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a b s t r a c t

We study maximum-a-posteriori detectors to detect changes in the constant mean vector and the
covariance matrix of a Gaussian stationary stochastic input driving a few nodes in a network, using
remotely located sensor measurements. We show that the detectors’ performance can be analyzed
using specific input-to-output gain of the network system’s transfer function matrix and the input
statistics and sensor noise in the asymptotic measurement regime. Using this result, we study the
detector’s performance using node cutsets that separate the nodes containing inputs from a partitioned
set of nodes not containing inputs. In the absence of noise, we show that the detectors’ performance
is no better for sensors on a partitioned set than those on the cutset. Instead, in the presence of noise,
we show that the detectors’ performance can be better for sensors on a partitioned set than those
on the cutset for certain choices of edge weights. Our results quantify the extent to which input and
sensor nodes’ distance modulates detection performance via separating cutsets, and have potential
applications in sensor placement problems. Finally, we complement the theory with simulations.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

Detecting abrupt changes in inputs using remote measure-
ents is essential for the safety and security of network sys-

ems, including power, transportation, and sensor networks (Gi-
aldo, Sarkar, Cardenas, Maniatakos, & Kantarcioglu, 2017). These
hanges may result from a faulty component injecting unwanted
ignals or an adversary intentionally compromising inputs. De-
igning detectors to track input changes using tools ranging from
eometric control theory (Chen & Patton, 1999) to statistical
ignal processing (Basseville & Nikiforov, 1993) has a rich history
n the controls community. However, studying detectors’ perfor-
ance in terms of network structure and noise statistics received

imited attention in contrast to the research on estimation and
ontrol for network systems (Zhang, Han, & Yu, 2016).

✩ This material is based upon work supported in part by ARO award
W911NF-18-1-0213 and in part by UCOP award LFR-18-548175, AFOSR FA9550-
19-1-0235. The material in this paper was not presented at any conference. This
paper was recommended for publication in revised form by Associate Editor
Claudio Altafini under the direction of Editor Christos G. Cassandras.
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V. Katewa), sroy@eecs.wsu.edu (S. Roy), fabiopas@engr.ucr.edu (F. Pasqualetti).
ttps://doi.org/10.1016/j.automatica.2022.110277
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In non-networked RADAR systems, a typical maximum-a-
posteriori (MAP) detector’s performance deteriorates by increas-
ing the input-to-sensor1 nodes’ distance (Richards, Scheer, &
olm, 2019). However for network systems, in our previous work
Anguluri, Dhal, Roy, & Pasqualetti, 2016; Anguluri & Pasqualetti,
021), we numerically showed that certain MAP detectors’ per-
ormance improves with increased input-to-sensor nodes’ dis-
ance. Interestingly, this behavior manifests only when the mea-
urements are noisy. We provide a theoretical justification for
uch counter-intuitive behavior of MAP detectors for network
ystems. Our MAP detectors discriminate between the hypothe-
es H1 : w[k] ∼ N (µ1,Σ1) and H2 : w[k] ∼ N (µ2,Σ2), where
[k] is the input exciting a few network nodes, and µi and Σi

re independent of k for all i ∈ 1, 2. We consider two cases: (a)
hange in mean vectors (µ1 ̸= µ2 but Σ1 = Σ2) and (b) change
n covariance matrices (µ1 = µ2 but Σ1 ̸= Σ2). These cases
apture various faults/attacks studied in the literature (Giraldo
t al., 2017). For instance, we can model integrity attacks by
etting µ1 = 0 (nominal) and µ2 ̸= 0 (attack) in the case (a).

1 Throughout, we interchange the words sensor and output.
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Fig. 1. Network partitions induced by a network cut (or cutset).

For attacks modeled using covariance matrices, see Anguluri and
Pasqualetti (2021) and Guo, Shi, Johansson, and Shi (2018).

Related Literature: The problem of discriminating multiple hy-
othesis for stationary Gaussian signals in noise using MAP de-
ectors has a long history (Kailath & Poor, 1998; Schweppe, 1973;
an Trees & Bell, 2013). We study MAP detectors for network sys-
ems driven by stationary Gaussian signals and characterize their
ualitative behavior with respect to input-to-sensor distance us-
ng network cuts akin to the works that focused on control and
stimation problems (Liu, Slotine, & Barabási, 2013; Roy, Xue, &
undaram, 2018; Vosughi, Johnson, Xue, Roy, & Warnick, 2019).
or network dynamics with only process noise, Roy et al. (2018)
howed that the estimation performance worsens as the sensor
ocation is moved away from the input. Instead, Vosughi et al.
2019) showed that the control energy is greater for target nodes
ar away from the input. We show that this behavior also holds in
he context of input detection; however, in the presence of sensor
oise, for certain class of networks, for e.g., non-normal net-
orks (Baggio, Rutten, Hennequin, & Zampieri, 2020), we show
hat the detection performance improves as the input-to-sensor
istance increases. Finally, our work adds to the literature on
eriving exact asymptotic expressions for the error probabilities
f detection performance for stationary Gaussian signals (Sung,
ong, & Poor, 2006).

ontributions: The contribution of this work is two-fold: First,
sing sensor measurements, we develop closed-form expres-
ions for MAP detectors concerning mean change and covariance
hange problems. We then characterize detectors’ performance
s a function of network edge weights, input-to-sensor nodes’
istance, and input and noise statistics. For large measurement
orizon, we provide simpler expressions for detectors’ perfor-
ance that depend on the transfer function matrix and input and
oise statistics.
Second, for fixed input nodes set, we study detectors’ perfor-

ance using non-trivial node cutsets2 that separate the nodes
containing inputs from a partitioned set; see Fig. 1 and Defini-
tion 2. For noise-less measurements, we show that the detectors’
performance is no better for sensors on a partitioned set than
those on the cutset for any network. Instead, for the noisy case,
we show that the detection performance is better for sensors on a
partitioned set than those on the cutset for specific networks—for
e.g., non-negative networks with edge weights satisfying certain
algebraic conditions (see Section 4). For such networks, we de-
rive simple conditions based on edge weights to check if the
performance is better or worse for sensors on a cutset.

