
Opacity vs. Security in Linear Dynamical Systems
Varkey M. John, Member, IEEE and Vaibhav Katewa, Member, IEEE

Abstract— Opacity is a notion of privacy that is well-
studied in computer science and discrete-event systems.
It describes an eavesdropper’s inability to infer a system’s
“secret” states by observing the system’s outputs. In this
paper, we consider opacity in linear dynamical systems and
study four opacity classes - initial-state, current-state, K-
step and infinite-step opacity, and show that they are funda-
mentally connected to two subspaces of the linear system
- the weakly unobservable subspace and the weakly un-
constructible subspace. With these subspaces, we derive
conditions for opacity of secret states under constrained
and unconstrained state and input sets. Further, we estab-
lish that a trade-off exists between opacity and security in
the system. We show this in two ways – (i) we prove that
an opaque system always permits undetectable attacks,
(ii) we show that expanding the set of opaque states in
the system expands the set of undetectable attacks. Our
work provides the necessary mathematical foundation for
system designers to build opaque systems, while ensuring
adequate security.

I. INTRODUCTION

PRIVACY breaches in Cyber-Physical Systems (CPS) have
been used by malicious actors to inflict major damage

to the system components as seen in real-world examples in
the recent Stuxnet attack (2010) and the Ukraine power grid
attack (2015), among others [1], [2]. To prevent such attacks,
extensive research has been performed both on privacy and
security.

On the privacy side, tools such as opacity, differential
privacy, and homomorphic encryption were developed in re-
cent years to keep the transmitted data private [3]. Opacity,
in particular, was first introduced by the computer science
community in the study of discrete event systems [4], [5].
This property has recently been applied in linear dynamical
systems with continuous state space [6]–[9]. In essence, a
system is said to be opaque if its secret states cannot be
distinguished from its non-secret states with the knowledge
of just the output sequences. Hence, opaque systems keep
the secret states undisclosed to potential eavesdroppers. This
prevents the eavesdropper from obtaining the state information
and performing more focused attacks. For example, consider
the application of a household smart grid system. The power
utilization data (high vs. low) can reveal to an eavesdropper
whether individuals are present in the household. With this
information, the eavesdropper can plan the right time to rob
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the house by knowing when it is vacant. Other real-world
applications, such as to keep web services private, also use
opacity [10]. In the literature, mainly four types of opacity
are considered - initial state, current state, K-step and infinite-
step. All these types are important, as they ensure the privacy
of secret states at different time instants.

On the security side, attack detection, prevention, and
resilience have been the main focus areas of research [11].
Among these, real-time attack detection has been studied
extensively [12]. Pure cyber-security solutions are ineffective
against physics-based attacks, thereby necessitating such at-
tack detection mechanisms. In these mechanisms, the detection
is performed by comparing the system model’s output estimate
with the actual outputs using statistical tests such as CUSUM,
chi-squared, etc. An attack is detected if the test measure
crosses a given threshold set by the operator. Attack detection
mechanisms have been developed for various domains such
as power grid, remote aircraft system, etc. [13]. Though such
attack detection mechanisms are useful, there may exists a set
of attacks for a certain class of systems that cannot be detected
by any attack detector. For improving security, it is essential
that this set is minimized.

Though a large spectrum of results have emerged from
independent studies on security and privacy, research on
the impact of security on privacy, and vice-versa, is fairly
limited. Since the attacker’s goals, information availability, and
mechanisms are different from that of the eavesdropper, at first
thought it may seem that the security and privacy of a system
are unrelated. In contrast, we demonstrate that a fundamental
connection and trade-off exists between these two properties.

A. Literature Review

1) Opacity: Previous works have considered various frame-
works and approaches to characterize opacity in CPS. In [6],
the authors developed the notion of initial-state opacity for
linear dynamical systems and established its relation to other
system properties like output controllability. In contrast to
[6], we consider in our work the definition of opacity that
is more widely used in discrete event systems literature [5],
[9], [14]. This definition has a broad spectrum of real-world
applications, as shown in previous works [10], [15]. Also,
while only sufficient conditions that connect system properties
could be established for a single class of opacity in [6], in
our work, we establish necessary and sufficient conditions for
four classes of opacity (initial-state, current-state, K-step and
infinite-step opacity). Further, we show in our work that exact
verification of system opacity can be performed efficiently.
This is, in general, not possible with the opacity definition in
[6] that requires computation of reachable sets.
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A relaxed notion of “approximate opacity” was developed
in [9], where the outputs from secret and non-secret initial
states were allowed to be “close” to each other. Algorithms
to enforce opacity for robust control and distributed state
estimation in linear CPS are proposed in [7] and [8], re-
spectively. In [15]–[17], algorithms for verification of opacity
are developed. While these algorithms are useful in verifying
opacity for a broad class of systems, they provide only
sufficient conditions for verification. In contrast, in our work
we propose necessary and sufficient conditions for opacity
verification in linear systems. Further, the conditions in our
work are simpler and more efficient than those in [15]–[17].
Particularly, in our work, opacity verification involves simple
matrix manipulations which are much easier to both implement
and compute than the approaches in [15]–[17] that require
searching for and constructing control barrier functions.

In our work, we characterize opacity in linear dynamical
systems using the general definitions of opacity (e.g. [5],
[9], [14]). Further, we connect opacity with the system using
the system’s weakly unobservable and weakly unconstructible
subspaces. These subspaces were developed in connection
with the study of unknown input observability, constructibility,
etc. [18]–[21]. In contrast to these studies, in our work we
establish results specific to the notion of opacity, such as
formulating the conditions for the existence of opaque states
(for four notions of opacity), constructing the set of opaque
states that a non-secret state makes opaque, developing the
conditions required for the set of opaque states to expand when
the system matrices are changed, etc. Further, different from
previous works, we consider constraints on the state and input
sets in our work.

2) Trade-off between Security and Privacy: Closely aligned
to our work, the authors in [22] show that attack detection and
differential privacy are linked to the system property called
“input observability.” In [23], the authors discuss how differ-
ential privacy mechanism can weaken system’s security against
integrity attacks. The trade-off between local mechanisms of
security and privacy in interconnected dynamical systems is
analyzed in [24]. The security-privacy trade-off has also been
evaluated from an information-theoretic standpoint in [25], and
the authors in [26] investigate the same using a game-theoretic
approach with quantitative information flow theory. In contrast
to these works which study noise-based privacy mechanisms
(like differential privacy), we focus on a different notion of
privacy in a noiseless setting, namely, opacity.

A preliminary version of this work was published in [27],
where we considered just the notion of initial-state opacity
with the limiting assumption that the state and input sets are
unconstrained. In this paper, we consider four common notions
of opacity in the literature and connect them with different
system properties, wherein we also consider the state and input
sets to be constrained. Further, we show that all these notions
of opacity have a trade-off with security in linear systems.

B. Main Contributions

To the best of our knowledge, ours is the first work to
investigate opacity in such generality for linear dynamical

systems, and also to establish the fundamental trade-off with
attack detectability.

The main contributions of this paper are three-fold:
1. We characterize the fundamental relation between the four
notions of opacity - initial-state, current-state, K-step and
infinite-step - and the weakly unobservable and the weakly
unconstructible subspaces of the linear dynamical system.
2. We use the above subspaces to derive conditions for opacity
of secret states for the case when the state and input sets
are constrained and for the case when they are unconstrained.
Further, we formulate largest possible opaque set in a system
and characterize conditions under which the opaque sets
expand with change of system matrices.
3. We show that there exists a trade-off between opacity
and attack detectability. Specifically, if an opaque system is
subjected to attacks, all attacks cannot be detected. Further,
we show that expanding the opaque set also expands the set
of undetectable attacks under certain conditions.

The results are discussed in a running example. We illustrate
the practical application on a smart grid system.

C. Notation
We use the following notations in the paper (A,B are

matrices, S,S1,S2 are sets and V is a vector space):
Range(A) : Range space
Null(A) : Null space
A⊗B : Kronecker product
AT : Transpose
rank(A) : Rank
Im : Identity matrix of size m×m
AS : {As : s ∈ S}
S1 ⊕ S2 : Minkowski sum of sets S1 and S2

S1\S2 : Set difference
|S| : Cardinality of set S
ϕ : Empty set
V⊥ : Orthogonal complement of space V
C : Set of complex numbers
R : Set of real numbers
Z : Set of integers

II. SYSTEM AND OPACITY MODELS

A. System Model
We consider a discrete-time linear time-invariant system

(denoted by Γ):

Γ:
x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k) +Du(k),
(1)

where x ∈ Rn, y ∈ Rm, u ∈ Rp, k ∈ Z repre-
sent the state, output, normal input and time instant, re-
spectively. Let X (0) denote the set of initial states in
which the system is allowed to begin. Let U(k) =[
u(0)T u(1)T · · · u(k)T

]T
denote the input sequence

(represented as a vector) until time instant k, and let the vector
U(k1, k2) =

[
u(k1)

T u(k1 + 1)T · · · u(k2)
T
]T

denote
the subsequence of the input sequence U(k) from k1 to k2
(where k ≥ k2 ≥ k1). Further, for the input sequence U(k),
we define a truncation operator Tk0

as:

Tk0 [U(k)] =
[
u(0)T u(1)T · · · u(k0)

T
]T

,
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that truncates U(k) at k0 ≤ k. The input sequence U(k)
belongs to the set of input sequences U(k).

The state x(k) for a system starting at initial state x(0) ∈
X (0) with the input sequence U(k − 1) is denoted by

x(k) ≜ xx(0),U(k−1) = Akx(0) +NΓ
k U(k − 1), (2)

where NΓ
k is the extended controllability matrix given by:

NΓ
k =

[
Ak−1B Ak−2B · · · B

]
for k ≥ 1, (3)

and NΓ
0 = 0. Let X (k) denote the set of states that are

reachable at time k, that is,

X (k) =
{
xx(0),U(k−1) : x(0) ∈ X (0), U(k − 1) ∈ U(k − 1)

}
.

Further, let Yx(0),U(k) denote the output sequence (vector)
produced by applying the input sequence U(k) to an initial
state x(0) ∈ X (0). The output sequence can be written as:

Yx(0),U(k) = Okx(0) + FΓ
k U(k), (4)

where Ok and FΓ
k are extended observability and forced

response matrices, respectively, and are given by:

Ok =
[
CT (CA)T · · · (CAk)T

]T
for k ≥ 0, (5)

FΓ
k =


D 0 · · · 0
CB D · · · 0

...
...

