal pole
placement problem without sparsity constraints. For the REAP,
authors have considered optimizing different metrics, which
capture the sensitivity of the eigenvalues, such as the condition
number of the eigenvector matrix [4], [11]–[14], departure from
normality [15], and others [16], [17]. Most of these methods
use gradient-based iterative procedures to obtain the solutions.
For surveys and comparisons of these REAP methods, see [11],
[18], [19] and the references therein.

Early works for MGEAP, including the work in [20] and [21],
presented approximate solutions using low-rank feedback and
successive pole placement techniques. Simultaneous robust and
minimum gain pole placement was studied in [14] and [22]–[24].
For a survey and performance comparison of these MGEAP
studies, see [5] and the references therein. The regional pole
placement problem was studied in [25] and [26], where the
eigenvalues were assigned inside a specified region. While these
studies have provided useful insights on REAP/MGEAP, they
do not consider sparsity constraints on the feedback matrix.
In contrast, we study the sparse EAP/MGEAP by explicitly
including the sparsity constraints in the problem formulation
and solutions.

There have also been numerous studies on EAP with sparse
dynamic LTI feedback. The concept of decentralized fixed
modes (DFMs) was introduced in [27] and later refined in [28].
DFMs are those eigenvalues of the system that cannot be shifted
using a static/dynamic feedback with fully decentralized sparsity
pattern (i.e., the case where controllers have access only to local
states). The remaining eigenvalues of the system can be arbitrar-
ily assigned. However, this cannot be achieved in general using
a static decentralized controller and requires the use of dynamic
decentralized controller [27]. Other algebraic characterizations
of the DFMs were presented in [29] and [30]. The notion of
DFMs was generalized for an arbitrary sparsity pattern and
the concept of structurally fixed modes (SFMs) was introduced
in [31]. Graph-theoretical characterizations of SFMs were pro-
vided in [32] and [33]. As in the case of DFMs, assigning the
non-SFMs also requires dynamic controllers. These studies on
DFMs and SFMs present feasibility conditions and analysis
methods for the EAP problem with sparse dynamic feedback.
In contrast, we study both EAP and MGEAP with sparse static
controllers, assuming the sparse EAP is feasible. We remark
that EAP with sparsity and static feedback controller is in fact
important for several network design and control problems, and
easier to implement than its dynamic counterpart.

Recently, there has been a renewed interest in studying linear
systems with sparsity constraints. Using a different approach
than Pichai et al. [32], the original results regarding DFMs in [27]

were generalized for an arbitrary sparsity pattern by Alavian
and Rotkowitz in [34] and [35], where they also present a sparse
dynamic controller synthesis algorithm. Furthermore, there have
been many recent studies on minimum cost input/output and
feedback sparsity pattern selection such that the system has con-
trollability [36] and no SFMs (see [37], [38] and the references
therein). In contrast, we consider the problem of finding a static
minimum gain feedback with a given sparsity pattern that solves
the EAP.

B. Contribution

The contribution of this article is three-fold. First, we study the
MGEAP with static feedback and arbitrary sparsity constraints
(assuming feasibility of sparse EAP). We formulate the sparse
MGEAP as an equality constrained optimization problem and
present an analytical characterization of a locally optimal sparse
solution. As a minor contribution, we use this result to provide a
geometric insight for the nonsparse MGEAP solutions. Second,
we show that determining the feasibility of the sparse EAP is
NP-hard and present necessary and sufficient conditions for fea-
sibility. We develop two heuristic iterative algorithms to obtain a
local solution of the sparse EAP. The first algorithm is based on
repeated projections on linear subspaces. The second algorithm
is developed using the Sylvester equation based parameteri-
zation and it obtains a solution via projection of a nonsparse
feedback matrix on the space of sparse feedback matrices that
solve the EAP. Third, using the latter EAP projection algorithm,
we develop a projected gradient descent method to obtain a local
solution to the sparse MGEAP. We also formulate a relaxed
version of the sparse MGEAP using penalty-based optimization
and develop an algorithm to obtain approximately sparse local
solutions.

C. Article Organization

The remainder of this article is organized as follows. In
Section II, we formulate the sparse MGEAP optimization prob-
lem. In Section III, we obtain the solution of the optimization
problem using the Lagrangian theory of optimization. We also
provide a geometric interpretation for the optimal solutions of
the nonsparse MGEAP. In Section IV, we present two heuristic
algorithms for solving the sparse EAP. Furthermore, we present a
projected gradient descent algorithm to solve the sparse MGEAP
and also an approximately sparse solution algorithm for a relaxed
version of the sparse MGEAP. Section V contains numerical
studies and comparisons of the proposed algorithms. In Sec-
tion VI, we discuss the feasibility of the sparse EAP. Finally,
Section VII concludes this article.

II. SPARSE MGEAP FORMULATION

A. Preliminary Properties

We use the following properties to derive our results [39],
[40]:

P.1 tr(A) = tr(AT) and tr(ABC) = tr(CAB);
P.2 ‖A‖2F = tr(ATA) = vecT(A)vec(A);
P.3 vec(AB) = (I ⊗A)vec(B) = (BT ⊗ I)vec(A);
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P.4 vec(ABC) = (CT ⊗A)vec(B);
P.5 (A⊗B)T = AT ⊗BT and (A⊗B)H = AH ⊗BH;
P.6 1T

n(A ◦B)1n = tr(ATB);
P.7 A ◦B = B ◦A and A ◦ (B ◦ C) = (A ◦B) ◦ C;
P.8 vec(A ◦B) = vec(A) ◦ vec(B), (A ◦B)T =

AT ◦BT;
P.9 d

dX tr(AX)=AT, d
dX tr(XTX)=2X , d

dx (Ax)=A;
P.10 d(X−1) = −X−1dXX−1;
P.11 let Dxf and D2

xf be the gradient and Hessian of
f(x) : Rn → R. Then, df = (Dxf)

Tdx and
d2f = (dx)T(D2

xf)dx;
P.12 projection of a vector y ∈ Rn on the null space of A ∈

Rm×n is given by yp = [In −A+A]y.
The Kronecker sum of two square matrices A and B with

dimensions n and m, respectively, is denoted by

A⊕B = (Im ⊗A) +B ⊗ In.

We use the following notation throughout the article:
‖ · ‖2 Spectral norm.
‖ · ‖F Frobenius norm.
< ·, · >F Inner (Frobenius) product.
| · | Cardinality of a set.
Γ(·) Spectrum of a matrix.
σmin(·) Minimum singular value of a matrix.
tr(·) Trace of a matrix.
(·)+ Moore–Penrose pseudoinverse.
(·)T Transpose of a matrix.
R(·) Range of a matrix.
A > 0 Positive definite matrix A.
◦ Hadamard (elementwise) product.
⊗ Kronecker product.
(·)∗ Complex conjugate.
(·)H Conjugate transpose.
supp(·) Support of a vector.
vec(·) Vectorization of a matrix.
diag(a) n× n diagonal matrix with diagonal elements

given by n-dim vector a.
Re(·) Real part of a complex variable.
Im(·) Imaginary part of a complex variable.
1n(0n) n-dim vector of ones (zeros).
1n×m(0n×m) n×m-dim matrix of ones (zeros).
In n-dim identity matrix.
ei ith canonical vector.
Tm,n Permutation matrix that satisfies vec(AT) =

Tm,nvec(A), A ∈ Rm×n.

B. Sparse MGEAP

The sparse MGEAP involves finding a real feedback matrix
F ∈ Rm×n with minimum norm that assigns the closed-loop
eigenvalues of (1a) and (1b) at some desired locations given
by set S = {λ1, λ2, . . . , λn}, and satisfies a given sparsity con-
straints. Let F̄ ∈ {0, 1}m×n denote a binary matrix that specifies
the sparsity structure of the feedback matrix F . If F̄ij = 0 (re-
spectively F̄ij = 1), then the jth state is unavailable (respectively

available) for calculating the ith input. Thus

Fij =

{
0 if F̄ij = 0, and

� if F̄ij = 1,

where � denotes a real number. Let F̄
c � 1m×n − F̄ denote the

complementary sparsity structure matrix. Furthermore, [with a
slight abuse of notation, cf., (1a)] let X � [x1, x2, . . . , xn] ∈
Cn×n, xi 	= 0n denote the nonsingular eigenvector matrix of
the closed-loop matrix Ac(F ) = A+BF .