2 A set of vertices C in the graph G is referred to as cut or cutset, if all
directed paths between input and output nodes in G pass through a vertex in
C; see Fig. 1 for an illustration.
2

Potential practical applications of our results include (i) en-
forcing improved constraints on sensor placement optimization
algorithms to improve numerical algorithms’ efficiency, and (ii)
providing design guidelines to facilitate or prevent measurability
of specific nodes.

Notation: We denote the finite dimensional vectors by bold faced
symbols. The set {e1, . . . , en} denotes the canonical basis vectors
of Rn. For x = (x1, . . . , xn)T and y = (y1, . . . , yn)T, x ≤ y iff xi ≤ yi,
= 1, . . . , n. Let spec(M) and λ(M) denote the eigenspectrum and
pectral radius of M ∈ Cn×n. Denote by M1 ⊗ M2 the Kronecker
product of two matrices M1 and M2. Denote by I or In the n × n
identity matrix. Denote by M ≻ 0 (M ⪰ 0) the symmetric positive
(semi) definite matrix. Denote by M ≥ 0 the non-negative matrix.
Denote by diag(M1 · · ·Mm) the block diagonal matrix formed by
matrices M1 . . .Mm. Define the infinity norm on the space of
matrix-valued functions as ∥F (z)∥∞ := ess sup∥F (z)∥2, where
{z ∈ C : |z| = 1}. For Z1 ∼ N (0, 1) (standard normal), the
right tail probability is QN (τ ) := Pr [Z1 ≥ τ ]. For Z2 ∼ χ2(p)
(central chi-squared distribution with q degrees of freedom), let
Qχ2 (p, τ ) := Pr [Z2 ≥ τ ].

2. Preliminaries and problem setup

Consider a network represented by the digraph G := (V, E),
where V := {1, . . . , n} and E ⊆ V × V are the node and edge
sets. Let gij ∈ R be the weight assigned to the edge (i, j) ∈ E ,
and define the weighted adjacency matrix of G as G := [gij], where
gij = 0 whenever (i, j) /∈ E . Let K := {k1, . . . , kr} ⊆ V be the set
of input nodes, which receive r inputs. Let w(i, j) denote a path
on G from node i to j, and let |w(i, j)| be the number of edges of
w(i, j). Define the distance between input node set K and a set of
nodes S ⊆ V as dist(K, S) := min{|w(i, j)| : i ∈ K, j ∈ S}.

We associate to each node i a state xi ∈ R, and let the network
evolve with discrete linear dynamics

x[k + 1] = Gx[k] +Πw[k], (1)

where x = [x1 · · · xn]T ∈ Rn contains the states of the nodes
at time k ∈ N, x[0] ∼ N (0,Σ0) is the initial state. The input
matrix Π = [ek1 , . . . , ekr ] indicates location of the input nodes,
and the input w[k] ∈ Rr is governed by one of the following two
competing statistical hypotheses:

H1 : w[k]
i.i.d
∼ N (µ1,Σ1) , k = 0, 1, . . . ,N,

H2 : w[k]
i.i.d
∼ N (µ2,Σ2) , k = 0, 1, . . . ,N,

(2)

where µi ∈ Rr and Σi ∈ Rr×r (≻ 0), i ∈ {1, 2}, are known; how-
ever, the true hypothesis is unknown. For simplicity, we focus on
the binary hypothesis testing problem. By obvious modifications,
we can extend our results to multiple (finite) hypothesis testing
problem, i.e., Hi with i ≥ 2 (Poor, 1994).

As discussed in the introduction, we focus on two cases: (i)
mean shift (MS) model: µ1 ̸= µ2 but Σ1 = Σ2 ≜ Σc ; and
(ii) covariance shift (CS) model: µ1 = µ2 ≜ µc but Σ1 ̸= Σ2.
However, our network theoretic results on MAP detectors (see
Section 4) can be extended to the case of inputs with unknown
distributions; see Remark 1.

To detect the input hypothesis (H1 or H2), our MAP detectors
(see below) rely on the sensor measurements

YT
J =

[
yTJ [1] yTJ [2] · · · yTJ [N]

]
(3)

recorded from the nodes set J := {j1, . . . , jm} ⊆ V such that
dist(K,J ) ≥ d. Here, N is the detection time horizon,

yJ [k] = Cx[k] + v[k], (4)

C = [ej1 , . . . , ejm ]
T, and v[k] ∼ N (0, σ 2

v I) is the sensor noise.
Further, x[0],w[k], v[k] are uncorrelated for all k.
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For the MS and CS models, we consider a MAP and a linear
discriminant (LD) based MAP detector, resp:

MAP : Pr(H2|YJ )
Ĥ=H2
≷

Ĥ=H1

Pr(H1|YJ ) (5)

LD-MAP : Pr(H2|bTYJ )
Ĥ=H2
≷

Ĥ=H1

Pr(H1|bTYJ ), (6)

where (5) implies that the detected hypothesis Ĥ = Hi if Pr(Ĥ =

Hi|YJ ) > Pr(Ĥ = H̸=i|YJ ), for i ∈ {1, 2}. Similar interpretation
holds for (6). We discuss the role of vector b in (6) in Section 3.

Error probabilities of (5) and (6) are computed using

Pe(J ) =

∑
i∈{1,2}

Pr(Ĥ ̸= Hi|Hi)πi, (7)

where πi = Pr(Hi) is the prior probability. The smaller the Pe(J ),
he better is the detection performance.

In Sections 3 and 4, we rigorously characterize MAP and LD-
AP detectors’ performance from two view points:
(1) Algebraic aspects of detectors: for the input nodes set K,

e characterize the detection performance (7)—in terms of the
djacency matrix G, the input and noise statistics, and the sensor

locations J .
(2) Network analysis of detectors: for the input nodes set K,

e study the qualitative behavior of the detectors with respect
o input-to-sensor nodes distance.