. . .
...

CAk−1B CAk−2B · · · D

 for k ≥ 1, (6)

and FΓ
0 = D.

B. Opacity Model
We consider that there exists a set of secret states at time

instant k, denoted by Xs,k (Xs,k ⊆ X (k)), that a system
operator wishes to keep private from external entities. The
remaining set of non-secret states is denoted by Xns,k ≜
X (k)\Xs,k. Any element of Xns,k is not considered sensitive
to disclosure. We use xs,k and xns,k to denote individual
elements in Xs,k and Xns,k, respectively.

We consider a potential eavesdropper present in the system
whose goal is to use the outputs to determine whether the
system’s state at a particular time instant (present or past) is
in the corresponding secret set or non-secret set.

Assumption 1. We assume that the eavesdropper knows the
system matrices A,B,C,D, and the sets Xs,k and Xns,k.
Further, it has access to the system outputs y(k) but not the
inputs u(k).

Next, we provide opacity definitions corresponding to Sys-
tem Γ in (1). Let the set of output sequences for which the
system reaches the particular secret state xs,k ∈ Xs,k at time
instant k, with initial states x(0) ∈ X (0) and corresponding
l ≥ k length input sequences Us(l) ∈ Us(l), be denoted by

Yl
xs,k =

{
Yx(0),Us(l) : xx(0),Tk−1[Us(l)] = xs,k,

x(0) ∈ X (0), Us(l) ∈ Us(l)
}
. (7)

The above equation implies that any element in the set
Y l
xs,k

is an output sequence of length l(≥ k) which results
from a state trajectory whose value at time instant k is xs,k.
Similarly, let the set of output sequences for which the system
reaches any non-secret state xns,k that belongs to set X ′

ns,k ⊆

Xns,k at time instant k, with initial states x(0) ∈ X (0) and
corresponding l ≥ k length input sequences Uns(l) ∈ Uns(l),
be denoted by

Yl
X ′
ns,k

=
{
Yx(0),Uns(l) : xx(0),Tk−1[Uns(l)]∈X ′

ns,k,

x(0)∈X (0), Uns(l) ∈ Uns(l)
}
. (8)

Assumption 2. We assume that Us(k) = R(k+1)p and
Uns(k) = R(k+1)p for all k ≥ 0 unless specified otherwise.

With these notations, we define different forms of opacity.

Definition 1 (Opacity of State). Let K ≥ 0 be an integer. A
secret state xs,k ∈ Xs,k is opaque with respect to a non-secret
state set X ′

ns,k ⊆ Xns,k, if

Yk+K
xs,k ⊆ Yk+K

X ′
ns,k

.

For brevity, we sometimes use the terminology “xs,k is
opaque” rather than “xs,k is opaque w.r.t X ′

ns,k”. Based on
different values of k and K, we categorize opacity as:
(i) Initial-State Opacity (ISO): k = 0, K = ∞, denoted as
xs,0

iso−→ X ′
ns,0.

(ii) Current-State Opacity (CSO): k ≥ 0, K = 0, denoted as
xs,k

cso−−→ X ′
ns,k.

(iii) K-Step Opacity (KSO): k ≥ 0, K ≥ 0, denoted as
xs,k

kso−−→ X ′
ns,k.

(iv) Infinite-Step Opacity (Inf-SO): k ≥ 0, K = ∞, denoted
as xs,k

inf-so−−−→ X ′
ns,k. □

Opacity Definition 1 implies that for every possible output
sequence resulting from a secret state, there exists a proxy
(equal) output sequence resulting from a non-secret state.
Thus, under the scenario when the system indeed starts from,
or is currently in, a secret state, the eavesdropper who observes
an output sequence of a specific length cannot distinguish
whether the system is in a secret or non-secret state at a
particular time instant. This makes the secret state opaque.

Notice that the above notions of opacity differ in terms of
the time instant at which the secret state should be opaque,
and what data is available to the eavesdropper for inferring
opacity. In initial-state opacity, the secrecy of initial state x(0)
is preserved given an output sequence of any arbitrary length.
In other opacity notions, the secrecy of state x(k) is preserved
and the corresponding output sequence is of length:
(i) k for current-state opacity,
(ii) k +K (K ≥ 0) for K-step opacity,
(iii) ∞ (equivalently, any arbitrary length) for infinite-step
opacity.

It is required to study these four notions since each notion
applies to a different scenario, based on the eavesdropper’s re-
sources and intentions. For instance, a system may be current-
state opaque but not initial-state opaque, and the eavesdropper
may want to get inference about the system’s initial secret
state, and not its current secret state.

From the definitions, we have that infinite-step opacity
implies K-step opacity, which in turn implies current-state
opacity. Also, K-step opacity reduces to current-state opacity
for K = 0, and to infinite-step opacity for K = ∞. Further,
infinite-step opacity of initial state xs,0 is equivalent to its
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initial-state opacity. This shows that K-step opacity is the most
general notion and all other opacity notions can be derived
from it. All these opacity notions are illustrated in Figure 1.

Remark 1. The ISO definition in Definition 1 differs from
the definition of K-ISO used in [6], as explained next. Let
yx(0),U(k) denote the output of system Γ at time instant k with
initial state x(0) and input sequence U(k). In [6], opacity of
secret state xs,0 is achieved when at each k ∈ K, there exists
some non-secret initial state xns,0 (that can depend on k) such
that yxs,0,Us(k) = yxns,0,Uns(k). Hence, in this case, xns,0 is
allowed to be different at different time instants. However, in
our Definition 1, xns,0 should be same across all time instants.
We consider this definition since it is the widely accepted one
in the discrete event systems literature [5], [9], [14]. □

Inf-SOISO

CSO

KSO

Fig. 1: Pictorial representation of different forms of opacity. The
bottom graph represents the system’s state trajectory resulting from
some input sequences of lengths k (green), k + K (blue) (k =

5,K = 2 here) and ∞ (orange), with secret states xs,0 and xs,k,
and non-secret states xns,0 and xns,k. The top graph represents
the corresponding outputs (ys(l), yns(l)). As shown, the output
trajectories are equal (Ys(l) = Yns(l)). Therefore, by observing just
the outputs, one cannot determine xs,0 (when ISO with l = ∞ is
considered), and xs,k (when CSO, KSO and Inf-SO with l = k, k+K

and ∞, respectively are considered) (as denoted by the arrows).

Definition 1 defines opacity of a secret state. Next, we
generalize it to opacity of a secret set.

Definition 2 (Opacity of Set). A secret state set Xs,k is opaque
with respect to non-secret state set X ′

ns,k ⊆ Xns,k, if, for every
xs,k ∈ Xs,k, it holds that xs,k is opaque with respect to X ′

ns,k.
For brevity, we sometimes use the terminology “Xs,k is

opaque” rather than “Xs,k is opaque w.r.t X ′
ns,k”. We denote

this relation by Xs,k
iso−→ X ′

ns,k (resp. cso, kso, inf-so) for
initial-state (resp. current-state, K-step, infinite-step) opacity.

Further, we say that “X ′
ns,k provides a proxy for Xs,k” or

“X ′
ns,k makes Xs,k opaque”. □

Next, we define opacity ordering of sets. This will be
used later to analyze the trade-off between opacity and attack
detectability.

Definition 3 (Opacity Ordering). Given two opaque sets X 1
s,k

and X 2
s,k, X 1

s,k is more opaque than X 2
s,k if X 2

s,k ⊂ X 1
s,k. □

C. Subspaces for Opacity
In this subsection, we define certain fundamental subspaces

of linear dynamical systems. We use these subspaces in the
next section to develop necessary and sufficient conditions for
the existence of opaque sets in the system.

Definition 4 (Weakly Unobservable Subspace (WUOS) [18]).
The weakly unobservable subspace of system (1) (denoted by
V(Γ)) is defined as:

V(Γ) = {x ∈ Rn : ∃ U(k) ∈ R(k+1)p such that
Yx,U(k) = 0, ∀ k ≥ 0}

= {x ∈ Rn : ∃ U(n− 1) ∈ Rnp such that Yx,U(n−1) = 0},

where the second equality is due to equation (5) in [18].
Further, similar subspaces for k ≥ 0 steps are defined as:

Vk(Γ) = {x ∈ Rn : ∃ U(k) such that Yx,U(k) = 0}. □

A property of Vk(Γ) is [18]:

V0(Γ) ⊇ V1(Γ) ⊇ · · · ⊇ Vn−1(Γ) = Vn(Γ) = · · · = V(Γ). (9)

For all k ≥ n− 1, we denote Vk(Γ) by V(Γ). The WUOS
represents the set of initial states which result in the all-zero
output sequence (for some inputs).

Definition 5 (Weakly Unconstructible Subspace (WUCS) [20]).
The weakly unconstructible subspace of system (1) (denoted
by C(Γ)) is defined as:

C(Γ) = {x ∈ Rn : ∃ U(k) ∈ R(k+1)p, x′ ∈ Rn such that
xx′,Tk−1[U(k)] = x, Yx′,U(k) = 0 ∀ k ≥ 0}

= {x ∈ Rn : ∃ U(n) ∈ R(n+1)p, x′ ∈ Rn such that
xx′,Tn−1[U(n)] = x, Yx′,U(n) = 0},

where the second equality follows from [18]. Further, similar
subspaces for k ≥ 0 steps are defined as:

Ck(Γ) = {x ∈ Rn : ∃ U(k) ∈ R(k+1)p, x′ ∈ Rn such that
xx′,Tk−1[U(k)] = x, Yx′,U(k) = 0}. □

For Ck(Γ), we have that [21]:

C0(Γ) ⊇ C1(Γ) ⊇ · · · ⊇ Cn(Γ) = Cn+1(Γ) = · · · = C(Γ).

For all k ≥ n, we denote Ck(Γ) by C(Γ). The WUCS
represents the set of states reachable in k time instants when
the system starting at some state x′ ∈ Rn outputs the all-zero
output sequence (for some inputs).

In the following lemma, we state a necessary and sufficient
condition for the WUCS to be trivial when the WUOS is
trivial. This lemma’s corollary is used in Section IV-B to
show the trade-off between current-state opacity and attack
detectability.
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Lemma 1. Let FΓ
n and NΓ

n be as defined in (6) and (3),
respectively. Also, let V(Γ) = {0}. Then, C(Γ) = {0} if and
only if Null(FΓ

n ) ⊆ Null(
[
NΓ

n 0
]
).