The MGEAP can be mathematically stated as follows:

min
F,X

1

2
||F ||2F (2)

s.t. (A+BF )X = XΛ, (2a)

F̄
c ◦ F = 0m×n, (2b)

where Λ = diag([λ1, λ2, . . . , λn]
T) is the diagonal matrix of

the desired eigenvalues. Equations (2a) and (2b) represent the
eigenvalue assignment and sparsity constraints, respectively.

The constraint (2a) is not convex in (F,X) and, therefore, the
optimization problem (2) is nonconvex. Consequently, multiple
local minima may exist. This is a common feature in various
minimum distance and eigenvalue assignment problems [41],
including the nonsparse MGEAP.

Remark 1 (Choice of norm): The Frobenius norm measures
the elementwise gains of a matrix, which is informative in
sparsity constrained problems arising, for instance, in network
control problems. It is also convenient for the analysis, particu-
larly to compute the derivatives of the cost function. �

Definition 1 (Fixed modes [27], [34]): The fixed modes of
(A,B) with respect to the sparsity constraints F̄ are those
eigenvalues of A that cannot be changed using LTI static (and
also dynamic) state feedback, and are denoted by

Γf (A,B, F̄) �
⋂

F : F ◦ F̄
c
= 0

Γ(A+BF ).

We make the following assumptions regarding the fixed
modes and feasibility of the optimization problem (2).

Assumption 1: The fixed modes of the triplet (A,B, F̄) are
included in the desired eigenvalue set S , i.e., Γf (A,B, F̄) ⊆ S .

Assumption 2: There exists at least one feedback matrix F
that satisfies constraints (2a)–(2b) for the given S .

Assumption 1 is clearly necessary for the feasibility of the
optimization problem (2). Assumption 2 is restrictive because,
in general, it is possible that a static feedback matrix with a
given sparsity pattern cannot assign the closed-loop eigenvalues
to arbitrary locations (i.e., for an arbitrary set S satisfying
Assumption 1).1 In such cases, only a few (<n) eigenvalues
can be assigned independently and other remaining eigenvalues
are a function of them. To the best of our knowledge, there
are no studies on characterizing conditions for the existence of
a static feedback matrix for an arbitrary sparsity pattern F̄ and

1Note that a sparse dynamic feedback law can assign the eigenvalues to
arbitrary locations under Assumption 1 [35].
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eigenvalue setS [42] (although such characterization is available
for dynamic feedback laws with arbitrary sparsity pattern [31],
[34], [35], and static output feedback for decentralized sparsity
pattern [43]). Thus, for the purpose of this article, we focus
on finding the optimal feedback matrix assuming that at least
one such feedback matrix exists. We provide some preliminary
results on the feasibility of the optimization problem (2) in
Section VI.

III. SOLUTION TO THE SPARSE MGEAP

In this section, we present the solution to the optimization
problem (2). To this aim, we use the theory of Lagrangian
multipliers for equality constrained minimization problems.

Remark 2 (Conjugate eigenvectors): We use the convention
that the right (respectively, left) eigenvectors (xi, xj) corre-
sponding to two conjugate eigenvalues (λi, λj) are also con-
jugate. Thus, if λi = λ∗

j , then xi = x∗
j . �

We use the real counterpart of (2a) for the analysis. For
two complex conjugate eigenvalues (λi, λ

∗
i ) and corresponding

eigenvectors (xi, x
∗
i ), the following complex equation

(A+BF )
[
xi x∗

i

]
=
[
xi x∗

i

] [λi 0
0 λ∗

i

]
is equivalent to the following real equation:

(A+BF )
[
Re(xi) Im(xi)

]
=
[
Re(xi) Im(xi)

][ Re(λi) Im(λi)
−Im(λi) Re(λi)

]
.

For each complex eigenvalue, the columns [xi x∗
i ] of X are

replaced by [Re(xi) Im(xi)] to obtain a real XR, and the

submatrix
[
λi 0
0 λ∗

i

]
of Λ is replaced by

[ Re(λi) Im(λi)
−Im(λi) Re(λi)

]
to

obtain a real ΛR. The real eigenvectors in X and XR, and
real eigenvalues in Λ and ΛR coincide. Clearly, XR is not the
eigenvector matrix of A+BF (cf., Remark 4), and X can be
obtained through the columns of XR. Thus, (2a) becomes

(A+BF )XR = XRΛR, (3)

and XR replaces the optimization variable X in (2). In the
theory of equality constrained optimization, the first-order op-
timality conditions are meaningful only when the optimal point
satisfies the following regularity condition: the Jacobian of the
constraints, defined by Jb, is full rank. This regularity condition
is mild and usually satisfied for most classes of problems [44].
Before presenting the main result, we derive the Jacobian and
state the regularity condition for the problem (2).

Computation of Jb requires vectorization of the matrix con-
straints (3) and (2b). For this purpose, letxR � vec(XR) ∈ Rn2

,
f � vec(F ) ∈ Rmn, and let z � [xT

R, f
T]T be the vector con-

taining all the independent variables of the optimization prob-
lem. Furthermore, let ns denote the total number of feedback
sparsity constraints (i.e., number of 1’s in F̄

c
)

ns = |{(i, j) : F̄
c
= [̄f

c
ij ], f̄

c
ij = 1}|.

Note that the constraint (2b) consists of ns nontrivial sparsity
constraints, and can be equivalently written as

Qf = 0ns
, (4)

where Q = [eq1 eq2 . . . eqns
]T ∈ {0, 1}ns×mn with {q1, . . . ,

qns
} = supp(vec(F̄

c
)) being the set of indices indicating the

ones in vec(F̄
c
).

Lemma 1 (Jacobian of the constraints): The Jacobian of the
equality constraints (2a)–(2b) is given by

Jb(z) =

[
Ac(F )⊕(−ΛT

R) XT
R⊗B

0ns×n2 Q

]
. (5)

Proof: We construct the Jacobian Jb by rewriting the con-
straints (3) and (2b) in vectorized form and taking their deriva-
tives with respect to z. Constraint (3) can be vectorized in the
following two different ways [using (iii) and (iv)]:

[(A+BF )⊕ (−ΛT
R)]xR = 0n2 , (6a)

[A⊕−(ΛT
R)]xR + (XT

R ⊗B)f = 0n2 . (6b)

Differentiating (6a) w.r.t. xR and (6b) w.r.t f yields the first
(block) row of Jb. Differentiating (4) w.r.t. z yields the second
(block) row of Jb. �

We now state the optimality conditions for the problem (2).
Theorem 1 (Optimality conditions): Let (X̂, F̂ ) (equivalently

ẑ = [x̂T
R, f̂

T]T) satisfy the constraints (2a)–(2b). Let L̂ = [l̂i],
i = 1, . . . , n be the left eigenvector matrix of Ac(F̂ ), and
let L̂R be its real counterpart constructed by replacing [l̂i, l̂

∗
i ]

with [Re(l̂i),−Im(l̂i)]. Let Jb(z) be defined in Lemma 1
and P (z) = In2+mn − J+

b (z)Jb(z). Furthermore, define L̄ �
4Tn,m(BTL̂R ⊗ In) and let

D̂ �
[
0n2×n2 L̄T

L̄ 2Imn

]
. (7)

Then, (X̂, F̂ ) is a local minimum of the optimization problem
(2) if and only if

F̂ = −F̄ ◦ (BTL̂X̂T), (8a)

(A+BF̂ )X̂ = X̂Λ, (8b)

(A+BF̂ )TL̂ = L̂Λ, (8c)

Jb(ẑ) is full rank, (8d)

P (ẑ)D̂P (ẑ) > 0. (8e)

Proof: We prove the result using the Lagrange theorem for
equality constrained minimization. Let LR ∈ Rn×n and M ∈
Rm×n be the Lagrange multipliers associated with constraints
(3) and (2b), respectively. The Lagrange function for the opti-
mization problem (2) is given by

L (ii)
=

1

2
tr(F TF ) + 2 1T

n[LR ◦ (Ac(F )XR −XRΛR)]1n

+ 1T
m[M ◦ (F̄c ◦ F )]1n
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(vi),(vii)
=

1

2
tr(F TF ) + 2 tr[LT

R(Ac(F )XR −XRΛR)]

+ tr[(M ◦ F̄
c
)TF ].