. Algebraic analysis of MAP detectors

We address our first objective; that is, to develop algebraic
xpressions for MAP and LD-MAP detectors’ decision rules and
heir corresponding error probabilities. We prefer LD-MAP de-
ector for the CS model because its error probability is easy to
haracterize. Consequently, the LD-MAP detector’s performance
ay be sub-optimal; see Remark 2. The results in this section
re based on the standard results of hypothesis testing using
auss–Markov models. The asymptotic characterization of MAP
nd LD-MAP detectors’ error probability (Lemma 3.4) is novel.

efinition 1 (Optimal LD-MAP Detector). An LD-MAP detector (6)
s optimal if b is replaced by b∗, where

∗
= argmax

b∈RmN
π1E

[
ln

fH1 (y)
fH2 (y)

⏐⏐⏐⏐H1

]
+ π2E

[
ln

fH2 (y)
fH1 (y)

⏐⏐⏐⏐H2

]
  

I(H1;H2)

,

here, for i ∈ {1, 2}, πi denotes the prior and fHi (y) is the density
f y = bTYJ given the hypothesis Hi.

Given a vector b, the divergence measure I(H1;H2) indicates
ow well an LD-MAP detector performs in discriminating be-
ween H1 and H2. By maximizing I(H1;H2) over b, we are indeed
inding a best linear detector among the class of LD-MAP detec-
ors parameterized by b. With a slight abuse of notation, denote
∗ by b, and refer to the optimal LD-MAP detector as the LD-MAP
etector.

roposition 3.1. For YJ in (3) and Hi in (2), we have

µi ≜ E[YJ |Hi] = F
(
1N ⊗ µi

)
and

Σ i ≜ Cov[YJ |Hi] = OΣ0OT
+ F (IN ⊗Σi)FT

+ σ 2
v I,

(8)

here the observability and impulse response matrices are

=

⎡⎢⎢⎣
CG
CG2

...
N

⎤⎥⎥⎦ ;F =

⎡⎢⎢⎣
CΠ 0 . . . 0
CGΠ CΠ . . . 0
...

...
. . .

...
N−1 N−2

⎤⎥⎥⎦ . (9)
CG CG Π CG Π . . . CΠ
3

Proof. See Appendix. ■

Lemma 3.2 (Decision Rules of MAP and LD-MAP Detectors). Let
π1, π2 ̸= 0 and define γ = ln(π1/π2). Let (µi,Σi) and (µi,Σ i)
e as in (2) and (8). Then,

(i) The MAP detector of the MS model is given by:(
2µT

∆Σ
−1
c

)
YJ

Ĥ=H2
≷

Ĥ=H1

2γ + µT
∆Σ

−1
c (µ1 + µ2) , (10)

where µ∆ = µ2 − µ1 and Σ c ≜ Σ1 = Σ1.
(ii) The LD-MAP detector of the CS Model is given by:

ln
(
d1
d2

)
− 2γ

Ĥ=H2
≷

Ĥ=H1

(y − bTµc)
2
[
1
d2

−
1
d1

]
, (11)

where y = bTYJ , di = bTΣ ib, and µc ≜ µ1 = µ2.

roof. See Appendix. ■

Using (7) and Lemma 3.2, we obtain tractable error probability
xpressions for MAP and LD-MAP detectors.

ssumption 3.3. System (1) is asymptotically stable, i.e., ρ(G) <
, x[0] = 0, and π1 = π2 = 0.5. Further,

(i) for the MS model, limN→∞

√
N∥µ2 − µ1∥2 = c , where

0 < c < ∞, and Gk
= 0 for some k ∈ N.

(ii) for the CS model, Σ1 ≻ 0 and Σ2 = 0.

Assumptions x[0] = 0 and πi = 0.5 are for the ease of pre-
sentation. Instead, assumption

√
N∥µ2 − µ1∥2 → c holds when

µi = O(c/
√
N), and it ensures that Pem (J ) < πi. This assump-

tion is standard in the theory of local asymptotically normality
for obtaining limiting expressions of the decision rules (van der
Vaart, 1998, Chapter 7.5). Assumption Gk

= 0 helps suppress the
error term in computing η (14). If Gk

̸= 0, η should be replaced
with η̂ (27). Error probabilities for networks satisfying Gk

̸= 0
re visualized in Section 5.

emma 3.4 (Probability of Error). Let T (z) = C(zI −G)−1Π , where
/∈ spec(G). As N → ∞, the error probabilities of MAP (10) and

D-MAP detectors (11) are

em (J ) = QN (0.5 η) (12)

Pev (J ) = 0.5
[
1 − Qχ2 (1, τ )

]
+ 0.5Qχ2 (1, τR) , (13)

here τ = ln R/(R − 1),
2

= Nµ̃T
∆

(
[LTL + σ 2

v I]
−1LTL

)
µ̃∆. (14)

R = 1 + σ−2
v ∥T (z)Σ

1
2
1 ∥

2
∞
, (15)

Furthermore, L = T (1)Σ
1
2
c and µ̃∆ = Σ

−
1
2

c [µ2 − µ1], and Σ
1
2
c and

1
2
1 are the positive square roots of Σc and Σ1.

Proof. See Appendix. ■

Corollary 3.5 (Spatially Identical Input Statistics). Let Hi in (2) be
w[k] ∼ N (µi1, σ 2

i I), where µi and σ 2
i are scalars. For the MS model,

with σc ≜ σ1 = σ2, we have

η2s =
(
Nµ2

∆

)
1T

[σ 2
c L

TL + σ 2
v I]

−1LTL1, (16)

where µ∆ = µ2 − µ1( ̸= 0), and L = T (1). For the CS model with
σ 2
1 > σ 2

2 and µ1 = µ2, we have

Rs =
σ 2
1 ∥T (z)∥∞ + σ 2

v

2 2
. (17)
σ2 ∥T (z)∥∞ + σv
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Fig. 2. Suboptimality of the LD-MAP detector.

Proof. Similar to the proof of Lemma 3.4 ■

The error probabilities for the setting in Corollary 3.5 can be
btained by replacing ηs with η in (12) and Rs with R in (13). In
he above corollary, we do need Σ2 = 0.