Proof. C(Γ) = {0} if and only if for all pairs (x(0), U(n)) that
satisfy Yx(0),U(n) = 0, we have x(n) = xx(0),Tn−1[U(n)] = 0.
Since V(Γ) = {0}, the only pairs that satisfy Yx(0),U(n) = 0
are of the form (0, U(n)). Thus, C(Γ) = {0} if and only if

x0,Tn−1[U(n)] = 0 ∀ U(n) : Y0,U(n) = 0

⇐⇒ NΓ
nTn−1[U(n)] = 0 ∀ U(n) : FΓ

nU(n) = 0

⇐⇒
[
NΓ

n 0
]
U(n) = 0 ∀ U(n) ∈ Null(FΓ

n )

⇐⇒ Null(FΓ
n ) ⊆ Null(

[
NΓ

n 0
]
).

Hence proved.

Corollary 1. Let C(Γ) ̸= {0} and Null(FΓ
n ) ⊆

Null(
[
NΓ

n 0
]
). Then, V(Γ) ̸= {0}.

Proof. Since C(Γ) ̸= {0} and Null(FΓ
n ) ⊆ Null(

[
NΓ

n 0
]
),

we have that

xn = xx(0),Tn−1[Un] ̸= 0 ∀ U(n) : Yx(0),U(n) = 0

⇐⇒ Anx(0) +
[
NΓ

n 0
]
U(n) ̸= 0 ∀ U(n) : Yx(0),U(n) = 0

Assume x(0) = 0 is the only initial state that reaches xn
and produces the zero output sequence. Then,[

NΓ
n 0

]
U(n) ̸= 0 ∀ U(n) : Y0,U(n) = 0

=⇒
[
NΓ

n 0
]
U(n) ̸= 0 ∀ U(n) : FΓ

nU(n) = 0

=⇒ Null(FΓ
n ) ̸⊆ Null(

[
NΓ

n 0
]
),

which is a contradiction. Hence, it is required that x(0) ̸= 0
for which the zero output sequence is generated until k = n,
which implies that V(Γ) ̸= {0}.

III. CHARACTERIZATION OF OPAQUE SETS

In this section, we show that WUOS and WUCS are
connected to the different notions of opacity. We first consider
systems whose state and input sets are unconstrained in Sub-
section III-A. Subsequently, in Subsection III-B, we relax this
requirement and consider opacity for systems with constrained
state and input sets.

A. Connections between Opacity and System
Subspaces

In this subsection, we begin by characterizing the condition
for existence of opaque sets. We use the following assumption
on state and input sequence sets.

Assumption 3. In this subsection, we assume X (0) = Rn and
U(k) = R(k+1)p ∀ k ≥ 0.

The above assumption implies that the reachable set X (k)
is a subspace of Rn for all k ≥ 0. Also, for a given k ≥ 0,
the condition X (k) = Rn holds if and only if the System Γ
in (1) is reachable. Further, if X (k0) = Rn for some k0, it
holds that X (k) = Rn for all k ≥ k0.

Lemma 2. For System Γ in (1):
1. There exists a secret set that is ISO if and only if V(Γ) ̸=
{0}.

2. For a specific k ≥ 0, let X (k) = Rn. Then, there exists a
secret set at time instant k that is
(i) CSO if and only if Ck(Γ) ̸= {0},
(ii) KSO if and only if Ck(Γ) ∩ VK(Γ) ̸= {0},
(iii) Inf-SO if and only if Ck(Γ) ∩ V(Γ) ̸= {0}.

Proof. Since KSO generalizes ISO, CSO and Inf-SO, we first
prove Statement 2(ii), and then generalize the proof for the
other statements.

Proof of Statement 2(ii): For any k ≥ 0, suppose there exists
a set Xs,k which is KSO with respect to Xns,k = Rn\Xs,k.
From Definition 2, we note that existence of Xs,k is equivalent
to existence of a distinct xs,k and xns,k such that xs,k

kso−−→
{xns,k}. This is equivalent to saying that for any x(0) and
Us(k +K), there exist x′(0) and Uns(k +K), such that

xx(0),Tk−1[Us(k)] = xs,k, (10)

xx′(0),Tk−1[Uns(k)] = xns,k, (11)

Yx(0),Us(k+K) = Yx′(0),Uns(k+K) (12)

We subtract (11) from (10) (using linearity) and we de-
compose (12) into two output sequences with time instants
{0, 1, · · · , k} and {k, k + 1, · · · , k +K}, respectively:

xx(0)−x′(0),Tk−1[Us(k+K)−Uns(k+K)] = xs,k−xns,k,

Yx(0)−x′(0),Tk[Us(k+K)−Uns(k+K)] = 0,

Yxs,k−xns,k,Us(k,k+K)−Uns(k,k+K) = 0.

Let x1 ≜ x(0)− x′(0), x2 ≜ xs,k − xns,k, U(k, k +K) ≜
Us(k, k + K) − Uns(k, k + K) and U(k + K) ≜ Us(k +
K)−Uns(k+K). Since xs,k and xns,k are different, we have
x2 ̸= 0. Thus, the above is equivalent to

xx1,Tk−1[U(k+K)] = x2,

Yx1,Tk[U(k+K)] = 0

}
(a)
=⇒ x2 ∈ Ck(Γ),

Yx2,U(k,k+K) = 0
(b)
=⇒ x2 ∈ VK(Γ)

⇐⇒ x2 ∈ Ck(Γ) ∩ VK(Γ) ̸= {0},

where (a) and (b) follow from Definitions 4 and 5. Hence
Statement 2(ii) is proved.

Statements 2(i) and 2(iii) follow from 2(ii) by choosing K =
0 and K = ∞, respectively. Consequently, VK(Γ) becomes
V0(Γ) and V(Γ), respectively. Since Ck(Γ) ⊆ C0(Γ), and by
WUOS and WUCS definitions we have C0(Γ) = V0(Γ), it
holds that Ck(Γ) ∩ V0(Γ) = Ck(Γ).

Statement 1 is proven as follows:

∃ ISO Xs,0

⇐⇒ ∃ Inf-SO Xs,0

⇐⇒ C0(Γ) ∩ V(Γ) ̸= {0}
⇐⇒ V0(Γ) ∩ V(Γ) ̸= {0}
⇐⇒ V(Γ) ̸= {0},

where the last equivalence follows from (9).

Lemma 2 highlights a fundamental connection between
opacity and the subspaces WUOS and WUCS for linear
systems, and shows that a corresponding non-trivial subspace
is essential for the existence of opaque sets. Next, for systems
which admit opaque sets, we characterize conditions for a
given set to be opaque. We begin by providing opacity
conditions for individual initial states. In the following, we
will focus only on K-step opacity, since the results for
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other opacity notions can be obtained from it with minor
modifications. For better readability, we use the notation

Tk,K(Γ) ≜
(
Ck(Γ) ∩ VK(Γ)

)
. (13)

Lemma 3. Let X (k) = Rn. Given two different states xs,k ∈
Xs,k and xns,k ∈ Xns,k, we have xs,k

kso−−→ {xns,k} if and only
if xs,k − xns,k ∈ Tk,K(Γ).

Proof. Refer to the proof of Lemma 2.

Corollary 2. Let X (k) = Rn. The following two statements
hold true:
1. Given xs,k, a state xns,k ̸= xs,k satisfies xs,k

kso−−→ {xns,k}
if and only if xns,k ∈ xs,k ⊕ Tk,K(Γ).

2. Given xns,k, a state xs,k ̸= xns,k satisfies xs,k
kso−−→ {xns,k}

if and only if xs,k ∈ xns,k ⊕ Tk,K(Γ).

Lemma 3 provides the necessary and sufficient condition
to check the K-step opacity of a secret state, and shows
that it is fundamentally connected, and completely determined
by Tk,K(Γ). Further, Corollary 2 shows that the set of non-
secret states that makes a secret state opaque (and vice-versa)
is constrained by Tk,K(Γ). Next, we extend these results to
specify conditions for opacity of sets of states.

Lemma 4. Let X (k) = Rn. Given non-empty and disjoint
sets Xs,k and Xns,k, we have Xs,k

kso−−→ Xns,k if and only if
Xs,k ⊂ Xns,k ⊕ Tk,K(Γ).

Proof. If: The condition Xs,k ⊂ Xns,k ⊕Tk,K(Γ) implies that
for any xs,k ∈ Xs,k, there exists an xns,k ∈ Xns,k satisfying:

xs,k ∈ xns,k ⊕ Tk,K(Γ)

⇐⇒ xs,k
kso−−→ {xns,k} (by Corollary 2).

Since the above statement holds true for any xs,k ∈ Xs,k,
we have Xs,k

kso−−→ Xns,k.
Only if: We prove this part via contradiction. We show that

the condition Xs,k ⊇ Xns,k ⊕ Tk,K(Γ) implies that the sets
Xs,k and Xns,k cannot be disjoint. Splitting Tk,K(Γ), we get:

Xs,k ⊇ Xns,k ⊕
(
{0} ∪

(
Tk,K(Γ)\{0}

))
(a)
=⇒ Xs,k ⊇

(
Xns,k ⊕ {0}

)
∪
(
Xns,k ⊕

(
Tk,K(Γ)\{0}

))
=⇒ Xs,k ⊇

(
Xns,k ⊕ {0}

)
= Xns,k

=⇒ Xs,k ∩ Xns,k ̸= ϕ,

where (a) follows from the fact that Minkowski sum is
distributive over union of sets.

For better clarity on Lemma 4, refer to Example 1 given
later which provides a pictorial representation of the result.
Same as before, the conditions in Lemma 4 are completely
dependent on Tk,K(Γ).

Remark 2. Note that Lemma 3, Corollary 2 and Lemma 4
hold even when X (k) ⊆ Rn. Further, Lemma 4 also holds for
an arbitrary non-secret set X ′

ns,k ⊆ Xns,k. □

Next, we analyze the largest possible opaque set for the
system. Determining this largest set is important because it
provides a fundamental limit beyond which a larger opaque
set cannot be constructed. To this aim, we consider solving

the following problem:

Find Xs,k s.t.

(i) Xs,k
kso−−→ X (k)\Xs,k and

(ii) ∄X ′
s,k s.t.

a. X ′
s,k

kso−−→ X (k)\X ′
s,k and

b. X ′
s,k ⊃ Xs,k.

(14)

In this problem, (i) ensures Xs,k is KSO and (ii) ensures
Xs,k is the largest set. The next lemma provides a solution to
the above optimization problem.