Necessity: We next derive the first-order necessary condition for
a stationary point. Differentiating L w.r.t. XR and setting to 0,
we get

d

dXR
L (ix)

= 2[AT
c (F )LR − LRΛ

T
R] = 0n×n. (9)

The real equation (9) is equivalent to the complex equation (8c).
Equation (8b) is a restatement of (2a) for the optimal (F̂ , X̂).
Differentiating L w.r.t. F , we get

d

dF
L (ix)

= F + 2BTLRX
T
R +M ◦ F̄

c
= 0m×n. (10)

Taking the Hadamard product of (10) with F̄
c

and using (2b),
we get (since F̄

c ◦ F̄
c
= F̄

c
)

F̄
c ◦ (2BTLRX

T
R) +M ◦ F̄

c
= 0m×n. (11)

Replacing M ◦ F̄
c

from (11) into (10), we get

F = −F̄ ◦ (2BTLRX
T
R)

(a)
= −F̄ ◦ (BTLXT)

where (a) follows from the definition ofLR andXR and Remark
2. Equation (8d) is the necessary regularity condition and follows
from Lemma 1.

Sufficiency: Next, we derive the second-order sufficient con-
dition for a local minimum by calculating the Hessian of L.
Taking the differential of L twice, we get

d2L = tr((dF )TdF ) + 4tr(LT
RBdFdXR)

(ii)
= dfTdf + 4vecT(dF TBTLR)dxR

(iii),(v)
= dfTdf + dfTL̄dx

=
1

2

[
dxT dfT

]
D

[
dx

df

]
,

where D is the Hessian [cf., (xi)] defined in (7). The suffi-
cient second-order optimality condition for the optimization
problem requires the Hessian to be positive definite in the
kernel of the Jacobian at the optimal point [44, Ch. 11]. That
is, yTDy > 0 ∀y : Jb(z)y = 0. This condition is equivalent to
P (z)DP (z) > 0, since Jb(z)y = 0 if and only if y = P (z)s
for a s ∈ Rn2+mn [44]. Since the projection matrix P (z) is
symmetric, (8e) follows. �

Observe that the Hadamard product in (8a) guarantees that the
feedback matrix satisfies the sparsity constraints given in (2b).
However, the optimal sparse feedback F̂ cannot be obtained by
sparsification of the optimal nonsparse feedback. The optimality
condition (8a) is an implicit condition in terms of the closed-loop
right and left eigenvector matrices. Next, we provide an explicit
optimality condition in terms of {L̂, X̂}.

Corollary 1 (Stationary point of (2)): Ẑ � [X̂T, L̂T]T is a
stationary point of the optimization problem (2) if and only if

ĀẐ − ẐΛ = B̄1[F ◦ (B̄T
1 ĪẐẐTB̄2)]B̄

T
2 Ẑ, (12)

where

Ā �
[

A 0n×n

0n×n AT

]
, B̄1 �

[
B 0n×n

0n×m In

]
,

B̄2 �
[

In 0n×m

0n×n B

]
, F �

[
F̄ 0m×m

0n×n F̄
T

]
, and

Ī �
[
0n×n In

In 0n×n

]
.

Proof: Combining (8b) and (8c) and using ΛT = Λ, we get[
AX̂ − X̂Λ

ATL̂− L̂Λ

]
= −

[
BF̂X̂

F̂ TBTL̂

]

⇒ ĀẐ − ẐΛ = −B̄1

[
F̂ 0

0 F̂ T

]
B̄T

2 Ẑ

= B̄1

[
F̄ ◦ (BTL̂X̂T) 0

0 F̄
T ◦ (X̂L̂TB)

]
B̄T

2 Ẑ

= B̄1

(
F ◦
{
B̄T

1

[
L̂X̂T 0

0 X̂L̂T

]
B̄2

})
B̄T

2 Ẑ

= B̄1

(
F ◦
{
B̄T

1 Ī(ẐẐT ◦ Ī)B̄2

})
B̄T

2 Ẑ

= B̄1{F ◦ (B̄T
1 ĪẐẐTB̄2)}B̄T

2 Ẑ,

where the equalities follow from the Hadamard product. �
Remark 3 (Partial spectrum assignment): The results of The-

orem 1 and Corollary 1 are also valid when specifying only
p < n eigenvalues (the remaining eigenvalues are functionally
related to them; also see the discussion below Assumption 2). In
this case, Λ ∈ Cp×p, X̂ ∈ Cn×p, and L̂ ∈ Cn×p. While partial
assignment may be useful in some applications, in this article,
we focus on assigning all the eigenvalues. �

Remark 4 (General eigenstructure assignment): Although
the optimization problem (2) is formulated by considering Λ
to be diagonal, the result in Theorem 1 is valid for any general Λ
satisfying Γ(Λ) = S . For instance, we can choose Λ in a Jordan
canonical form. However, note that for a generalΛ,X will cease
to be an eigenvector matrix. �

A solution of the optimization problem (2) can be obtained by
numerically/iteratively solving the matrix equation (12), which
resembles a Sylvester-type equation with a nonlinear right side,
and using (8a) to compute the feedback matrix. The regularity
and local minimum of the solution can be verified using (8d)
and (8e), respectively. Since the optimization problem is not
convex, only local minima can be obtained via this procedure.
To improve upon the local solutions, the procedure can be
repeated for different initial conditions to solve (12). However,
convergence to a global minimum is not guaranteed.

The convergence of the iterative techniques to solve (12)
depends substantially on the initial conditions. If they are not
chosen properly, convergence may not be guaranteed. Further-
more, the solution of (12) can also represent a local maxima.
Therefore, instead of solving (12) directly, we use a different
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approach based on the gradient descent procedure to obtain a
locally minimum solution. Details of this approach and corre-
sponding algorithms are presented in Section IV.

A. Results for the Nonsparse MGEAP

In this section, we present some results specific to the case
when the optimization problem (2) does not have any sparsity
constraints (i.e., F̄ = 1m×n). Although the nonsparse MGEAP
has been studied previously, these results are novel and further
illustrate the properties of an optimal solution.

We begin by presenting a geometric interpretation of the
optimality conditions in Theorem 1 with B = In, i.e., all the
entries of A can be perturbed independently. In this case, the
optimization problem (2) can be written as

min
X

1

2
||A−XΛX−1||2F . (13)

Since A and R(X) � XΛX−1 are elements (or vectors) of
the matrix inner product space with Frobenius norm, a solution
of the optimization problem (13) is given by the projection
of A on the manifold M � {R(X) : X is nonsingular}. This
projection can be obtained by solving the normal equation,
which states that the optimal error vector F̂ = A− X̂ΛX̂−1

should be orthogonal to the tangent plane of the manifold M
at the optimal point X̂ [45]. The next result shows that the
optimality conditions derived in Theorem 1 are in fact the normal
equations for the optimization problem (13).

Lemma 2 (Geometric interpretation): Let F̄ = 1m×n and
B = In. Then, (8a)–(8c) are equivalent to the following normal
equation:

< F̂ , TM(X̂) >F = 0, (14)

where TM(X) denotes the tangent space of M at X .
Proof: We begin by characterizing the tangent space TM(X),

which is given by the first-order approximation of R(X)

R(X + dX) = (X + dX)Λ(X + dX)−1

(x)
= R(X) + dXΛX−1 −XΛX−1dXX−1

+ higher order terms.

Thus, the tangent space is given by

TM(X) = {Y ΛX−1 −XΛX−1Y X−1 : Y ∈ Cn×n}.