The error probability expressions given in Lemma 3.4 and
orollary 3.5 are valid even when N is finite. However, in this
ase, η and R are complicated functions of G, albeit can be com-
uted numerically (see Section 5). Instead, as we let N → ∞, η
epends on G via a quadratic form of the transfer function matrix
(z), and R depend on G via the ∥T (z)∥∞-norm. Thus, we can
nterpret η and R as a measure of system gain due to the input,
nd the gain is inversely related to the error probability as shown
elow.

roposition 3.6. Pem (J ) and Pev (J ) are decreasing in η (or ηs) and
(or Rs), respectively.

roof. See Appendix. ■

Proposition 3.6 helps study the MAP and LD-MAP detectors’
erformance as a function of sensor nodes. This fact will be
xploited greatly in the next section.

emark 1 (LD-MAP Detector for Other Covariance Matrix Forms).
y adapting the proof of Lemma 3.4, we can easily derive error
robability expression for the case Σ1 = 0 and Σ2 ≻ 0. For
1 ̸= 0 and Σ2 ̸= 0, see Scharf (1991). If Σ1 and Σ2 in (8) are
imultaneously diagonalizable, an expression of R similar to (17)
ay be obtained. □

emark 2 (Suboptimal LD-MAP Detectors). In general, LD-MAP
etectors are sub-optimal. To see this consider the following
xample: Let H1 : y ∼ N (0, σ 2

v IN ) and H2 : y ∼ N (0, K (p)+σ 2
v IN ),

here K (p) = σ 2 ∑p
j=1 eje

T
j and 1 ≤ p ≤ N . Then, from (5) and

(7)

PMAP
e = 0.5

[
1 − Qχ2 (p, pτ1)

]
+ 0.5Qχ2 (p, pτ2) , (18)

here τ1 = (σ 2
v /σ

2) ln(1 + σ 2/σ 2
v ) and τ2 = (1 + σ 2

v /σ
2) ln(1 +

2/σ 2
v ). To obtain PLD-MAP

e , we set p = 1 in (18). Fix σ 2 and σ 2
v and

ote that PMAP
e is decreasing in p. Instead, p do not effect PLD-MAP

e
nless σ 2 or σ 2

v depends on p. Fig. 2 illustrates this behavior for
= 2p and σv = 1. □
4

. Network analysis of MAP detectors

This section addresses our second objective: how does the
nput-to-output nodes’ distance modulate the detection perfor-
ance? To this aim, we introduce the notion of node cutsets (see
elow) that help provide sufficient conditions to determine if the
etection performance is better (or worse) for the sensor nodes
loser to the input nodes.

efinition 2 (Node Cutset). For graph G := (V, E) with input
nodes K, the nodes Cd ⊆ V , with d ≥ 1, form a node cutset
if there exist a non empty source set S ⊆ V and a non empty
partitioned set P ⊆ V such that V = S ⊔ Cd ⊔P , where ⊔ denotes
the disjoint union, and

(i) K ⊆ S and dist(K, Cd) ≥ d, and
(ii) every path from S to P contains a node in Cd.

We visualize Definition 2 for the network in Fig. 1. For the
input nodes {1, 2}, a cutset is C1 = {4, 5, 6}. However, {5, 6, 7}
is not a cutset because it fails to satisfy (ii).

We state the first network-theoretic result for our detectors
assuming noise-less measurements (σ 2

v = 0).

Theorem 4.1 (Detection Performance of Noise Less Sensors on the
Cutset Vs the Partitioned Set). Suppose that F (9) is full row rank.
Let σ 2

v = 0 and consider the general detection problem in (2). Let
Pe (Cd) and Pe (P) be evaluated using (7). Then, Pe (Cd) ≤ Pe (P).

Proof. See the extended version (Anguluri, Katewa, Roy, &
Pasqualetti, 2020). ■

The full row-rank assumption ensures that Σi
−1

(8) exists
when σ 2

v = 0; hence, under H1 and H2, the probability densities
of measurements are well-defined. The preceding theorem is
generic in the sense that we do need the measurements to be
Gaussian. Thus, the assertion in Theorem 4.1 holds for MS and
CS models. Finally, Theorem 4.1 is valid even when P is replaced
with P ∪ C̃d, where C̃d ⊆ Cd.

Theorem 4.1 says that sensor nodes near the input nodes
achieve better detection performance than those far away from
the inputs, irrespective of adjacency matrix G entries and the mea-
surement horizon N . The closeness is understood in the sense of
node cutsets, since d ≤ dist(K, Cd) < dist(K,P). Thus if cutsets
of size at most r (the number of inputs) exist in a network and
σ 2
v = 0, we should place sensors on the cutsets.
We consider the case of noisy measurements (σ 2

v > 0). Unlike
he noise less case, results for the noisy case will be specific to the
AP and LD-MAP detectors. Extensions to the more general cases
re mentioned in Remark 3. For the cutset Cd, let xc[k], xs[k], and

xp[k] denote the states of Cd, S , and P , resp. Then, (1) can also be
xpressed as[xs[k + 1]
xc[k + 1]
xp[k + 1]

]
=

[Gss Gsc 0
Gcs Gcc Gcp
0 Gpc Gpp

][xs[k]
xc[k]
xp[k]

]
+

[ws[k]
0
0

]
. (19)

From (19), see that the states of Cd drive the states of P:

xp[k + 1] = Gppxp[k] + Gpcxc[k]. (20)

Theorem 4.2 (Performance of Noisy Sensors on the Node Cutset Vs
the Partitioned Set). Let σ 2

v = 0. Let Gpp and Gpc in (20) satisfy
pec(Gpp) ∩ {z ∈ C : |z| = 1} = φ. Let ρ(z) and ρ(z) be the
maximum and minimum singular values of Ts(z) = (zI − Gpp)−1Gpc .
Let Pem (Cd) (12) and Pev (Cd) (13) be the error probabilities associated
he cutset Cd. Instead, let Pem (P) and Pev (P) be the error probabilities
associated with the partitioned set P . Then
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(1a) If ρ(1) ≤ 1, then Pem (Cd) ≤ Pem (P).
(1b) If ρ(1) > 1, then Pem (Cd) > Pem (P).
(2a) If sup|z|=1 ρ(z) ≤ 1, then Pev (Cd) ≤ Pev (P).
(2b) If inf|z|=1 ρ(z) > 1, then Pev (Cd) > Pev (P).