Lemma 5. Let Tk,K(Γ)⊥ denote the orthogonal complement
of Tk,K(Γ). Assume X (k) = Rn for a given k ≥ 0. One
solution to (14) is Xs,k = Rn\Tk,K(Γ)⊥.

Proof. Refer to the proof in Appendix VI-A.

Note that the solution in Lemma 5 is not unique. For
instance, for any particular x(k) ∈ Rn, the set Xs,k =
Rn\

(
x(k)⊕ (Tk,K(Γ)⊥)

)
also solves (14).

Lemma 5 shows that the largest possible opaque set is
constrained by Tk,K(Γ). Next, we show that when the system
is changed, the expansion of opaque sets is also constrained
by Tk,K(Γ).

Theorem 1. Consider two systems Γ1 and Γ2, and let X (k) =
Rn for both systems for a given k ≥ 0. For each KSO set in
Γ1, there exists a corresponding more KSO set in Γ2 if and
only if Tk,K(Γ1) ⊂ Tk,K(Γ2).

Proof. Refer to Appendix VI-B.

Theorem 1 implies that expanding the subspace Tk,K(Γ)
(by modifying the system matrices A,B,C,D) allows us to
increase the size of any opaque set. This again highlights the
fundamental connection between opacity and the subspaces,
WUOS and WUCS. Note that Theorem 1 provides the con-
dition under which every opaque set in Γ1 can be expanded.
However, even when the condition in Theorem 1 is violated,
there may exist some (but not all) opaque sets in Γ1 that can
be expanded.

B. Constrained Initial State and Input Sets

In this subsection, we relax the former assumptions that
the state and input sets are unconstrained. Hence, we develop
necessary and sufficient conditions for opacity to hold when
these sets are constrained.

For the results in this subsection, we require the notion of
backward-reachable set, as defined next.

Definition 6 (Backward-reachable set). For k > 0, we define
the backward-reachable set from X (k) as

B(X (k)) ≜ {x ∈ Rn : ∃ U(k − 1) ∈ U(k − 1) such that

xx,U(k−1) ∈ X (k)}. □

The backward-reachable set B(X (k)) is the set of all states
at time instant k = 0 starting from which the system reaches
a state x(k) ∈ X (k) (for some input sequence). Note that this
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set may contain states other than those in the initial state set
X (0). Hence, in general, B(X (k)) ⊇ X (0).

In the following lemma, we consider the initial state set
X (0) to be constrained, such that X (k) need not be a subspace.
After this, we consider the case where both the initial state set
X (0) and the input set U(k) are constrained.

Lemma 6. For a given k ≥ 0, let X (k) ⊆ Rn and |X (k)| >
1,1 and for all k ≥ 0, let U(k) = R(k+1)p. Further, if k ≥ 1,
let X (0) = B(X (k)). For System Γ in (1), there exists a secret
set at time instant k that is KSO if and only if

(
X (k)⊕

(
−

X (k)
))

∩ Tk,K(Γ) contains at least one non-zero element.

Proof. We begin by noting that Lemma 3 holds even when
X (0) = B(X (k)). This follows from the proof of Lemma
2. The condition X (0) = B(X (k)) is required to show that
if xs,k − xns,k ∈ Tk,K(Γ), then xs,k

kso−−→ {xns,k}. This is
because X (0) = B(X (k)) ensures that there exist initial states
x(0) and x′(0) in X (0) starting from which the system reaches
the states xs,k and xns,k, respectively, and produces the same
outputs such that xs,k

kso−−→ {xns,k}.
Only if: Since there exists a KSO secret set, let us form the

smallest such set Xs,k = {xs,k}. As xs,k is KSO, there exists
some non-secret state xns,k ∈ X (k)\Xs,k such that xs,k

kso−−→
{xns,k}. Therefore, by Lemma 3, it holds that xs,k − xns,k ∈
Tk,K(Γ). Further, xs,k ̸= xns,k. Hence, it holds that
(i) xs,k − xns,k ∈ Tk,K(Γ) and,
(ii) xs,k − xns,k ̸= {0}.

Consequently, we have that
(
xs,k − xns,k

)
∩ Tk,K(Γ) con-

tains at least one non-zero element. Since xs,k ∈ X (k) and
−xns,k ∈ −X (k),

(
X (k) ⊕

(
− X (k)

))
∩ Tk,K(Γ) contains

at least one non-zero element.
If: Let us consider |X (k)| = 2, such that X (k) =

{x1(k), x2(k)}. Since
(
X (k)⊕

(
−X (k)

))
∩Tk,K(Γ) contains

at least one non-zero element, we have that either
(i)

(
x1(k)− x2(k)

)
∩ Tk,K(Γ) ̸= {0} and

(
x1(k)− x2(k)

)
∩

Tk,K(Γ) ̸= ϕ or,
(ii)

(
x2(k)− x1(k)

)
∩Tk,K(Γ) ̸= {0} and

(
x2(k)− x1(k)

)
∩

Tk,K(Γ) ̸= ϕ.
Since x1(k) and x2(k) are arbitrary elements, let us consider

the former case. Therefore, if we consider the secret state
xs,k = x1(k) and the non-secret state xns,k = x2(k), we
have xs,k − xns,k ̸= {0} and xs,k − xns,k ∈ Tk,K(Γ). Hence,
by Lemma 3, we have that Xs,k = {xs,k} is KSO, thereby
showing the existence of KSO secret set.

This approach holds equally well for the case where
|X (k)| > 2.

In the above results, we have considered constraining either
the secret state set or the state set. However, the input sets were
unconstrained. In the following lemma, we extend Lemma 6
for initial-state opacity to consider the case where the input
set is also constrained, in addition to constraining the state set.

Lemma 7. For all k ≥ 0, let Us(k) ∈ Us(k) ⊆ R(k+1)p,
Uns(k) ∈ Uns(k) ⊆ R(k+1)p and X (k) ⊆ Rn. Further, let

1One cannot construct a KSO secret set when |X (k)| ≤ 1. Hence, this
case is not considered.

X (0) ⊆ Rn and |X (0)| > 1.2 For System Γ in (1), there
exists a secret set Xs,0 that is ISO if and only if there exists
x ∈

(
X (0)⊕

(
−X (0)

))
\{0} such that

FΓ
k Us(k) ⊆ Okx⊕ FΓ

k Uns(k) ∀ k ≥ 0. (15)

Proof. If: From (15), we have

∀ Us(k) ∈ Us(k), ∃ Uns(k) ∈ Uns(k) such that

FΓ
k Us(k) = Okx+ FΓ

k Uns(k) ∀ k ≥ 0,

where x ∈
(
X (0) ⊕

(
− X (0)

))
\{0}. Consequently, there

exists xs,0 ∈ X (0) and xns,0 ∈ X (0) such that xns,0−xs,0 =
x ̸= 0. Therefore, for all k ≥ 0, it holds that

∀ Us(k) ∈ Us(k), ∃ Uns(k) ∈ Uns(k) :

FΓ
k Us(k) = Ok(xns,0 − xs,0) + FΓ

k Uns(k)

⇐⇒ Okxs,0 + FΓ
k Us(k) = Okxns,0 + FΓ

k Uns(k).

Only if: We prove the contrapositive. If there does not exist
x ∈

(
X (0)⊕

(
−X (0)

))
\{0} such that

FΓ
k Us(k) ⊆ Okx⊕ FΓ

k Uns(k) ∀ k ≥ 0,

then one cannot choose xs,0 ∈ X (0) and xns,0 ∈ X (0) such
that for all Us(k) ∈ Us(k), there exists Uns(k) ∈ Uns(k) for
which the following holds for all k ≥ 0:

FΓ
k Us(k) = Ok(xns,0 − xs,0) + FΓ

k Uns(k)

⇐⇒ Okxs,0 + FΓ
k Us(k) = Okxns,0 + FΓ

k Uns(k).

This implies that an ISO set Xs,0 cannot be formed.

Remark 3. Note that Lemma 7 reduces to Lemma 6 (for ISO
case) when the input set is unconstrained. To see this, we first
note that when the input set is unconstrained, (15) is equivalent
to the relation, x ∈ V(Γ). This is because in this case, (15)
is equivalent to the fact that for all U1(k) ∈ R(k+1)p, there
exists U2(k) ∈ R(k+1)p such that

FΓ
k U1(k) = Okx+ FΓ

k U2(k)

⇐⇒ Okx+ FΓ
k (U2(k)− U1(k)) = 0.

The above is equivalent to the fact that there exists U(k) =
U2(k)−U1(k) such that Okx+FΓ

k U(k) = 0 ⇐⇒ x ∈ V(Γ).
Hence, when the input set is unconstrained, the condition in
Lemma 7, “x ∈

(
X (0) ⊕

(
− X (0)

))
\{0} satisfies (15),”

is equivalent to the condition, “
(
X (0) ⊕

(
− X (0)

))
∩ V(Γ)

contains at least one non-zero element,” which is the one in
Lemma 6 (for ISO case).

Further, Lemma 6 reduces to Statement 2(ii) of Lemma 2
when X (k) = Rn. In this case, the condition, “

(
X (k)⊕

(
−

X (k)
))

∩ Tk,K(Γ) contains at least one non-zero element,”
reduces to “Tk,K(Γ) contains at least one non-zero element,”
which is the condition in Statement 2(ii) of Lemma 2. □

C. Example
In this subsection, we present an example to explain the

former results.

2One cannot construct an ISO secret set when |X (0)| ≤ 1. Hence, this
case is not considered.

7

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3426549

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on September 11,2024 at 09:55:50 UTC from IEEE Xplore.  Restrictions apply. 



Example 1. We consider a smart grid system, in which an
electricity supplier observes the amount of energy utilized by a
household over a network. The supplier also has the capability
to modify the energy utilized. This is done, for instance, by
remotely changing the temperature value of the user’s home
thermostat [28].

For this system, at time instant k, let e(k) denote the energy
utilized by the household, and let s(k) denote the value set by
the supplier of the maximum energy that could be utilized by
the customer. We denote the state by x(k) =

[
e(k) s(k)

]T
.

We consider the following system:[
e(k + 1)
s(k + 1)

]
︸ ︷︷ ︸

x(k+1)

=

[
0.5 0.5η
0 0

]
︸ ︷︷ ︸

Am

[
e(k)
s(k)

]
︸ ︷︷ ︸
x(k)

+

[
0
1

]
︸︷︷︸
Bm

u(k),

y(k) =
[
1 0

]︸ ︷︷ ︸
Cm

x(k).