Necessity: Using F̂ given by (8a), we get

< F̂ , TM(X̂) >= tr(F̂ T(Y ΛX̂−1 − X̂ΛX̂−1Y X̂−1))

= −tr(X̂L̂TY ΛX̂−1) + tr(X̂L̂TX̂ΛX̂−1Y X̂−1)

(i)
= − tr(L̂TY Λ) + tr(L̂TX̂ΛX̂−1Y )

(a)
= − tr(L̂TY Λ) + tr(ΛL̂TX̂X̂−1Y )

(i)
= 0,

where (a) follows from the fact that Λ and L̂TX̂ commute.
Sufficiency: From (14), we get

tr(F̂ T(Y ΛX̂−1 − X̂ΛX̂−1Y X̂−1)) = 0

(i)⇒ tr[(ΛX̂−1F̂ T − X̂−1F̂ TX̂ΛX̂−1)Y ] = 0.

Since the aforementioned equation is true for all Y ∈ Cn×n, we
get

ΛX̂−1F̂ T − X̂−1F̂ TX̂ΛX̂−1 = 0n×n

⇒ X̂ΛX̂−1F̂ T = F̂ TX̂ΛX̂−1

⇒ Ac(F̂ )F̂ T = F̂ TAc(F̂ ).

Thus, Ac(F̂ ) and F̂ T commute and have common left and right
eigenspaces [46], i.e., F̂ T = −X̂GX̂−1 = −X̂L̂T, where G is
a diagonal matrix. �

Next, we show the equivalence of the nonsparse MGEAP for
two orthogonally similar systems.

Lemma 3 (Invariance under orthogonal transformation): Let
F̄ = 1m×n and (A1, B1), (A2, B2) be two orthogonally similar
systems such thatA2 = PA1P

−1 andB2 = PB1, withP being
an orthogonal matrix. Let optimal solutions of (2) for the two
systems be denoted by (X̂1, L̂1, F̂1) and (X̂2, L̂2, F̂2), respec-
tively. Then

X̂2 = PX̂1, L̂2 = PL̂1, F̂2 = F̂1P
T, and

||F̂1||F = ||F̂2||F . (15)

Proof: From (8b), we have

(A2 +B2F̂2)X̂2 = X̂2Λ

⇒ (PA1P
−1 + PB1F̂1P

T)PX̂1 = PX̂1Λ

⇒ (A1 +B1F̂1)X̂1 = X̂1Λ.

Similar relation can be shown between L̂1 and L̂2 using (8c).
Next, from (8a), we have

F̂2 = −BT
2 L̂2X̂

T
2 = −BT

1 L̂1X̂
T
1P

T = F̂1P
T.

Finally, ||F̂1||2F = tr(F̂ T
1 F̂1)

(i)
= tr(F̂ T

2 F̂2) = ||F̂2||2F . �
Recall from Remark 3 that Theorem 1 is also valid for

MGEAP with partial spectrum assignment. Next, we consider
the case when only one real eigenvalue needs to assigned for
the MGEAP while the remaining eigenvalues are unspecified.
In this special case, we can explicitly characterize the global
minimum of (2), as shown in the next result.

Corollary 2 (One real eigenvalue assignment): Let F̄ =
1m×n, Λ ∈ R, and B = In. Then, the global minima of the op-
timization problem (2) is given by F̂gl = −σmin(A− ΛIn)uv

T,
where u and v are unit-norm left and right singular vectors,
respectively, corresponding to σmin(A− ΛIn). Furthermore,
‖F̂gl‖F = σmin(A− ΛIn).

Proof: Since Λ ∈ R, X̂ ∈ Rn � x̂ with ‖x̂‖2 = 1, and L̂ ∈
Rn � l̂. Let l̂ = β

ˆ̃
l where β � ‖l̂‖2 > 0. Substituting F̂ =

−l̂x̂T from (8a) into (8b)–(8c), we get

(A− l̂x̂T)x̂ = x̂Λ ⇒ (A− ΛIn)x̂ = β
ˆ̃
l and

(AT − x̂l̂T)l̂ = l̂Λ ⇒ (A− ΛIn)
Tˆ̃l = βx̂.

The aforementioned two equations imply that the unit norm

vectors x̂ and ˆ̃
l are left and right singular vectors of A− ΛIn

associated with the singular value β. Since ‖F̂‖2F = tr(F̂ TF̂ ) =
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tr(x̂l̂T l̂x̂T) = β2, we pick β as the minimum singular value of
A− ΛIn. �

We conclude this section by presenting a brief comparison
of the nonsparse MGEAP solution with deflation techniques for
eigenvalue assignment. For B = In, an alternative method to
solve the nonsparse EAP is via the Wielandt deflation tech-
nique [47]. Wielandt deflation achieves pole assignment by
modifying the matrixA inn stepsA → A1 → A2 → · · · → An.
Step i shifts one eigenvalue of Ai−1 to a desired location λi

while keeping the remaining eigenvalues of Ai−1 fixed. This is
achieved by using the feedback F i

df = −(μi − λi)viz
T
i , where

μi and vi are any eigenvalue and right eigenvector pair of
Ai−1, and zi is any vector such that zT

i vi = 1. Thus, the overall
feedback that solves the EAP is given as Fdf =

∑n
i=1 F

i
df .

It is interesting to compare the optimal feedback expression
in (8a), F̂ = −

∑n
i=1 l̂ix̂

T
i , with the deflation feedback. Both

feedbacks are sum of n matrices, where each matrix has rank
1. However, the Wielandt deflation has an inherent special
structure and a restrictive property that, in each step, all except
one eigenvalue remain unchanged. Furthermore, each rank−1
term in F̂ and Fdf involves the right/left eigenvectors of the
closed- and open-loop matrix, respectively. Clearly, since F̂ is
the minimum-gain solution of (2), ||F̂ ||F ≤ ||Fdf ||F .

IV. SOLUTION ALGORITHMS

In this section, we present an iterative algorithm to obtain a
solution to the sparse MGEAP in (2). To develop the algorithm,
we first present two algorithms for computing nonsparse and
approximately sparse solutions to the MGEAP, respectively.
Next, we present two heuristic algorithms to obtain a sparse
solution of the EAP (i.e., any sparse solution, which is not
necessarily minimum-gain). Finally, we use these algorithms
to develop the algorithm for sparse MGEAP. Note that although
our focus is to develop the sparse MGEAP algorithm, the other
algorithms presented in this section are novel in themselves to
the best of our knowledge.

We make the following assumptions.
Assumption 3: The triplet (A,B, F̄) has no fixed modes, i.e.,

Γf (A,B, F̄) = ∅.
Assumption 4: The open- and closed-loop eigenvalue sets are

disjoint, i.e., Γ(A) ∩ Γ(Λ) = ∅, and B has full column rank.
Assumption 4 is not restrictive since if there are any common

eigenvalues in A and Λ, we can use a preliminary sparse feed-
backFp to shift the eigenvalues ofA to some other locations such
that Γ(A+BFp) ∩ Γ(Λ) = ∅. Due to Assumption 3, such Fp

always exists. Then, we can solve the modified MGEAP2 with
parameters (A+BFp, B,Λ, F̄). If F is the sparse solution of
this modified problem, then the solution of the original problem
is Fp + F .

To avoid complex domain calculations in the algorithms, we
use the real eigenvalue assignment constraint (3). For conve-
nience, we use a slight abuse of notation to denoteXR andΛR as

2Although the minimization cost of the modified MGEAP is 0.5||Fp + F ||2F ,
it can be solved using techniques similar to solving MGEAP in (2).

X and Λ, respectively, in this section. Note that the invertibility
of X is equivalent to the invertibility of XR.

A. Algorithms for the Nonsparse MGEAP

We now present two iterative algorithms to obtain nonsparse
and approximately sparse solutions to the MGEAP, respectively.
To develop the algorithms, we use the Sylvester equation based
parameterization [14], [48]. In this parameterization, instead of
defining (F,X) as free variables, we define a parameter G �
FX ∈ Rm×n as the free variable. With this parameterization,
the nonsparse MGEAP is stated as

min
G

J =
1

2
||F ||2F (16)

s.t. AX −XΛ +BG = 0 (16a)

F = GX−1. (16b)

Note that, for any givenG, we can solve the Sylvester equation
(16a) to obtain X . Assumption 4 guarantees that (16a) has a
unique solution [49]. Furthermore, we can use (16b) to obtain
a nonsparse feedback matrix F . Thus, (16) is an unconstrained
optimization problem in the free parameter G.