Proof. See Appendix. ■

Notice that the sup and inf of ρ(z) and ρ(z), respectively,
re the maximum and minimum input–output gains of Ts(z).

Since xc[k] and xp[k] are linearly related (see (20)), Theorem 4.2
says that the smaller the gain of Ts(z), the better the detection
performance of sensors on Cd, and vice versa. Thus, depending
upon the entries of submatrix [Gpp Gpc], measuring the cutset Cd
may not be optimal for input detection. However, this is not the
case for noiseless measurements because the input–output gain
gets cancel in the error probability computations. To see this set
σ 2
v = 0 in (16) and (17) and note that η and R, which govern the

error probabilities, do not depend on G.
For networks that satisfy G ≥ 0, the sufficient conditions

for placing sensors on or away from the cutset Cd can be stated
directly in terms of entries in G.

Lemma 4.3 (Error Probability: Non-Negative Adjacency Matrix). Let
G ≥ 0, and define G̃ = [Gpp Gpc] ∈ Rm1×n1 , where Gpp and Gpc are
defined in (20).

(i) If ∥̃G∥∞ ≤ 1/
√
m1, then we have Pem (Cd) ≤ Pem (P) and

Pev (Cd) ≤ Pev (P).
(ii) If n1 = 1 and G̃1 ≥ 1, then Pem (Cd) ≥ Pem (P̃) and Pev (Cd) ≥

Pev (P̃), where P̃ ⊆ P .

Proof. See the extended version (Anguluri et al., 2020). ■

Notice that m1 and n1 denote the cardinalities of Cd and P . We
need to impose more restrictions on G to tackle the case n1 > 1 in
part (ii). For instance, if G is diagonally dominant (Varah, 1975),
we can show that (ii) holds for n1 > 1.

Example 1 (Networks Satisfying Hypothesis of Lemma 4.3). Con-
sider a Toeplitz network with n > 3 nodes and the adjacency
matrix

Gn×n =

⎡⎢⎢⎢⎢⎢⎢⎣

a b 0 · · · 0 0
c a b · · · 0 0
0 c a · · · 0 0
...

...
...

. . .
...

0 0 0 · · · a b
0 0 0 · · · c a

⎤⎥⎥⎥⎥⎥⎥⎦ ,
Gpc Gpp

where (a, b, c) ≥ 0. Let Cd = {3} and note that n1 = 1 and
m1 = n − 2. The hypothesis of Lemma 4.3 (i) and (ii) holds if
a + b + c ≤ 1/

√
n − 2, and a, b = 0 and c > 1, respectively.

Toeplitz networks with weights a = b = 0, and c > 1 belong to
the class of non-normal networks (Baggio et al., 2020).

We remark that our network theoretic results become rele-
vant when solving certain sensor placement problems, especially
when node cutsets can be easily identified from the connectivity
properties.

Remark 3 (Extension of Network Theoretic Results to Arbitrary
Input Distributions). We outline the steps required to extend
Theorem 4.2 to the general Gaussian detection problem and non-
Gaussian input distribution. For the former (i.e., both the mean
and covariance change), obtaining tractable error probability is
hard. However, we can study qualitative behavior of the MAP de-
tector via cutsets using Chernoff type upper bound (Van Trees &
5

Fig. 3. The graph of a directed network of size n = 10. The nodes that are to
the right of the cutset node {3} form the partitioned set.

Fig. 4. Finite, asymptotic, and estimated error probabilities of the MAP and
LD-MAP detectors for network in Fig. 3. Error probability of each node in the
partitioned set P = {4, . . . , 10} is less than that of the cutset Cd = {3}. This
esult is consistent with Lemma 4.3.

ell, 2013). A careful analysis shows that this bound is a quadratic
unction of the filtered mean and covariance matrix (8), and as

→ ∞, it depends on the spectrum of T (z) = C(zI − G)−1Π .
For the non-Gaussian input case, obtaining closed form ex-

ressions for Chernoff bounds might not be easy. Instead, we
an consider proxy detectors, such as the deflection-based detec-
or (Anguluri & Pasqualetti, 2021), that optimize a signal-to-noise
riterion instead of the error probability. In our recent work (An-
uluri & Pasqualetti, 2021), we showed that the deflection-based
etector’s performance depends on the singular values of T (z). In

either cases, for Theorem 4.2 to hold, we need to only show that
the detection performance (or the upper bound) is increasing or
decreasing in ∥T (z)∥M , for M ≻ 0.

5. Simulation results

We validate the theoretical results of our detectors on small-
and large-scale networks, for noisy measurements.

(Detectors’ performance on the partitioned nodes is better than
that of the cutset): Consider the network in Fig. 3 comprising 10
nodes with the input nodes set K = {1, 2}; cutset Cd = {3}; and
partitioned nodes set P = {4, . . . , 10}. For MS model, under the
hypothesis Hi, the input wi[k] ∼ N (µi, σ

2
c I), where µ1 = [2, 2]T,

µ2 = [1, 1]T, and σ 2
c = 1.5. For the CS model, the input wi[k] ∼

N (0, σ 2
i I2×2), where σ 2

1 = 2.0 and σ 2
2 = 1.0. We set N = 200

(measurement horizon for the finite case) and σ 2
v = 1.2 (noise

variance).
Fig. 4 illustrates the error probabilities of the detectors for

G (entries shown in Fig. 3) and G1, obtained by adding edges
{3 → 9, 6 → 10, 5 → 6} with weights (0.25, 0.3, 0.3) to the
network in Fig. 3. Here, GN

≈ 0 but GN
̸= 0. We use (12) and
1
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Fig. 5. A random network on 50 nodes (Perraudin et al., 2014).

(13) to compute the error probabilities of MS and CS models. In
the asymptotic case, the error probability parameters η and R are
given by Corollary 3.5. Instead, in the finite case, the parameters
are given by (25) and (30).