(16)

By this model, we have that whenever s(k) is set to a
constant by applying a constant input u(k), the energy utilized
e(k) asymptotically approaches ηs(k). Hence, if e(k) < s(k),
then e(k) increases asymptotically to ηs(k). Similarly, if
e(k) > s(k), then e(k) decreases asymptotically to ηs(k).
Here, η ∈ (0, 1] is a parameter that describes usage of energy
in the household. For instance, if the user is not present, the
value of η will be close to 0. In this example, we consider
that the household utilizes the entire energy supplied, that is,
η = 1, and remark that the results hold equally well for other
values of η.

Further, we consider X (0) = R2. This allows e(0) and
s(0) to take negative values. This implies that the household
is generating energy (for instance, by renewable means).

At any given time, the households transmit y(k) = e(k)
over a network to the supplier, which can be intercepted by
an eavesdropper. Therefore, an eavesdropper observing y(k) =
e(k) over the network knows the amount of energy utilized
by the household. However, in this example we show that this
system is current-state opaque, and hence the eavesdropper
cannot make an inference about the current value of s(k).

For this system, V(Γ) = V1(Γ) = {0} and C(Γ) =

Range(
[
0 1

]T
). We use this to illustrate the different notions

of opacity.
• Part (i): We first consider opacity of individual initial states.
We begin with initial-state opacity. Since V(Γ) = {0}, we
have that no secret state xs,0 can be made initial-state opaque.
For instance, the output sequence

[
1 0 1

]T
can only be

produced by the system with initial state x(0) =
[
1 −1

]T
,

regardless of the input sequence.
Next, we consider current-state opacity for k = 2. Let

xs,2 =
[
1 1

]T
and xns,2 =

[
1 0

]T
. Hence, xs,2 − xns,2 =[

0 1
]T ∈ C(Γ).

Due to this, by Lemma 3, xs,2
cso−−→ {xns,2}. This is because

xs,2−xns,2 ∈ C(Γ) ensures that the same outputs are generated
by the system to reach these states. We show this explicitly
next. From opacity Definition 1, we have that for any x(0)
and Us(2) such that

xx(0),T1[Us(2)] = xs,2, (17)

there should exist x′(0) and Uns(2) for which

xx′(0),T1[Uns(2)] = xns,2,

Yx(0),Us(2) = Yx′(0),Uns(2).
(18)

Due to (2), we have that (17) is equivalent to[
0.25 0.25
0 0

]
︸ ︷︷ ︸

A2

x(0) +

[
0.5 0
0 1

]
︸ ︷︷ ︸

NΓ
2

T1[Us(2)] =

[
1
1

]
︸︷︷︸
xs,2

.

Therefore, whenever (17) holds, if we choose x′(0) = x(0)

and Uns(2) = Us(2)−
[
0 1 0

]T
, we have that

xx′(0),T1[Uns(2)] =

[
0.25 0.25
0 0

]
︸ ︷︷ ︸

A2

x′(0) +

[
0.5 0
0 1

]
︸ ︷︷ ︸

NΓ
2

T1[Uns(2)]

=

[
0.25 0.25
0 0

]
x(0) +

[
0.5 0
0 1

]
T1[Us(2)]︸ ︷︷ ︸

xs,2

−
[
0.5 0
0 1

] [
0
1

]
=

[
1
0

]
︸︷︷︸
xns,2

.

Also, we have

Yx′(0),Uns(2) =

 1 0
0.5 0.5
0.25 0.25


︸ ︷︷ ︸

O2

x′(0) +

 0 0 0
0 0 0
0.5 0 0


︸ ︷︷ ︸

FΓ
2

Uns(2)

=

 1 0
0.5 0.5
0.25 0.25

x(0) +

0 0 0
0 0 0
1 0 0

Us(2)

︸ ︷︷ ︸
Yx(0),Us(2)

−

 0 0 0
0 0 0
0.5 0 0

01
0



= Yx(0),Us(2).

This shows that given an output sequence, an eavesdropper
cannot know the current value of s(k) set by the supplier.

Further, as xs,2 ⊕ C(Γ) = xns,2 ⊕ C(Γ) = {
[
1 c

]T
: c ∈

R}, it holds that xns,2 ∈ xs,2⊕C(Γ) and xs,2 ∈ xns,2⊕C(Γ).
Thus, xs,2 and xns,2 satisfy Corollary 2.

Finally, since V(Γ) = V1(Γ) = {0}, by Lemma 2, we have
that for all k ≥ 0, we cannot make a secret state xs,k KSO
for K ≥ 1. Consequently, xs,k cannot be made Inf-SO either.

Thus, the system is CSO but not ISO, KSO or Inf-SO.
• Part (ii): Next, we focus on the opacity of sets. For k ≥
0, X (k) = R2. Let Xns,k =

{[
c 0

]T
: c ∈ R

}
. We note

that Xns,k ⊕ C(Γ) = R2. Therefore, as seen in Fig. 2, any
xs,k ∈ Xs,k = X (k)\Xns,k belongs to Xns,k ⊕ C(Γ). Thus,
Xs,k ⊂ Xns,k ⊕C(Γ) and Xs,k

cso−−→ Xns,k as per Lemma 4.□

D. Verification of Opacity Conditions

In this subsection, we develop methods to verify the condi-
tions for opacity described in the previous sections.

Let W , W1 and W2 be matrices whose columns form the ba-
sis vectors of arbitrary subspaces W,W1 and W2, respectively.
The subspaces W1 and W2 may correspond to two systems
Γ1 and Γ2 (with different system matrices A,B,C,D). From
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Fig. 2: Pictorial representation of Example 1, part(ii). X (k) is the
infinite brown region, Xns,k is the x axis, Xs,k is the infinite brown
region without the x axis, C(Γ) is the y axis, and Xns,k ⊕ C(Γ)
is the infinite green region. Since Xs,k ⊂ Xns,k ⊕ C(Γ), we have
Xs,k

cso−−→ Xns,k.

basic linear algebra, we have the following results:

w ∈ W ⇐⇒ rank(
[
w W

]
) = rank(W ), (19)

W1 ⊆ W2 ⇐⇒ rank(
[
W1 W2

]
) = rank(W2), (20)

W1 ⊂ W2 ⇐⇒ rank(
[
W1 W2

]
) = rank(W2)

> rank(W1). (21)

Further, we have the following lemma:

Lemma 8. Let PW⊥ denote the projection matrix onto vector
space W⊥. For any arbitrary disjoint sets S1 and S2, we have

S1 ⊂ S2 ⊕W ⇐⇒ PW⊥S1 ⊆ PW⊥S2. (22)

Proof. Refer to Appendix VI-E.

With the above, we can verify opacity conditions described
previously. Specifically, Lemma 3 can be verified using (19),
Lemma 1 and Corollary 1 can be verified using (20), Theorem
1 can be verified using (21), and Lemmas 4 and 7,3 and
Corollary 2 can be verified using (22). Algorithms to find basis
vectors for Vk(Γ) and Ck(Γ) are well known [20], [29].4 □

IV. OPACITY AND ATTACK DETECTABILITY TRADE-OFF

In this section, we use the relationship between opacity and
the subspaces developed in Section III to characterize trade-
offs between opacity and attack detectability. We do this in
two ways by investigating the following questions:

• Does a system with opaque sets necessarily permit unde-
tectable attacks? (Section IV-B)

• Does expanding opaque sets (by expanding X (0)) expand
the set of undetectable attacks? (Section IV-C)

3Verification of Lemma 7 may be more involved if Us(k) and Uns(k)
are not subspaces since (15) has to be verified for all k ≥ 0. We consider
development of simpler algorithms to verify Lemma 7 as part of future work.

4The algorithm in [20] to compute basis vectors for Ck(Γ) can easily be
extended to the case D ̸= 0.

A. Attack Model

We consider an attacker5 that is capable of injecting mali-
cious attack inputs in the actuators and modify sensor readings
of the System Γ. Let the attack inputs be denoted by ũ(k).
We allow the attack inputs to be injected via channels that are
different than the channels for normal inputs. We model this
using matrices B̃ and D̃ that can be different from B and D.

Since the normal input u(k) is known to the system oper-
ator, its effect may be eliminated for the purposes of attack
detection. Therefore, we set u(k) = 0 ∀ k ≥ 0 for the attack
model. The attack model (denoted by Γ̃) is given as:

Γ̃:
x̃(k + 1) = Ax̃(k) + B̃ũ(k),

ỹ(k) = Cx̃(k) + D̃ũ(k),
(23)

where x̃ ∈ Rn and ỹ ∈ Rm denote the attacked states and
outputs, respectively, and ũ ∈ Rq . Note that matrices A
and C are same in the normal and the attack models. Let
Ũ(k) =

[
ũ(0)T ũ(1)T · · · ũ(k)T

]T
denote the attack

input sequence (vector). Further, let Ỹx(0),Ũ(k) denote the
output sequence (vector) produced by applying the attack input
sequence Ũ(k) to the initial state x(0), which is expressed as:

Ỹx(0),Ũ(k) = Okx(0) + F Γ̃
k Ũ(k), (24)

where F Γ̃
k is computed by replacing B and D by B̃ and D̃,

respectively, in the expression for FΓ
k in (6).

Assumption 4. In this section, we assume that System Γ is
observable. Further, we assume U(k) = R(k+1)p ∀k ≥ 0.

Assumption 5. We assume that the attacker knows the system
matrices A,B,C,D and the initial state set X (0).

The system operator implements an attack detector6 that
determines whether the system is under attack or not by using
the outputs. However, all attacks may not be detected, and
next, we present the definition of undetectable attacks.

Definition 7 (Undetectable Attacks [30]). An attack Ũ(k) is
said to be undetectable if there exist initial states x(0), x′(0) ∈
X (0) such that

Ỹx(0),Ũ(k) = Ỹx′(0),0 ⇐⇒ Ỹx(0)−x′(0),Ũ(k) = 0.

We denote an undetectable attack sequence by Ũu(k) =[
ũu(0)

T ũu(1)
T · · · ũu(k)

T
]T

and the set of all unde-
tectable attack sequences in Γ̃ by Ũu(k). For brevity, we use
the notation Ũu to denote an attack sequence Ũu(k) that is
undetectable for all k ≥ 0 and Ũu to denote the set of all
such attack sequences in Γ̃. We also use the terms “attack
sequences” and “attacks” interchangeably. □

For undetectable attacks, the output produced by the system
is same as the output produced by a zero attack input sequence
(no attack) with appropriate initial conditions. Therefore, the
detector cannot determine if the system is under attack or not
by using the outputs. The existence of undetectable attacks
depends on the weakly unobservable subspace of the system.