The Sylvester-based parameterization requires the unique so-
lutionX of (16a) to be nonsingular, which holds generically if (i)
(A,−BG) is controllable and (ii) (Λ,−BG) is observable [50].
Since the system has no fixed modes, (A,B) is controllable [27].
This implies that condition (i) holds generically for almost all
G. Furthermore, since B is of full column rank, condition (ii) is
guaranteed if (Λ,−G) is observable. These conditions are mild
and are satisfied for almost all instances as confirmed in our
simulations (see Section V).

The next result provides the gradient and Hessian of the cost
J w.r.t. to the parameter g � vec(G).

Lemma 4 (Gradient and Hessian of J): The gradient and
Hessian of the cost J in (16) with respect to g is given by

dJ

dg
=
[
(X−1⊗ Im)+(In⊗BT)Ã−T(X−1⊗ F T)

]
︸ ︷︷ ︸

� Z(F,X)

f, (17)

d2J

d2g
� H(F,X) = Z(F,X)ZT(F,X)

+ Z1(F,X)ZT(F,X) + Z(F,X)ZT
1 (F,X) (18)

where Z1(F,X) � (In ⊗BT)Ã−T(X−1F T ⊗ In)Tm,n,

and Ã � A⊕ (−ΛT).

Proof: Vectorizing (16a) using (iii) and taking the differential

Ãx+ (In ⊗B)g = 0

⇒ dx = −Ã−1(In ⊗B)dg. (19)

Note that due to Assumption 4, Ã is invertible. Taking the
differential of (16b) and vectorizing, we get

dF
(x)
= dGX−1 −GX−1︸ ︷︷ ︸

F

dXX−1 (20)
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(iii),(iv)⇒ df = (X−T ⊗ Im)dg − (X−T ⊗ F )dx

(19)
= [(X−T ⊗ Im) + (X−T ⊗ F )Ã−1(In ⊗B)]︸ ︷︷ ︸

(v)
= ZT(F,X)

dg. (21)

The differential of cost J
(ii)
= 1

2f
Tf is given by dJ=fTdf . Using

(21) and (xi), we get (17). To derive the Hessian, we compute
the second-order differentials of the involved variables. Note
that since g(G) is an independent variable, d2g = 0(d2G = 0)
[40]. Furthermore, the second-order differential of (16a) yields
d2X = 0. Rewriting (20) as dFX = dG− FdX , and taking its
differential and vectorization, we get

(d2F )X + (dF )(dX) = −(dF )(dX)

⇒ d2F = −2(dF )(dX)X−1

(iv)⇒ d2f = −2(X−T ⊗ dF )dx. (22)

Taking the second-order differential of J , we get

d2J = (df)Tdf + fT(d2f) = (df)Tdf + (d2f)Tf

(21),(22),(v)
= dgTZZTdg − 2dxT (X−1 ⊗ (dF )T)f︸ ︷︷ ︸

(v)
= vec((dF )TFX−T)

(v)
= dgTZZTdg − 2dxT(X−1F T ⊗ In)Tm,ndf

(19),(21)
= dgTZZTdg

+2dgT(In ⊗BT)Ã−T(X−1F T ⊗ In)Tm,nZ
Tdg︸ ︷︷ ︸

dgT(Z1ZT+ZZT
1)dg

.

(23)

The Hessian in (18) follows from (23) and (xi). �
The first-order optimality condition of the unconstrained

problem (16) is dJ
dg = Z(F,X)f = 0. The next result shows

that this condition is equivalent to the first-order optimality
conditions of Theorem 1 without sparsity constraints.

Corollary 3 (Equivalence of first-order optimality condi-
tions): Let F̄ = 1m×n. Then, the first-order optimality condition
Z(F̂ , X̂)f̂ = 0 of (16) is equivalent to (8a)–(8c), where

l̂ � vec(L̂) = Ã−T(X̂−1⊗ F̂ T)f̂ . (24)

Proof: The optimality condition (8b) follows from (16a)–
(16b). Equation (8a) can be rewritten as F̂ X̂−T +BTL̂ = 0
and its vectorization using (iii) yields Z(F̂ , X̂)f̂ = 0. Finally,
vectorization of the left-hand side of (8c) yields

vec[(A+BF̂ )TL̂− L̂ΛT] = vec[ATL̂− L̂ΛT + (BF̂ )TL]

(iii),(v)
= ÃT l̂ + (In ⊗ (BF̂ )T)l̂

(24)
= (X̂−1⊗ F̂ T)f̂ + (In ⊗ (BF̂ )T)Ã−T(X̂−1⊗ F̂ T)f̂

(v)
= (In ⊗ F̂ T)Z(F̂ , X̂)f̂ = 0.

To conclude, note that L̂ is the right eigenvector matrix. �

Using Lemma 4, we next present a steepest/Newton descent
Algorithm 1 to solve the nonsparse MGEAP (16) [44]. In the
algorithms presented in this section, we interchangeably use the
matrices (G,F,X) and their respective vectorizations (g, f, x).
The conversion of a matrix to the vector (and vice-versa) is not
specifically stated in the steps of the algorithms and is assumed
wherever necessary.

Steps 2 and 3 of Algorithm 1 represent the steepest and
(damped) Newton descent steps, respectively. Since, in general,
the HessianH(F,X) is not positive definite, the Newton descent
step may not result in a decrease of the cost. Therefore, we add
a Hermitian matrix V (F,X) to the Hessian to make it positive
definite [44]. We will comment on the choice of V (F,X) in
Section V. In step 1, the step size α can be determined by
backtracking line search or Armijo’s rule [44]. For a detailed
discussion of the steepest/Newton descent methods, the reader
is referred to Luenberger and Ye [44]. The computationally
intensive steps in Algorithm 1 are solving the Sylvester equation
(16a) and evaluating the inverses of X and H + V . Note that
the expression of the gradient in (17) is similar to the expression
provided in [14]. However, the expression of Hessian in (18)
is new and it allows us to implement Newton descent whose
convergence is considerably faster than steepest descent.

Next, we present a relaxation of the optimization problem
(2) and a corresponding algorithm that provides approximately
sparse solutions to the MGEAP. We remove the explicit feed-
back sparsity constraints (2b) and modify the cost function to
penalize it when these sparsity constraints are violated. Using
the Sylvester equation based parameterization, the relaxed opti-
mization problem is stated as

min
G

JW =
1

2
||W ◦ F ||2F

s.t. (16a) and (16b) hold true, (25)

where W ∈ Rm×n is a weighing matrix that penalizes the cost
for violation of sparsity constraints, and is given by

Wij =

{
1 if F̄ij = 1 and

� 1 if F̄ij = 0.

As the penalty weights of W corresponding to the sparse entries
of F increase, an optimal solution of (25) becomes more sparse
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and approaches toward the optimal solution of (2). Note that
the relaxed problem (25) corresponds closely to the nonsparse
MGEAP (16). Thus, we use a similar gradient based approach
to obtain its solution.

Lemma 5 (Gradient and Hessian of JW): The gradient and
Hessian of the cost JW in (25) with respect to g are given by

dJW
dg

= Z(F,X)W̄f, (26)

d2JW
d2g

� HW (F,X) = Z(F,X)W̄ZT(F,X)

+ Z1,W (F,X)ZT(F,X)

+ Z(F,X)ZT
1,W (F,X), (27)

where W̄ � diag(vec(W ◦W )), and

Z1,W (F,X) � (In⊗BT)Ã−T(X−1(W ◦W ◦F )T⊗In)Tm,n

Proof: Since the constraints of problems (16) and (25) coin-
cide, (19)–(22) from Lemma 4 also hold true for problem (25).

Now, JW
(ii),(viii)

= 1
2 (vec(W ) ◦ f)T(vec(W ) ◦ f) = 1

2f
TW̄f .

Thus, dJW = fTW̄df and d2JW = (df)TW̄df + fTW̄d2f .
Using the relation vec(W ◦W ◦ F ) = W̄f , the remainder of
the proof is similar to proof of Lemma 4. �

Using Lemma 5, we next present Algorithm 2 to obtain an
approximately sparse solution to the MGEAP. The step size rule
and modification of the Hessian in Algorithm 2 are similar to
Algorithm 1.