We compute the Monte Carlo estimate (MC est.) of the finite
error probability numerically for each sensor node, over 10000
and 50000 instances for upper and lower panels in Fig. 4. We
require more instances in the lower panel because GN

1 ̸= 0,
which results in significant variance profile (due to long range
dependence) among coordinates of each sample of YJ . Thus
requiring us to collect more number dependent samples.

In the upper panel of Fig. 4, note that the error between
the finite and asymptotic error probabilities is negligible. This
behavior is predicted by Lemma 3.4 because GN

≈ 0. Instead,
in the lower panel, the error is large for G1 because GN

1 ̸= 0.
However, in either cases, the qualitative behavior of the error
probability agrees with Lemma 4.3.

(Detection performance of sensors on the cutset nodes is better
than that of the sensors on the partitioned nodes):

Consider the network in Fig. 5 with G ≥ 0 For the MS model,
we let the input wi[k] ∼ N (µi1, 1.5I8×8), where µ1 = 2, µ2 = 1,
and σ 2

v = 1.2. We set N = 200.
Let J ⊆ Cd ⊔ P be such that |J | = |Cd| = 3. We label 120

subsets that satisfy this requirement as J1, . . . ,J120, such that
Pem (Jk) ≤ Pem (Jl), for k < l ≤ 120. In Fig. 6, we plot the finite
and asymptotic error probabilities as a function Ji’s for the MS
model. The error probability of the cutset Cd = {22, 30, 38} is
lesser than that of any Ji. This result agrees with Lemma 4.3(i)
because ∥̃G∥∞ < 1/

√
7 = 0.3780. A plot similar to Fig. 6 for

he CS model is provided in the extended version (Anguluri et al.,
020).

. Conclusion

We consider a MAP and an LD-MAP detector, respectively, to
etect changes in the mean vectors and the covariance matrices
f a stationary Gaussian input driving a network. For large mea-
urement horizon, we characterize the detectors’ performance in
erms of network transfer function and input and senor noise
tatistics. We then study the detection performance as a func-
ion of input-to-sensor nodes’ distance using the notion of node
utsets. Surprisingly, in the absence of sensor noise, we show
hat detectors’ performance is better if the sensors are placed
 p

6

Fig. 6. Finite and asymptotic error probabilities of the MAP detector associated
with the MS model for the network in Fig. 5. The error probability of cutset Cd
is less than that of any subset of partitioned set. This behavior is predicted by
Lemma 4.3(i).

away from the input nodes. Our numerical experiments reinforce
the theoretical results both when we do and not have access to
the input and noise statistics. For the latter scenario, we perform
Monte Carlo simulations. The closed form expressions of our de-
tectors’ performance (Lemma 3.4) in terms of cutsets leave door
to analyze optimal placement algorithms using the H2 and H∞

based optimization methods (Münz, Pfister, & Wolfrum, 2014)
and the recent randomized methods (Bopardikar, 2021). We leave
these topics for future research.
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Appendix.3

Proof of Proposition 3.1. From (1) and (4), the measurement
vector in YJ (3) can be expanded as

YJ = Ox[0] + Fw0:N−1 + v1:N , (21)

where w0:N−1 = [w[0]T, . . . ,w[N − 1]T]T and v1:N = [v[1]T,
. . , v[N]

T
]
T, and O and F are defined in the statement of the

roposition. Taking expectation and covariance of YJ in (21),
nder the hypothesis Hi, yields us µi and Σ i in (8). □

Proof of Lemma 3.2. Let ζ and z be the realizations of YJ and
, respectively. Since the input and measurement noises follow a
aussian distribution, the probability density functions of YJ (3)
nd y = bTYJ are

(ζ |Hi) ∝
1√
|Σ i|

exp
[
−

1
2
(ζ − µi)

TΣ
−1
i (ζ − µi)

]
and

g(z|Hi) ∝
1√

bTΣ ib
exp

[
−

(z − bTµi)2

2 bTΣ ib

]
, (22)

respectively, where | · | is the determinant. Define Ψ (ζ ) =

ln(f (ζ |H2)/f (ζ |H1)) and Ψ̂ (z) = ln(f (z|H2)/f (z|H1)). Then, from

3 Note: We provide only short proofs for most of our results. For detailed
roofs, see our extended paper (Anguluri et al., 2020).
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he mixed Bayes formula (Melsa & Cohn, 1978), the MAP decision
ules based on ζ and z, respectively, are given by

(ζ )
Ĥ=H2
≷

Ĥ=H1

γ and Ψ̂ (z)
Ĥ=H2
≷

Ĥ=H1

γ . (23)

part (1) Since Σ1 = Σ2 and µ1 ̸= µ2, from (8), it follows
hat Σ1 = Σ2 and µ1 ̸= µ2. Invoking this observation in f (ζ |Hi),
ields the following expression for ψ(ζ ):

Ψ (ζ ) = −0.5µT
∆Σ

−1
2 µ∆ + (y − µ1)

TΣ
−1
2 µ∆. (24)

Substitute (24) in the first decision rule of (23) and simplify the
resulting expression to obtain the MAP decision rule (10) for ζ .
Finally, replace ζ with YJ .

part (2) Notice that µ1 = µ2 and Σ1 ̸= Σ2. A similar
rocedure, as in part (1), based on g(z|Hi) (23) and the rule in

(22), yields the LD-MAP detector’s expression (10). □

Proof of Lemma 3.4. We divide the proof into two parts. In part
(1) we derive the expressions (12) and (14) Instead, in part (2)
we derive the expressions (13) and (15).