5The attacker and the eavesdropper can be a single entity or two different
entities.

6The attack detector is a dynamic detector as defined in [30], which operates
on the entire output sequences.
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In particular, it is known that if V(Γ̃) ̸= {0} for the case where
X (0) = Rn, then there exists an undetectable attack Ũu [13],
[31].

B. Coexistence of Opaque Sets and Undetectable
Attacks

In this section, we show that existence of opaque sets
implies existence of undetectable attacks. In particular, we
have the following theorem and its corollary.

Theorem 2. Let X (0) = Rn and X (k) ⊆ Rn ∀ k > 0.7 If
there exists a secret set for System Γ that is:
1. ISO or,
2. CSO for some k ≥ n and Null(FΓ

n ) ⊆ Null(
[
NΓ

n 0
]
)8 or,

3. KSO for some k ≥ 0 and K ≥ n− 1 or,
4. Inf-SO for some k ≥ 0,

then there exists an attacked system Γ̃ (that is, a pair (B̃, D̃))
that admits an undetectable attack Ũu ̸= 0.

One such set of attacked systems is given by:{
Γ̃ : Range

([
B̃T D̃T

]T) ⊇ Range
([

BT DT
]T)}

.

Proof. Refer to Appendix VI-C.

Corollary 3. Let Γ̃ = Γ and let
[
BT DT

]T
be full column

rank. Then, there exists an ISO set if and only if there exists
an undetectable attack Ũu ̸= 0.

The conditions 2-4 of Theorem 2 imply that the System Γ
is ISO (refer to the proof for details). Thus, the initial state
cannot be estimated from the output sequence. Consequently,
this makes the system vulnerable to undetectable attacks.

Theorem 2 shows that existence of opaque set always
implies existence of an attacked system with undetectable
attack inputs (Corollary 3 shows that the converse also holds
if the attacked and original systems are identical). Thus,
one cannot have opacity in the system without making it
inevitably vulnerable to undetectable attacks. This implies that
a fundamental trade-off exists between opacity and attack
detectability for linear systems. Theorem 2 is also valid for
systems that are not observable. However, for such systems,
existence of opaque sets does not guarantee that Ũu ̸= 0.

This trade-off is further illustrated in the following example
where the system is modified to eliminate undetectable attacks.

Example 1. (Continued) In the system considered in Example
1, since it was current-state opaque, the eavesdropper could not
infer the set-point s(k) but could infer the energy utilized by
each household e(k) by observing the output sequence over
the network. This causes a privacy issue, which can result in
serious concerns. This issue can be mitigated by sending the
aggregate energy utilization of a group of households (instead
of individual values). Consequently, the eavesdropper cannot
infer e(k) also. Such privacy mechanisms have been proven
to be both effective and lightweight [32], [33].

7Attack detectors in the literature generally require X (0) = Rn [13], [30].
8The condition Null(FΓ

n ) ⊆ Null(
[
NΓ

n 0
]
) ensures the existence of non-

zero initial states from which the system reaches x(k) while producing the
zero output sequence (Refer to the proof of Corollary 1).

By enforcing privacy in this manner, we illustrate how the
trade-off exists for a group of N households. The model for
the ith household is given as:

xi(k + 1) = Amxi(k) +Bmui(k),

yi(k) = Cmxi(k),

where Am, Bm and Cm are as given in (16). The aggregate
model Γ of the smart grid system is:
x1(k + 1)
x2(k + 1)

...
xN (k + 1)

=
Am 0 0

0
. . . 0

0 0 Am



x1(k)
x2(k)

...
xN (k)

+
Bm 0 0

0
. . . 0

0 0 Bm



u1(k)
u2(k)

...
uN (k)

,

y(k) =
[
Cm Cm · · · Cm

] 
x1(k)
x2(k)

...
xN (k)

 .

Note that y(k) denotes the aggregate energy utilization.
Let us consider the case where N = 2, η = 1 and
e1(0) = e2(0) = s1(0) = s2(0) = 100. Thus, these
two households initially utilize 100 units of power. If the
supplier would require the energy utilized in both households
to be reduced to, say, 50 units, the supplier sends the in-
put values u1(k) = u2(k) = 50 for all 0 ≤ k < k0,
where k0 is some time instant at which the supplier would
change the set-points to s1(k0) and s2(k0). Let k0 = 6.
In this case, the sequence e1(k) and e2(k) (described as
vector) is given by

[
100 100 75 62.5 56.25 53.125

]T
for 0 ≤ k ≤ 5. Similarly, the aggregate output
sequence generated, that is y(k) (vector), is given by[
200 200 150 125 112.5 106.25

]T
. Since the supplier

observes only the aggregate value y(k) (as shown in Fig.
3), the privacy of the energy utilization of the individual
households is maintained.

Eavesdropper

Household 1

Household 2

AggregatorControl Center

Aggregate energy           

Fig. 3: Opacity of Smart Grid system: Energy utilized by households
1 and 2 are opaque (for all notions), since same aggregate energy y(k)

(green line) is output by the Aggregator.

However, an attacker could intercept the communication
in the network and modify the values of u1(k) and u2(k)
(thus changing s1(k) and s2(k)), such that the aggregate
outputs y(k) remain the same as in the unattacked case, while
causing the energy utilized in individual households to change
significantly. For an attack detector on the supplier’s side
that has access to only the aggregate output y(k), such an
attack will remain undetected. For instance, for the attacked
system identical to the normal system (Γ̃ = Γ), the attacker
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can modify the set-point values s̃1(k) and s̃2(k) with attack
inputs ũ1(k) = 50 and ũ2(k) = −50 for 0 ≤ k ≤ 5. This
causes the energy utilized in the households to be changed
to the sequences e1(k) =

[
100 100 100 100 100

]T
and

e2(k) =
[
100 100 50 25 12.5 6.25

]T
. Consequently,

in the attack case, the aggregate output sequence y(k) (inclu-
sive of the attack) is same as in the unattacked case, that is,[
200 200 150 125 112.5 106.25

]T
(as shown in Fig.

4). Therefore, this attack remains undetected. This shows that
opacity implies existence of undetectable attacks.

Attacker

Household 1

Household 2

Control Center Aggregator

Aggregate energy           

Fig. 4: Undetectable attacks on Smart Grid system: Attacker injects
an attack to change the set-point values (blue arcs to red arcs), while
maintaining unattacked outputs (green line).

Next, we modify the system in order to eliminate unde-
tectable attacks, and show that this also eliminates opaque
sets. Consider a modified system with the output equation
y(k) = x(k). Consider Γ̃ = Γ for this modified system. All
attacks in Γ̃ are detectable at some time instant k, including
the previously considered undetectable attack ũ1(k) = 50 and
ũ2(k) = −50 for 0 ≤ k ≤ 5, as shown next. For this attack
to remain undetected, there should exist an initial condition
x(0) such that the outputs are zero. Since V(Γ̃) = {0}, the
only initial condition that satisfies this is x(0) =

[
0 0

]T
(c.f.

Definition 4). However, this attack with this initial condition
produces non-zero output sequence ỹ(k), and therefore, is
detectable. Moreover, since V(Γ) = C(Γ) = {0}, no opaque
sets exist (c.f. Lemma 2), that is, an eavesdropper is able
to infer the energy utilized by the household. Therefore, we
observe that eliminating undetectable attacks also eliminates
opaque sets, indicating the trade-off between the two.

C. Relation between Sizes of Opaque and Undetectable
Attacks Set

In this subsection, we consider an observable system and
examine the effect of expanding the opaque set on the size
of undetectable attack set, and vice-versa, and show that
there exists a trade-off between the two. In particular, we
demonstrate that expanding the opaque set always leads to
expansion of the undetectable attack set.

One way to expand the opaque set without changing the
system is to expand the initial state set X (0).9 An expansion

9Note that expanding Xs,k without changing X (0) does not affect the
undetectable attack set.

of X (0) may be performed by the operator, for instance, to
include a larger set of opaque secret states.

To assess the trade-off, we first characterize the set of
undetectable attacks in terms of initial state set X (0).

Lemma 9. Let X (0) ⊆ Rn. For all k ≥ 0, the set of
undetectable attacks is given by

Ũu(k) =
{
Ũu(k) : F

Γ̃
k Ũu(k) ∈ Ok(X (0)⊕−X (0))

}
.

Proof. From undetectable attack Definition 7, we have for
any undetectable attack Ũu(k) with k ≥ 0, there exists
x(0), x′(0) ∈ X (0) such that Okx(0) +F Γ̃

k Ũu(k) = Okx
′(0).

Therefore, F Γ̃
k Ũu(k) = Ok(x

′(0)−x(0)). Taking into consid-
eration all possible combinations of x′(0) and x(0), we have
that F Γ̃

k Ũu(k) ∈ Ok(X (0)⊕−X (0)).

The above lemma shows that Ũu(k) depends on X (0). By
using this fact and the definition of opacity, the following
theorem describes the trade-off when X (0) is expanded.

Theorem 3. Consider two initial state sets X 1(0) ⊂ X 2(0) ⊆
Rn such that for some particular k ≥ 0, X 1(0) = B(X 1(k))
(c.f. Definition 6). Let Ũ1

u and Ũ2
u denote the set of undetectable

attacks (c.f. Definition 7) on an attacked system Γ̃ with initial
state set X 1(0) and X 2(0), respectively. Then, the following
statements hold true:
1. For each KSO set X 1

s,k ⊂ X 1(k), there exists a KSO set
X 2

s,k ⊂ X 2(k) such that:
a. X 1

s,k ⊆ X 2
s,k always.

b. X 1
s,k ⊂ X 2

s,k if and only if there exists x(k) ∈
X 2(k)\X 1(k) that satisfies:(

x(k)⊕ Tk,K(Γ)
)
∩ X 2(k) ̸= {x(k)}.

2. The set of undetectable attacks are related as:
a. Ũ1

u ⊆ Ũ2
u always.

b. Ũ1
u ⊂ Ũ2

u if and only if there exists some k0 such that
for all k ≥ k0,

Range(F Γ̃
k ) ∩Ok

(
X 2(0)⊕−X 2(0)

)
⊃

Range(F Γ̃
k ) ∩Ok

(
X 1(0)⊕−X 1(0)

)
.

c. Ũ1
u ⊂ Ũ2

u if D̃ is square and full rank.

Proof. Refer to Appendix VI-D.