B. Algorithms for the Sparse EAP

In this section, we present two heuristic algorithms to obtain
a sparse solution to the EAP (not necessarily minimum-gain).
This involves finding a pair (F,X) that satisfies the eigenvalue
assignment and sparsity constraints (2a), (2b). We begin with a
result that combines these two constraints.

Lemma 6 (Feasibility of (F,X)): An invertible matrix X ∈
Rn×n satisfies (2a) and (2b) if and only if

ã(x) ∈ R(B̃(X)), where

ã(x) � Ãx, B̃(X) � −(XT ⊗B)PF̄, PF̄ � diag(vec(F̄)).
(28)

Furthermore, if (28) holds true, then the set of sparse feedback
matrices that satisfy (2a) and (2b) is given by

FX = {PF̄fns : B̃(X)fns = ã(x), fns ∈ Rmn}. (29)

Proof: Any feedback f that satisfies the sparsity constraint
(2b) can be written as f = PF̄fns, where fns ∈ Rmn is a
nonsparse vector.3 Vectorizing (2a) using (iii) and (iv), and
substituting f = PF̄fns, we get

Ãx = −(XT ⊗B)PF̄fns (30)

from which (28) and (29) follow. �
Based on Lemma 6, we develop a heuristic Algorithm 3 for a

sparse solution to the EAP. The algorithm starts with a nonsparse
EAP solution (F0, X0) that does not satisfy (2b) and (28). Then,
it takes repeated projections of ã(x) on R(B̃(X)) to update X
and F , until a sparse solution is obtained.

In step 1 of Algorithm 3, we update ã(x) by projecting it on
R(B̃(X)). Step 2 computes x from ã(x) using the fact that Ã is
invertible (cf., Assumption 4). Finally, the normalization in step
3 is performed to ensure invertibility of X .4

Next, we develop a second heuristic Algorithm 4 for solving
the sparse EAP problem using the nonsparse MGEAP solution in
Algorithm 1. The algorithm starts with a nonsparse EAP solution
(F0, X0). In each iteration, it sparsifies the feedback to obtain
f = PF̄fns (or F = F̄ ◦ Fns), and then solves the following
nonsparse MGEAP:

min
Fns,X

1

2
||Fns − F ||2F (31)

s.t. (A+BFns)X = XΛ (31a)

to update Fns that is close to the sparse F . This algorithm
resembles to the alternating projection method [51] to find
an intersection point of two sets. The operation F = F̄ ◦ Fns

computes the projection of Fns on the convex set of sparse
feedback matrices. The optimization problem (31) computes the
projection of F on the nonconvex set of feedback matrices that
assign the eigenvalues. Thus, using the heuristics of repeated

3Since f satisfies (4), it can also be characterized as f = (Imn −Q+Q)fns,
and thus PF̄ = Imn −Q+Q.

4Since X is not an eigenvector matrix, we compute the eigenvectors from X ,
normalize them, and then recompute real X .
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sparsification of the solution of nonsparse MGEAP in (31), the
algorithm obtains a sparse solution. The alternating projection
method is not guaranteed to converge in general when the sets
are not convex. However, if the starting point is close to the two
sets, convergence is guaranteed [52].

Note that a solution F̂ns of the problem (31) with param-
eters (A,B,Λ, F ) satisfies F̂ns = F + K̂ns, where K̂ns is a
solution of the optimization problem (16) with parameters
(A+BF,B,Λ). Thus, we can use Algorithm 1 to solve (31).

Remark 5 (Comparison of EAP Algorithms 3 and 4):
1) Projection property: In general, Algorithm 3 results in

a sparse EAP solution F that is considerably different
from the initial nonsparse Fns,0. In contrast, Algorithm 4
provides a sparse solution F that is close to Fns,0. This
is due to the fact that Algorithm 4 updates the feed-
back by solving the optimization problem (31), which
minimizes the deviations between successive feedback
matrices. Thus, Algorithm 4 provides a good (although
not necessarily orthogonal) projection of a given non-
sparse EAP solution Fns,0 on the space of sparse EAP
solutions.

2) Complexity: The computational complexity of Algorithm
4 is considerably larger than that of Algorithm 3. This is
because Algorithm 4 requires a solution of a nonsparse
MGEAP problem in each iteration. In contrast, Algorithm
3 only requires projections on the range space of a matrix
in each iteration. Thus, Algorithm 3 is considerably faster
as compared to Algorithm 4.

3) Convergence: Although we do not formally prove the
convergence of heuristic Algorithms 3 and 4 in this ar-
ticle, a comprehensive simulation study in Section V-
B suggests that Algorithm 4 converges in almost all
instances. In contrast, Algorithm 3 converges in much
fewer instances and its convergence deteriorates consid-
erably as the number of sparsity constraints increase (see
Section V-B). �

If the starting pointFns,0 of Algorithm 4 is “sufficiently close”
to a local minima F̂ of (2), then its iterations will converge
(heuristically) to F̂ . In this case, Algorithm 4 can be used to
solve the sparse MGEAP. However, convergence to F̂ is not
guaranteed for an arbitrary starting point.

Fig. 1. Single iteration of Algorithm 5.

C. Algorithm for Sparse MGEAP

In this section, we present an iterative projected gradient
Algorithm 5 to compute the sparse solutions of the MGEAP
in (2). The algorithm consists of two loops. The outer loop is
same as the nonsparse MGEAP Algorithm 1 (using steepest
descent) with an additional projection step, which constitutes the
inner loop. Fig. 1 represents one iteration of the algorithm. First,
the gradient Z(Fk, Xk)fk is computed at a current point Gk

(equivalently (Fk, Xk), where Fk is sparse). Next, the gradient
is projected on the tangent plane of the sparsity constraints (4),
which is given by

TF =

{
y ∈ Rmn :

[
d(Qf)

dg

]T

y = 0

}

=
{
y ∈ Rmn : QZT(F,X)y = 0

}
. (32)

From (xii), the projection of the gradient on TF
is given by PFk

Z(Fk, Xk)fk, where PFk
= Imn −

[QZT(Fk, Xk)]
+[QZT(Fk, Xk)]. Next, a move is made

in the direction of the projected gradient to obtain
Gns,k(Fns,k, Xns,k). Finally, the orthogonal projection of
Gns,k is taken on the space of sparsity constraints to obtain
Gk+1(Fk+1, Xk+1). This orthogonal projection is equivalent
to solving (31) with sparsity constraints (2b), which in turn
is equivalent to the original sparse MGEAP (2). Thus, the
orthogonal projection step is as difficult as the original
optimization problem. To address this issue, we use the
heuristic Algorithm 4 to compute the projections. Although
the projections obtained using Algorithm 4 are not necessarily
orthogonal, they are typically good (cf., Remark 5).

Algorithm 5 is computationally intensive due to the use of
Algorithm 4 in step 1 to compute the projection on the space
of sparse matrices. In fact, the computational complexity of
Algorithm 5 is one order higher than that of nonsparse MGEAP
Algorithm 1. However, a way to considerably reduce the number
of iterations of Algorithm 5 is to initialize it using the ap-
proximately sparse solution obtained by Algorithm 2. In this
case, Algorithm 5 starts near the local minimum and, thus, its
convergence time reduces considerably.

V. SIMULATION STUDIES

In this section, we present the implementation details of
the algorithms developed in Section IV and provide numerical
simulations to illustrate their properties.
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A. Implementation Aspects of the Algorithms

In the Newton descent step (step 3) of Algorithm 1, we
need to choose (omitting the parameter dependence notation) V
such that H + V is positive definite. We choose V = δImn −
Z1Z

T − ZZT
1 , where 0 < δ � 1. Thus, from (18), we have:

H + V = ZZT + εImn. Clearly, ZZT is positive semidefinite
and the small additive term εImn ensures that H + V is positive
definite. Note that other possible choices of V also exist. In step
1 of Algorithm 1, we use the Armijo rule to compute the step
sizeα. Finally, we use‖dJ

dg ‖2 < ε,0 < ε � 1 as the convergence
criteria of Algorithm 1. For Algorithm 2, we analogously choose
VW = δImn − Z1,WZT − ZZT

1,W and the same convergence
criteria and step size rule as Algorithm 1. In both algorithms,
if we encounter a scenario in which the solution X of (16a)
is singular [cf., paragraph below (16b)], we perturb G slightly
such that the new solution is nonsingular, and then continue the
iterations. We remark that such instances occur extremely rarely
in our simulations.