part (1) Let N < ∞, and P̂em (J ) be the error probability of the
AP detector (10). Then, it follows that

r
(
Ĥ = H2|H1

)
= Pr

(
s > µT

∆Σ
−1
c (µ1 + µ2) |H1

)
and

r
(
Ĥ = H1|H2

)
= Pr

(
s < µT

∆Σ
−1
c (µ1 + µ2) |H2

)
,

here s = 2µT
∆Σ

−1
c YJ is a linear transform of a Gaussian ran-

dom vector YJ . Thus, under Hi, it follows that s ∼ N (2µT
∆Σ

−1
c µi,

η̂2), where η̂2 = µT
∆Σ

−1
c µ∆. We can show that Pr(Ĥ = H2|H1) =

r(Ĥ = H1|H2) = QN (0.5 η̂). Thus, for finite N , from (7), we have
em (J ) = 0.5QN (̂η).
Consider the following asymptotic error probability:

em (J ) ≜ lim
N→∞

QN (0.5 η̂)
(a)
= QN

(
0.5 lim

N→∞

η̂

)
,

here (a) follows because η̂ is increasing in N (see Proposi-
ion A.1). We show that limN→∞ η̂ exists and equals η (14). Let

= 1N ⊗ µ∆ and µ∆ = µ2 − µ1, and from (8), notice that
2

= (Fm)TΣ−1
c (Fm). Define K (l) = CGlΠ , where l ∈ N, and

(i) =
∑i−1

l=0 K (l). Since ρ(G) < 1, we have limi→∞ S(i) = C(I −

)−1Π ≜ K . Let ST
N =

[
(S(1) − K )T · · · (S(N) − K )T

]
. Then,

from Proposition 3.1 we note that Fm = SNµ∆ +
[
1N ⊗ K

]
µ∆.

hus,
2

= µT
∆

[
1N ⊗ K

]T
Σ

−1
c

[
1N ⊗ K

]  
F

µ∆

+ µT
∆[ST

NΣ
−1
c SN + 2ST

NΣ
−1
c

[
1N ⊗ K

]
]µ∆  

t(SN )

, (25)

Substituting Σ c = F (IN ⊗Σc)FT
+ σ 2

v I in F yields us

= [K
T
KΣc + σ 2

v I]
−1

[NK
T
K − P], (26)

here P = M̃Σ c
−1

[1N ⊗ K ]; M̃ = K
T
[̃ST

N (I ⊗Σc)FT
+ KΣcST

N ];
and S̃N is given by permuting sub matrices of SN from bottom to
top. Thus, from (25) and (26),

η2 = Nµ̃T
∆

(
[LTL + σ 2

v I]
−1LTL

)
µ̃∆ + ϵN , (27)

where L = Σ
1
2 K and ϵN = −µT

∆[K
T
KΣc + σ 2

v I]
−1Pµ∆ + t(SN ).

We show that limN→∞ ϵN = 0. To this aim, rewrite ϵN =

µT
∆(Q

(1)
N + Q (2)

N + Q (3)
N )µ∆, where

Q (1)
= ST

[
Σ

−1
S + 2Σ−1 [

1 ⊗ K
]]
,
N N c N c N

7

Q (2)
N = [K

T
KΣc + σ 2

v I]
−1K

T
S̃T
N (I ⊗Σc)FT, and

Q (3)
N = [K

T
KΣc + σ 2

v I]
−1K

T
KΣcST

N .

We can bound ϵN using the following inequality:

2ϵN ≤ ∥µ∆∥
2
2
∑3

i=1 λmax(Q
(i)
N + (Q (i)

N )T), (28)

here λmax(·) is the max eigenvalue. Note that λmax(Q
(i)
N

+ (Q (i)
N
)T)

∞ for N ≫ N because Gk
= 0, for some k ∈ N (see

Assumption 3.3(i)). Thus, as required, limN→∞ ϵ(N) = 0 because
imN→∞ ∥µ∆∥2 = 0 (see Assumption 3.3(i)).

part (2) Let N < ∞, and P̂ev (J ) be the error probability of
11). Then, it follows that

r
(
Ĥ = H2|H1

)
= Pr

(
ln(̂R) >

[
Z2

c2
−

Z2

c1

]
|H1

)
and

Pr
(
Ĥ = H1|H2

)
= Pr

(
ln(̂R) <

[
Z2

c2
−

Z2

c1

]
|H2

)
,

where ci = bTΣ ib, for i ∈ {1, 2}, Z = bT
[YJ − µc] and

= c1/c2 > 1 (since Σ2 = 0; see Assumption 3.3(ii)). Notice
hat, under Hi, the distributions of Z and (

√
bTΣ ib)U are equal,

where U ∼ N (0, 1). Thus, Pr(Ĥ = H2|H1) = Pr
(̂
τ > U2

)
and

Pr(Ĥ = H1|H2) = Pr(U2 > τ̂ R̂), where τ̂ = ln(̂R)/(̂R − 1). Finally,
sing the fact that U2

∼ χ2(1), for finite N , from (7) it follows
hat

ev (J ) = 0.5
[
1 − Qχ2 (1, τ̂ )

]
+ 0.5Qχ2 (1, τ̂ R̂). (29)

We simplify R̂ in (29) by substituting b that maximizes the
-divergence (see Definition 1). Recall from Scharf (1991, Chapter
) the following equality:
∗

= argmax
b∈Rd

I(H1;H2) = argmax
b∈Rd

R̂

= argmax
b∈Rd

bTΣ1b
bTΣ2b

,

where =.mN . Let c = Σ
1/2
2 b, and note the following:

∗
= argmax

c∈Rd

(
c

∥c∥2

)T

Σ
−1/2
2 Σ1Σ

−1/2
2

(
c

∥c∥2

)
and

R∗
= λmax

(
Σ

−1/2
2 Σ1Σ

−1/2
2

)
= λmax

(
Σ1Σ

−1
2

)
. (30)

y abuse of notation, we denote b∗ by b and R̂∗ by R̂.
Consider the asymptotic case. As N → ∞, we have τ → τ̂ ,

→ R̂, and τR → τ̂ R̂. The limits are well defined because R̂ is
onotone in N (see Proposition A.1). Thus,

ev (J ) ≜ lim
N→∞

P̂ev (J )

= lim
N→∞

0.5
[
1 − Qχ2 (1, τ̂ )

]
+ 0.5Qχ2 (1, τ̂ R̂)

= 0.5
[
1 − Qχ2 (1, τ )

]
+ 0.5Qχ2 (1, τR),

where the last equality follows because τ̂ and τ̂ R̂ are decreasing
and increasing functions of N (Proposition A.1).