Statements 1(a) and 2(a) of Theorem 3 show that on
expanding X (0), the opaque and undetectable attack sets either
expand or remain unchanged, but never contract. Statements
1(b) and 2(b) of the theorem provide conditions under which
these sets strictly expand, leading to a strict trade-off be-
tween opaque and undetectable attack sets. The condition in
Statement 1(b) implies that there exists an additional state
x(k) ∈ X 2(k)\X 1(k) that can be chosen as a KSO secret
state, whose proxy non-secret state exists in X 2(k), and is
not the state x(k) itself (illustrated in Fig. 5).10 . Further, the
condition in Statement 2(b) implies that there exists a new
initial state in X 2(0) that allows a new undetectable attack in
the attacked system Γ̃.

10If X 1(0) ̸= B(X 1(k)), further conditions are required for expansion of
opaque sets.
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Fig. 5: Pictorial representation of Theorem 3, Statement 1(b).
X 1(k) is the blue disk, X 2(k) is the union of blue disk and green
region, Tk,K(Γ) is the red line passing through the origin, x(k) ∈
X 2(k)\X 1(k) is the red dot and x(k)⊕ Tk,K(Γ) is the purple line
passing through x(k). Since (x(k)⊕ Tk,K(Γ)) ∩ X 2(k) ̸= {x(k)},
for an opaque X 1

s,k ⊂ X 1(k), there exists an opaque X 2
s,k ⊂ X 2(k)

that satisfies X 1
s,k ⊂ X 2

s,k.

Finally, Statement 2(c) implies that there exists a Γ̃ (with
D̃ square and full rank, and B̃ arbitrary) for which the
undetectable attack set always expands without any conditions.
Hence, in this case, expanding X (0) always expands the set
of undetectable attacks, but the set of opaque secret states
expands only under the condition in Statement 1(b).

We remark that except for Statement 2(c), Theorem 3 is
also valid for systems that are not observable.
Example 1. (Continued) We verify Statements 1(b) and 2(b)
of Theorem 3. We begin with Statement 1(b). We consider
current-state opacity where K = 0. Hence, we have Tk,0(Γ) =
Ck(Γ). Let N = 2 and η = 1. With this, the system dynamics
is:[

x1(1)
x2(1)

]
=

[
Am 0
0 Am

] [
x1(0)
x2(0)

]
+

[
Bm 0
0 Bm

] [
u1(0)
u2(0)

]

=

0.5 0.5 0 0
0 0 0 0
0 0 0.5 0.5
0 0 0 0


︸ ︷︷ ︸

A

[
x1(0)
x2(0)

]
+

0 0
1 0
0 0
0 1


︸ ︷︷ ︸

B

[
u1(0)
u2(0)

]
,

y(k) =
[
Cm Cm

] [x1(k)
x2(k)

]
=

[
1 0 1 0

]︸ ︷︷ ︸
C

[
x1(k)
x2(k)

]
.

The weakly unconstructible subspace for k = 1 is given by:

C1(Γ) = Range


0 0 1
1 0 0
0 0 −1
0 1 0


 .

Let X 1(0) = Null(A). This results in X 1(1) = Range(B).
Since Range(A) ∩ Range(B) = {0}, we satisfy X 1(0) =
B(X 1(1)). This is because if x(0) /∈ Null(A)(= X 1(0)), we
have x(1) = Ax(0)+Bu(0) /∈ Range(B)(= X 1(1)). Further,
let X 2(0) = R4. This results in X 2(1) = R4.

Next, we show that for an arbitrary CSO secret set X 1
s,1 ⊂

X 1(1), there exists a larger CSO secret set X 2
s,1 ⊂ X 2(1),

that is, X 1
s,1 ⊂ X 2

s,1. To this end, we consider x(1) =[
1 0 −1 0

]T
and claim that X 2

s,1 can be constructed as
X 2

s,1 = X 1
s,1 ∪ {x(1)}. Clearly, x(1) ∈ X 2(1)\X 1(1), which

implies x(1) /∈ X 1
s,1, and therefore X 1

s,1 ⊂ X 2
s,1. Thus, to ver-

ify the claim, what remains is to show that x(1) is a CSO secret
state, or equivalently, there exists a non-secret state in X 2(1)
that makes x(1) CSO. By Corollary 2, such a non-secret state
should belong to the set

(
x(1)⊕C1(Γ)

)
. Combining the above

two arguments, we have that
(
x(1)⊕ C1(Γ)

)
∩ X 2(1) should

not be empty, and contain an element other that x(1), which
is essentially the condition in Statement 1(b) of Theorem 3.
Finally, note that since in our example x(1)⊕C1(Γ) = C1(Γ),
the above condition is satisfied:(

x(1)⊕ C1(Γ)
)
∩ X 2(1) = C1(Γ) ̸= {x(1)}.

Next, we consider undetectable attacks. Consider an at-
tacked system Γ̃ with B̃ = I4, D̃ =

[
0 0 0 0

]
and k = 1.

We first check the condition in Statement 2(b) of Theorem 3.
Since X 2(0) = R4, we have

Range(F Γ̃
1 ) ∩O1

(
X 2(0)⊕−X 2(0)

)
= Range(F Γ̃

1 ) ∩O1(R4)

= Range(F Γ̃
1 ) ∩ Range(O1).

On computing the above range spaces, we have that the
above is equal to:

Range
([

0
1

])
∩ Range

([
1 0
0.5 0.5

])
= Range

([
0
0.5

])
.

Similarly, we also have:

Range(F Γ̃
1 ) ∩O1

(
X 1(0)⊕−X 1(0)

)
=Range

([
0
1

])
∩ Range

([
1
0

])
= {0}.

Hence, the condition in Statement 2(b) holds for k =
1. For k > 1, it can be shown empirically that in the
condition of Statement 2(b), the left-hand side expression
is Range

([
0 0.5 0.25 · · · 0.5k

]T)
and the right-hand

side expression is {0}. Hence Statement 2(b) holds with k0 =
1, implying the existence of additional undetectable attacks
with initial state set X 2(0). For instance, the following attack
sequence is undetectable with X 2(0) but not with X 1(0):
ũ(0) =

[
−0.25 0 −0.25 0

]T
, ũ(k) = 0 ∀k ≥ 1. This is

because for x(0) =
[
0 1 0 0

]T ∈ X 2(0), this attack input
will produce the zero output sequence. Thus, by Definition
7, this attack is undetectable. Note that this attack is not
undetectable with initial state set X 1(0) since there exists
no x(0) ∈ X 1(0) (including x(0) =

[
0 1 0 0

]T
) that

produces the zero output sequence with this attack input. This
implies that Ũ1

u ⊂ Ũ2
u .

Finally, we check Statement 2(c) of Theorem 3. Let C = I4
such that y(k) = x(k) (System Γ is observable). Further, let
B̃ = 0 and D̃ = I4. With this, Statement 2(c) holds since D̃
is square and full rank. Thus, there exist more undetectable
attacks with X 2(0) as the initial state set. For instance, with
x(0) =

[
0 1 0 0

]T
, the attack input sequence ũ(k) =[

−0.5k+1 0 0 0
]T ∀k ≥ 0, is undetectable with initial

state set X 2(0) but not with X 1(0).

V. CONCLUSION

We analyzed the underlying connections between the no-
tion of opacity and attack detectability for linear dynamical
systems. The fundamental relation between opacity and the
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weakly unobservable and weakly unconstructible subspaces
was studied from multiple perspectives. Using this relation,
we showed that a trade-off exists between opaque sets and
undetectable attacks.

This work has been primarily qualitative in nature. As part
of future work, these relations can be studied quantitatively
by developing metrics that measure opacity and security.
Further, the trade-off can be studied for more general systems
such as non-linear, hybrid and stochastic systems. Also, the
connections and trade-offs of other notions of opacity, such as
pre-opacity, language-based opacity, etc. can be explored.

VI. APPENDIX

A. Proof of Lemma 5

For an arbitrary x ∈ Rn, consider the set S = x⊕Tk,K(Γ).
The set S is formed by shifting the subspace Tk,K(Γ) parallel
to itself to contain x. Hence, we note that X (k) = Rn is the
union of all such sets S with different values of x ∈ Rn.

Next, in the set S, let x be a non-secret state xns,k and let
all other elements in S be secret states. We have by Corollary
2 that all the secret states in S are made KSO by the set’s
single non-secret state xns,k. If we wish to form a larger KSO
set in S, we would need to convert the non-secret state xns,k

to a secret state. However, this would make all the secret states
in S to be not KSO. Hence, we cannot construct a larger KSO
set in S. Therefore, the largest KSO set is formed in S when
it has only one non-secret state.

From the discussions above, we can construct the largest
opaque set Xs,k in X (k) = Rn by keeping only one non-secret
state in each set S. One such construction is by having Xns,k =
Tk,K(Γ)⊥, such that Xs,k = Rn\Tk,K(Γ)⊥ is KSO. In this
construction, every element of Xns,k = Tk,K(Γ)⊥ composes
the single non-secret state xns,k in each set S.

B. Proof of Theorem 1

For brevity, we omit the time instant and system notations in
Tk,K(Γ) in this proof. Hence, for i ∈ {1, 2}, Ti ≜ Tk,K(Γi).

If: Consider any opaque set X 1
s,k in Γ1. Since X 1

s,k is KSO, it

holds that X 1
s,k

kso−−→ X (k)\X 1
s,k. We begin with a preliminary

analysis for System Γ1 that we use later in the proof. By
Corollary 2, we have that for a secret state xs,k, its proxy
non-secret state xns,k must belong to the set xs,k ⊕T1. For a
particular x(k), consider the set S ≜ {x(k)⊕ T1}.

Since in Γ1, all secret states are KSO, we have that if secret
states exist in the set S, then they are made opaque by the set’s
non-secret states (c.f. Corollary 2). If secret states do not exist
in S, then all its elements are non-secret states. Hence, since
Xs,k is KSO, we have that the set S contains at least one non-
secret state. Further, we have that the state space X (k) = Rn

is the union of all such sets S (for different values of x(k)).
Next we continue the proof. We need to form a KSO set

X 2
s,k in Γ2 such that X 2

s,k ⊃ X 1
s,k. For this, we need to form

a new secret state xnew
s,k ∈ X 2

s,k\X 1
s,k for which X 2

s,k = X 1
s,k ∪

xnew
s,k . Let us choose any xns,k ∈ X 1

ns,k (= X (k)\X 1
s,k) and

convert it to be the required xnew
s,k . Since xnew

s,k is a new secret
state, X 2

s,k ⊃ X 1
s,k. Hence, what remains to be shown is that

X 2
s,k is KSO. We show this by proving that all xs,k /∈ xnew

s,k⊕T1
and all xs,k ∈ xnew

s,k ⊕T1 are KSO. This means that all xs,k ∈
X 2

s,k are KSO, and hence, X 2
s,k is KSO.