For the sparse EAP Algorithm 3, we use the convergence
criteria eX = ‖[In2 − B̃(X)(B̃(X))+]ã(x)‖2 < ε, 0 < ε � 1.
For Algorithm 4, we use the convergence criteria eF = ‖F −
F̄ ◦ F‖F < ε, 0 < ε � 1. Thus, the iterations of these algo-
rithms stop when x lies in a certain subspace and when the
sparsity error becomes sufficiently small (within the specified
tolerance), respectively. Furthermore, note that Algorithm 4 uses
Algorithm 1 in step 1 without specifying an initial condition
G0 for the latter. This is because in step 1, we effectively run
Algorithm 1 for multiple initial conditions in order to capture
its global minima. We remark that the capture of global minima
by Algorithm 1 is crucial for convergence of Algorithm 4.

As the iterations of Algorithm 4 progress, the sparse matrix
F achieves eigenvalue assignment with increasing accuracy. As
a result, near the convergence of Algorithm 4, the eigenvalues
of A+BF and Λ are very close to each other. This creates
numerical difficulties when Algorithm 1 is used with parameters
(A+BF,B,Λ) in step 1 (see Assumption 4). To avoid this
issue, we run Algorithm 1 using a preliminary feedback Fp, as
explained below Assumption 4.

Fig. 2. Optimization costs for a sample run of Algorithms 1, 2, and
5 (the algorithms converge to their global minima). For Algorithm 5,
number of outer iterations are reported.

Finally, for Algorithm 5, we use the following convergence
criteria: ‖PF

dJ
dg ‖2 < ε, 0 < ε � 1. We choose the stopping

tolerance ε between 10−6 and 10−5 for all the algorithms.

B. Numerical Study

We begin this section with the following example:

A =

⎡
⎢⎢⎢⎣
−3.7653 −2.1501 0.3120 −0.2484

1.6789 1.0374 −0.5306 1.3987

−2.1829 −2.5142 −1.2275 0.2833

−13.6811 −9.6804 −0.5242 2.9554

⎤
⎥⎥⎥⎦

B =

[
1 1 2 5

1 3 4 2

]T

, F̄ =

[
1 1 0 0

1 0 1 1

]

S = {−2,−1,−0.5± j}.

The eigenvalues of A are Γ(A) = {−2,−1, 1± 2j}. Thus,
the feedbackF is required to move two unstable eigenvalues into
the stable region while keeping the other two stable eigenvalues
fixed. Table I lists the nonsparse, approximately sparse, and
sparse solutions obtained by Algorithms 1, 2, and 5, respectively,
and Fig. 2 shows a sample iteration run of these algorithms. Since
the number of iterations taken by the algorithms to converge
depends on their starting points, we report the average number of
iterations taken over 1000 random starting points. Furthermore,
to obtain approximately sparse solutions, we use the weighing
matrix with Wij = w if F̄ij = 1. All the algorithms obtain three
local minima, among which the first is the global minimum.
The second column in X̂ and L̂ is conjugate of the first column
(cf., Remark 2). It can be verified that the nonsparse and sparse
solutions satisfy the optimality conditions of Theorem 1.

For the nonsparse solution, the number of iterations taken
by Algorithm 1 with steepest descent are considerably larger
than the Newton descent. This is because the steepest descent
converges very slowly near a local minimum. Therefore, we
use Newton descent steps in Algorithms 1 and 2. Next, observe
that the entries at the sparsity locations of the locally minimum
feedbacks obtained by Algorithm 2 have small magnitude. Fur-
thermore, the average number of Newton descent iterations for
convergence and the norm of the feedback obtained of Algorithm
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TABLE I
COMPARISON OF MGEAP SOLUTIONS BY ALGORITHMS 1, 2, AND 5

2 is larger as compared to Algorithm 1. This is because the
approximately sparse optimization problem (25) is effectively
more restricted than its nonsparse counterpart (16).

Finally, observe that the solutions of Algorithm 5 are sparse.
Note that Algorithm 5 involves the use of projection Algorithm
4, which in turn involves running Algorithm 1 multiple times.
Thus, for a balanced comparison, we present the total number
of Newton descent iterations of Algorithm 1 involved in the
execution of Algorithm 5.5 From Table I, we can observe that
Algorithm 5 involves considerably more Newton descent iter-
ations compared to Algorithms 1 and 2, since it involves com-
putationally intensive projection calculations by Algorithm 4.

5The number of outer iteration of Algorithm 5 are considerably less, for
instance, 20 in Fig. 2.

Fig. 3. Projection and sparsity errors for a sample run of (a) Algorithm
3 and (b) Algorithm 4, respectively.

TABLE II
CONVERGENCE PROPERTIES OF EAP ALGORITHMS 3 AND 4

One way to reduce its computation time is to initialize near
the local minimum using the approximately sparse solution of
Algorithm 2.

Fig. 3 shows a sample run of EAP Algorithms 3 and

4 for G0 =
[−1.0138 0.6851 −0.1163 0.8929
−1.8230 −2.2041 −0.1600 0.7293

]
.

The sparse feedback obtained by Algorithms 3 and 4 are

F =
[

0.1528 −2.6710 0.0000 0.0000
−0.8382 0.0000 0.1775 −0.1768

]
and F =[ 4.2595 4.2938 0.0000 0.0000

−0.2519 0.0000 −2.1258 −1.3991

]
, respectively. The pro-

jection error eX and the sparsity error eF capture the conver-
gence of Algorithms 3 and 4, respectively. Fig. 3 shows that these
errors decrease, thus indicating convergence of the algorithms.

Next, we provide an empirical verification of the convergence
of heuristic Algorithms 3 and 4. Let the sparsity ratio (SR)
be defined as the ratio of the number of sparse entries to the
total number of entries in F (i.e., SR = Number of 0′s in F̄

mn ). We
perform 1000 random executions of both the algorithms. In
each execution, n is randomly selected between 4 and 20 and m
is randomly selected between 2 and n. Then, matrices (A,B)
are randomly generated with appropriate dimensions. Next, a
binary sparsity pattern matrix F̄ is randomly generated with
the number of sparsity entries given by �SR×mn�, where
�·� denotes rounding to the next lowest integer. To ensure
feasibility (cf., Assumption 2 and discussion below), we pick
the desired eigenvalue set S randomly as follows: we select a
randomFr that satisfies the selected sparsity pattern F̄, and select
S = Γ(A+BFr). Finally, we set itermax = 1000 and select a
random starting point G0(F0, X0), and run both algorithms
from the same starting point. Let Fsol denote the feedback
solution obtained by Algorithms 3 and 4, respectively, and
let dFsol,F0

� ‖Fsol − F0‖F denote the distance between the
starting point F0 and the final solution. Since Algorithm 4 is
a projection algorithm, the metric dFsol,F0

captures its projection
performance.

Table II lists the convergence results of Algorithms 3 and 4
for three different SRs. While the convergence of Algorithm 3
deteriorates as F becomes more sparse, Algorithm 4 converges
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in almost all instances. This implies that in the context of
Algorithm 5, Algorithm 4 provides a valid projection in step
1 in almost all instances. We remark that in the rare case that
Algorithm 4 fails to converge, we can reduce the step size α
to obtain a new Gns and compute its projection. Furthermore,
we compute the average of distance dFsol,F0

over all executions
of Algorithms 3 and 4 that converge. Observe that the average
distance for Algorithm 4 is smaller than Algorithm 3. This
shows that Algorithm 4 provides considerably better projection
of F0 in the space of sparse matrices as compared to Algorithm
3 (cf., Remark 5). Note that the aforementioned simulations
focus on the convergence properties as SR changes and they
do not capture the individual effects of the number of sparsity
constraints, m and n (for instance, small systems versus large
systems).

VI. FEASIBILITY OF THE SPARSE EAP

In this section, we provide a discussion of the feasibility of
the sparse EAP, i.e., eigenvalue assignment with sparse, static
state feedback. We address certain aspects of this problem, and
leave a detailed characterization for future research.