We obtain the expression of R in (15). From Assumption 3.3,
we have Σ2 = 0 and x[0] = 0. Thus, Σ2 = σ 2

v I and Σ1 =

FT
+ σ 2

v I , where F = F(IN ⊗Σ
1
2
1 ) and Σ1 = Σ

1
2
1 Σ

1
2
1 . From these

observations and (30), we may conclude that

R ≜ lim
N→∞

R̂ = lim
N→∞

λmax(FFT
+ σ 2

v I)
σ 2
v

= 1 + σ−2
v lim

N→∞

λmax(FFT)

= 1 + σ−2
v ∥T (z)Σ

1
2
1 ∥∞. (31)
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he last equality follows from the standard results on the limiting
xpressions of the upper singular values of block Toeplitz matri-
es; see Böttcher and Silbermann (1999, Chapter 6.4). For detailed
teps, please see Appendix section in Anguluri et al. (2020). □

roof of Theorem 4.2. Consider the deterministic system: x[k+

] = Gx[k] + Πu, where u is a constant vector. Since x[0] = 0
nd z /∈ spec(G) ∪ spec(Gpp), it follows that

[z] = (zI − G)−1Πu, (32a)

p[z] = (zI − Gpp)−1Gpcxc[z] = Ts(z)xc[z]. (32b)

here Gpp and Gpc are given in (20). From (32b), we have

(z)∥xc[z]∥2 ≤ ∥xp[z]∥2 ≤ ρ(z)∥xc[z]∥2. (33)

Let CC and CP be the sensor matrices of Cd and P . Then,

xc[z] = CCx[z] and xp[z] = CPx[z]. (34)

part (1) Consider parts (1a) and (1b). First, we compute ηC
and ηP using (14), and Pem (Cd) and Pem (P) using (12). Then, from
Proposition 3.6, it follows that Pem (Cd) ≤ Pem (P) if η2C ≥ η2P and
em (Cd) ≥ Pem (P) if η2C ≤ η2P . Thus to prove (1a) and (1b), we

need to show that ρ(1) < 1 H⇒ η2C ≥ η2P and ρ(1) > 1 H⇒
2
C ≤ η2P . We begin with (1a).

Let LC = CC(I − G)−1ΠΣ
1
2
c and LP = CP (I − G)−1ΠΣ

1
2
c . Then,

from (14) and the fact that [LTL+σ 2
v I]

−1LTL = I−σ 2
v [LTL+σ 2

v I]
−1,

we can express η2C and η2P as

η2C = µ̃T
∆µ̃∆ − σ 2

v µ̃T
∆

[
LTCLC + σ 2I

]−1
µ̃T
∆ and

η2P = µ̃T
∆µ̃∆ − σ 2

v µ̃T
∆

[
LTPLP + σ 2I

]−1
µ̃T
∆,

respectively. We show that ρ(1) < 1 H⇒ LTPLP ⪯ LTCLC , which
in turn implies η2C ≥ η2P . To this aim, let z = 1, and from (34),
(32a), and (32b) note the following:

∥xc[1]∥2
2 = ∥CCx[1]∥2

2 = uT

(
Σ

−
1
2

c LTCLCΣ
−

1
2

c

)
u,

xp[1]∥2
2 = ∥CPx[1]∥2

2 = uT

(
Σ

−
1
2

c LTPLPΣ
−

1
2

c

)
u.

otice that the above identities hold for any u. Thus, from (33),
e have ρ(1) < 1 H⇒ LTPLP ⪯ LTCLC as required. We can use
imilar reasoning to prove (1b). The details are omitted.
part (2) Consider parts (2a) and (2b). Let RC and RP be eval-

ated using (15) and Pev (Cd) and Pev (P) using (13). Then, from
roposition 3.6, we have Pem (Cd) ≤ Pem (P) if RC ≥ RP and
em (Cd) ≥ Pem (P) if RC ≤ RP . Thus to prove (2a), it suffices to

show that sup|z|=1 ρ(z) < 1 implies RC ≥ RP . Instead, to prove
(2b) it suffices to show that inf|z|=1 ρ(z) < 1 implies RC ≤ RP .

e begin with (2a).
Let TC(z) = CC(zI − G)−1 and TP (z) = CP (zI − G)−1. Let

= Σ
1/2
1 d, where Σ = Σ

1/2
1 Σ

1/2
1 . Then, from (15),

σ 2
v (RC − 1) = ∥TC(z)Σ

1
2
1 ∥∞

= ess sup
|z|=1

∥TC(z)Σ
1/2
1 d∥2 = ess sup

|z|=1
∥xc[z]∥2.

he last equality follows from (34) and (32a). A similar identity
olds when we replace RC with RP and xc[z] with xp[z]. Using

these facts in conjunction with the inequality in (33) and the
assumption sup|z|=1 ρ(z) < 1 yields us RC ≥ RP . We can use
similar reasoning to prove (2b). □

Proof of Proposition 3.6. First note that QN (x) is decreasing in
x, and hence, P (J ) (12) is decreasing in η (given by (14) and
em

8

(16)). Second for Pev (J ) (13), observe that R > 1 in both (15) and
(17). Thus

dτ
dR

=

( R−1
R

)
− ln R

(R − 1)2
< 0, and

d(τR)
dR

=
(R − 1)− ln R

(R − 1)2
> 0.

(35)

ence, we conclude that τ is decreasing in R. Instead τR is in-
creasing in R. From this observation and the fact that the function
Qχ2 (1, z) = Pr[Z ≥ z], where Z ∼ χ2(1), is decreasing in z, it
follows that Pev (J ) is decreasing in R. □

Proposition A.1. Let η̂2 = µT
∆Σ

−1
c µ∆, R̂ = λmax(Σ1Σ

−1
2 ) and

τ = ln(̂R)/(̂R − 1), where (µ∆, Σ c , Σ1, Σ2) are defined in the
statement of Lemma 3.2. Then, η̂, R̂, and τ̂ are increasing in N.
However, τ̂ R̂ is decreasing in N.

Proof. See the extended version (Anguluri et al., 2020). ■
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