Lemma 7 (NP-hardness): Determining the feasibility of the
sparse EAP is NP-hard.

Proof: We prove the result using the NP-hardness property
of the static output feedback pole placement (SOFPP) prob-
lem [53], which is stated as follows: for a given A ∈ Rn×n,
B ∈ Rn×m, and C ∈ Rp×n, determine if there exists a non-
sparse K ∈ Rm×p such that the eigenvalues of A+BKC
are at some desired locations. Without loss of generality, we
assume that C is full row rank. Thus, there exists an invert-
ible T = [C+ V ] ∈ Rn×n with CV = 0. Taking the similarity
transformation by T (which preserves the eigenvalues), we get

T−1(A+BKC)T = T−1AT︸ ︷︷ ︸
Ā

+T−1B︸ ︷︷ ︸
B̄

[K 0].

Clearly, the aforementioned SOFPP problem is equivalent to
a sparse EAP with matrices Ā, B̄ and sparsity pattern given
by F̄ = [1m×p 0m×(n−p)]. Thus, the NP-hardness of the sparse
EAP follows form the NP-hardness of the SOFPP problem. �

Next, we present graph-theoretic necessary and sufficient con-
ditions for arbitrary eigenvalue assignment by sparse static feed-
back. Due to space constraints, we briefly introduce the required
graph-theoretic notions and refer the reader to Reinschke [54]
for more details. Given a square matrix A = [aij ] ∈ Rn×n, let
GA denote its associated graph with n vertices, and let aij be the
weight of the edge from vertex j to vertex i. A closed directed
path (sequence of consecutive vertices) is called a cycle if the
start and end vertices coincide, and no vertex appears more than
once along the path (except for the first vertex). A set of vertex
disjoint cycles is called a cycle family. The width of a cycle
family is the number of edges contained in all its cycles.

Lemma 8 (Necessary conditions): Let H =
[
A B
F 0

]
, and let

GH be its associated graph. Let ns be the number of sparsity
constraints (zero entries) in the feedback matrix F ∈ Rm×n.
Furthermore, let Sk denote the set of cycle families of GH of

width k, with k = 1, . . . , n. Necessary conditions for arbitrary
eigenvalue assignment with sparse, static state feedback are as
follows.

i) ns ≤ (m− 1)n, that is, F has at least n nonzero entries.
ii) For each k = 1, . . . , n, there exist a nonzero entry fikjk

of F such that its corresponding edge appears in Sk.
Proof: i) Arbitrary eigenvalue assignment requires that the

feedback F should assign all the n coefficients of the char-
acteristic polynomial det(sI −A−BF ) to arbitrary values.
This requires the mapping h : Rmn−ns → Rn from the nonzero
entries of F to the coefficients of the characteristic polynomial
to be surjective, which imposes that the dimension of the domain
of h should not be less that the dimension of its codomain.

ii) Let ck, k = 1, . . . , n denote the coefficients of the polyno-
mial det(sI −A−BF ). Then, ck is a multiaffine function of
the nonzero entries ofF , which appear in the cycle families inSk

[54]. If there exists no feedback edge in Sk, then ck is fixed and
does not depend on F . Thus, arbitrary eigenvalue assignment is
not possible in this case. �

Lemma 9 (Sufficient conditions): Let H =
[A B
F 0

]
, and let

GH be its associated graph. LetSk denote the set of cycle families
of GH of width k, and let Fk denote the set of feedback edges6

contained in Sk, with k = 1, . . . , n. Then, each of the following
conditions is sufficient for arbitrary eigenvalue assignment with
sparse, static state feedback.

i) For each k = 1, . . . , n, there exist a feedback edge that
appears in Sk and not in Sj , for all j 	= k.

ii) There exists a permutation {i1, i2, . . . , in} of
{1, 2, . . . , n} such that ∅ 	= Fi1 ⊂ Fi2 ⊂ · · · ⊂ Fin .

Proof: (i) Similar to the proof of Lemma 8, if there exist a
nonzero entry fikjk that is exclusive to Sk, then such variable
can be used to assign ck arbitrarily. If this holds for k = 1, . . . , n,
then all coefficients of the characteristic polynomial can be as-
signed arbitrarily, resulting in arbitrary eigenvalue assignment.

(ii) Condition (ii) guarantees that, for j = 2, . . . , n, the co-
efficient cij depends on the feedback variables of cij−1

and on
some additional feedback variables. These additional variables
can be used to assign the coefficient cij arbitrarily. �

To illustrate the results, consider the following example:

A =

⎡
⎢⎣a11 a12 0

0 0 0

a31 0 0

⎤
⎥⎦ , B =

⎡
⎢⎣b11 0

0 b22

0 0

⎤
⎥⎦ , F =

[
f11 0 0

f21 0 f23

]
.

The corresponding graph and cycle families are shown in Fig. 4.
Note that the edges f11, f21, and f23 are exclusive to cycle
families of widths 1,2, and 3, respectively. Thus, condition (i)
of Lemma 9 is satisfied and arbitrary eigenvalue assignment

is possible. Next, consider the feedback F =
[
0 0 f13
f21 f22 0

]
.

In this case, the sets of feedback edges in the family cycles
of different widths are F1 = {f22}, F2 = {f22, f13, f21}, and
F3 = {f22, f13}. We observe that F1 ⊂ F3 ⊂ F2 [condition (ii)
of Lemma 9] and arbitrary eigenvalue assignment is possible.

6Feedback edges are those associated with the nonzero entries of F .
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Fig. 4. Graph GH and its cycle families. u1 and u2 denote the control
vertices. (a) Graph GH , where blue and orange nodes correspond to
state and control vertices, respectively. (b) Cycle families of GH . All cycle
families contain a single cycle. There are two cycle families of width 1,
and one cycle family each of width 2 and 3.

Furthermore, if F =
[
0 f12 f13
f21 0 0

]
, then F1 = F3 = ∅, and the

coefficients c1 and c3 of det(sI −A−BF ) are fixed. This vio-
lates condition (ii) of Lemma 8 and prevents arbitrary eigenvalue
assignment with the given F .

Note that the conditions in Lemmas 8 and 9 are constructive,
and can also be used to determine a sparsity pattern that guaran-
tees feasibility of the sparse EAP. We leave the design of such
algorithm as a topic of future investigation.

Remark 6 (Comparison with exiting results): We emphasize
that the conditions presented in Lemmas 8 and 9 for arbitrary
eigenvalue assignment using static state feedback are not equiv-
alent to the conditions for nonexistence of SFMs studied in
[27], [31]–[35], and [38]. The reason is that arbitrary assignment
of non-SFMs necessarily requires a dynamic controller and can-
not, in general, be achieved by a static controller. Furthermore,
our graph-theoretic results are based on the feedback edges being
suitably covered by cycle families, whereas the results in [32]
and [33] are based on the state nodes/subgraphs being suitably
covered by strong components, cycles/cactus. �

VII. CONCLUSION

In this article, we studied the MGEAP for LTI systems with
arbitrary sparsity constraints on the static feedback matrix.
We presented an analytical characterization of its locally op-
timal solutions, thereby providing explicit relations between
an optimal solution and the eigenvector matrices of the as-
sociated closed-loop system. We also provided a geometric

interpretation of an optimal solution of the nonsparse MGEAP.
Using a Sylvester-based parameterization, we developed a
heuristic projected gradient descent algorithm to obtain local
solutions to the MGEAP. We also presented two novel algo-
rithms for solving the sparse EAP and an algorithm to obtain
approximately sparse local solution to the MGEAP. Numerical
studies suggest that our heuristic algorithm converges in most
cases. Furthermore, we also discussed the feasibility of the
sparse EAP and provided necessary and sufficient conditions
for the same.

The analysis in this article is developed, for the most part,
under the assumption that the sparse EAP problem with static
feedback is feasible. A future direction of research includes a
more detailed characterization of the feasibility of the EAP, a
constructive algorithm to determine feasible sparsity patterns,
a convex relaxation of the sparse MGEAP with guaranteed
distance from optimality, and a more rigorous analysis of con-
vergence of Algorithms 4 and 5.
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