First, we consider a secret state xs,k ∈ X 2
s,k for which

xs,k /∈ xnew
s,k ⊕ T1. For this, we know from the preliminary

analysis above that there exists a non-secret state xns,k ∈
xs,k ⊕ T1. Since xs,k ⊕ T1 ⊂ xs,k ⊕ T2, it also holds that
xns,k ∈ xs,k ⊕ T2. Hence, by Corollary 2, xs,k is KSO.

Next, we consider a secret state xs,k ∈ X 2
s,k for which

xs,k ∈ xnew
s,k ⊕ T1. Since a non-secret state was chosen and

converted to be the secret state xnew
s,k , it may be possible that

the set xnew
s,k ⊕T1 does not have non-secret states. Note that in

System Γ2, xs,k is KSO if and only if the set xs,k ⊕ T2 has
non-secret states (c.f. Corollary 2). Since xs,k ∈ xnew

s,k ⊕ T1,

xs,k ⊕ T1 ⊆ xnew
s,k ⊕ T1 ⊕ T1 = xnew

s,k ⊕ T1.

Since the Minkowski sum x(k)⊕T1 just shifts the subspace
T1 to the location of the vector x(k), the relation xs,k ⊕T1 ⊂
xnew
s,k ⊕T1 cannot hold. Hence, we have xs,k⊕T1 = xnew

s,k ⊕T1.
Since, T1 ⊂ T2, we also have T2 = T1 ⊕ T2. Consequently,

xs,k ⊕ T2 = xs,k ⊕ T1 ⊕ T2 = xnew
s,k ⊕ T2.

Hence, for xs,k to be KSO, we need to show that there
exist non-secret states in the set xnew

s,k ⊕ T2. We have that the
set xnew

s,k ⊕T2 is the union of x(k)⊕T1 for some states x(k) ∈
Rn. We have that xnew

s,k ⊕ T1 may not have non-secret states.
However, from the preliminary analysis above, we have that
for x(k) /∈ xnew

s,k ⊕T1, there exists at least one non-secret state
in x(k)⊕T1. Hence, there exists a non-secret state in xnew

s,k⊕T2.
Consequently, by Corollary 2, we have that xs,k is KSO.

From this, we have that all xs,k ∈ X 2
s,k is KSO. Hence,

X 2
s,k is KSO.
Only if: We prove by contrapositive argument. Therefore,

for T1 ̸⊂ T2, it is to be shown that for each KSO set X 1
s,k in

Γ1 there does not exist a set X 2
s,k that is more KSO in Γ2. We

consider the following three cases:
(i) T1 = T2 = T : For System Γ1, let us consider the opaque

set Xs,k = Rn\T ⊥. Due to Lemma 5, there does not exist a
more opaque11 set in Γ1. Therefore, since T1 = T2, there does
not exist a more opaque set in Γ2 also.

(ii) T1 ⊃ T2: We consider the same set Xs,k in Case (i). For
System Γ2, even Xs,k cannot be made KSO since T1 ⊃ T2.
Therefore, a more KSO set also cannot be constructed.

(iii) T1 ∩ T2 ̸= T2: This case accounts for all the remaining
possibilities. In this case, we have that there exists at least
one basis vector belonging to T1 and not in T2 and vice-versa.
Let t1 be a basis vector in T1 that is not in T2. For System
Γ1, consider the KSO set Xs,k = T2. This set is opaque since
every xs,k ∈ Xs,k is opaque due to a non-secret state xns,k ∈
Xs,k ⊕ t1 (c.f. Corollary 2). However, for System Γ2, Xs,k
cannot be made KSO since by Corollary 2, the corresponding
proxy non-secret state must belong to the set

(Xs,k ⊕ T2) = (Xs,k ⊕Xs,k) = Xs,k.

Hence, proxy non-secret states do not exist for Xs,k. There-
fore, we cannot construct a more KSO set in Γ2.

11The terms more opaque and more KSO used in this proof are defined in
Definition 3.

13

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3426549

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on September 11,2024 at 09:55:50 UTC from IEEE Xplore.  Restrictions apply. 



C. Proof of Theorem 2

We will show that existence of an opaque secret set Xs,k

in Γ implies that an undetectable attack Ũu ̸= 0 exists for a
particular attacked system Γ̃ = Γ. Later, we generalize this
for other attacked systems. We consider K-step opacity first.

When V(Γ̃) ̸= {0}, there exists an undetectable Ũu for Γ̃
(c.f. discussion below Definition 7). Therefore, we show that
when KSO set Xs,k exists, we have V(Γ̃) ̸= {0}. We show it as
follows. Let there exist a KSO set for some K ≥ n−1. Then,
we have by Lemma 6,

(
X (k)⊕

(
−X (k)

))
∩Tk,K(Γ) ̸= {0}.

Hence, we have Tk,n−1(Γ) ̸= {0} =⇒ Ck(Γ) ∩ V(Γ) ̸=
{0} =⇒ V(Γ) ̸= {0} =⇒ V(Γ̃) ̸= {0}.

In the above proof, if we put k = 0 and K = ∞, we
have the proof for the ISO case. Similarly, for arbitrary k,
the proofs for CSO and Inf-SO follow from the above proof
when K = 0 and K = ∞, respectively. For the CSO case, we
also require Corollary 1 to show that since C(Γ) ̸= {0} and
Null(FΓ

n ) ⊆ Null(
[
NΓ

n 0
]
), we have that V(Γ) ̸= {0}, and

hence, V(Γ̃) ̸= {0}.
Therefore, since V(Γ̃) ̸= {0}, an undetectable attack Ũu

exists for Γ̃. Next we show that Ũu ̸= 0.
Since V(Γ̃) ̸= {0}, there exists a non-zero x̃(0) ∈ V(Γ̃).

Consequently, there exists a Ũu satisfying:

F Γ̃
k Ũu(k) = −Okx̃(0) ∀ k ≥ 0. (25)

Since Γ is observable (Assumption 4), Γ̃ is also observable
(as Γ̃ = Γ). Hence, we have that for all k ≥ n, Okx̃(0) ̸= 0.
Therefore, due to (25), we have that

Ũu(k) ̸= 0 ∀ k ≥ n =⇒ ∃ Ũu ̸= 0.

Next, we show that for all Γ̃ that satisfy
Range

([
B̃T D̃T

]T) ⊇ Range
([

BT DT
]T)

(this

includes Γ̃ = Γ), it holds that V(Γ̃) ̸= {0} (and thus, there
exists Ũu ̸= 0 as shown above). Since V(Γ) ̸= {0}, there
exist x(0) ̸= 0 and U(n− 1) satisfying:

Yx(0),Un−1
= On−1x(0) + FΓ

n−1U(n− 1) = 0. (26)

Through matrix manipulations, we get:

FΓ
n−1 =


[
(In ⊗ C)(F̂n−1) Inm

] [In ⊗B

In ⊗D

]
for n > 1,

[
0 Inm

] [In ⊗B

In ⊗D

]
for n = 1,

where F̂n−1 is equal to FΓ
n−1 in (6) with B = C = In and

D = 0. Further manipulations yield:[
In ⊗B
In ⊗D

]
=

[
In(n+m) P · · · Pn−1

] [
In ⊗

(
T

[
B
D

])]
,

where P is a n(n+m)× n(n+m) permutation matrix and
T is a n(n+m)× (n+m) matrix, defined as:

P =

[
0 Im

In2+(n−1)m 0

]
, T =

[
In 0 0 0
0 0︸ ︷︷ ︸

n2

Im 0︸ ︷︷ ︸
nm

]T
.

Next, we consider the fact that for any matrices M,Q,W ,
Range(M) ⊇ Range(Q) implies (i) Range(WM) ⊇
Range(WQ), and (ii) Range(In⊗M) ⊇ Range(In⊗Q). Using

these, we have:

Range
([

B̃

D̃

])
⊇ Range

([
B
D

])
=⇒ Range

([
In ⊗ B̃

In ⊗ D̃

])
⊇ Range

([
In ⊗B
In ⊗D

])
=⇒ Range

(
F Γ̃
n−1

)
⊇ Range

(
FΓ
n−1

)
. (27)

Equation (27) implies that there exists a Ũ(n − 1) that
satisfies, F Γ̃

n−1Ũ(n − 1) = FΓ
n−1U(n − 1). Substituting this,

and x̃(0) = x(0) ̸= 0 in (26), we have:

Yx̃(0),Ũ(n−1) = On−1x̃(0) + F Γ̃
n−1Ũ(n− 1) = 0,

which implies V(Γ̃) ̸= {0} (c.f. Definition 4).

D. Proof of Theorem 3
Statement 1(a): Note that the condition X 1(0) ⊂ X 2(0)

implies X 1(k) ⊆ X 2(k). Therefore, since X 1(k) ⊆ X 2(k)

and X 1
s,k

kso−−→
(
X 1(k)\X 1

s,k

)
, we have that X 1

s,k
kso−−→(

X 2(k)\X 1
s,k

)
. Hence, if we form the set X 2

s,k ⊂ X 2(k) as
X 2

s,k = X 1
s,k, we have that X 2

s,k is KSO and X 1
s,k ⊆ X 2

s,k(k).
Statement 1(b): Only if: We prove by contrapositive argu-

ment. The contrapositive of Statement 1(b) is: If there does
not exist x(k) ∈ X 2(k)\X 1(k) that satisfies

(x(k)⊕ Tk,K(Γ)) ∩ X 2(k) ̸= {x(k)},

then there does not exist X 2
s,k ⊃ X 1

s,k that is KSO.
This is equivalent to the following statement: If every

x(k) ∈ X 2(k)\X 1(k) satisfies:

(x(k)⊕ Tk,K(Γ)) ∩ X 2(k) = {x(k)}, (28)

then there does not exist X 2
s,k ⊃ X 1

s,k that is KSO.
In the following, we prove the above statement. If x(k) ∈

X 2(k)\X 1(k) is chosen as a non-secret state, it will not add
any KSO secret states (since X 1

s,k is KSO). Therefore, let us
consider x(k) to be a new secret state xnew

s,k that is KSO. Hence,
the proxy non-secret state xns,k must be in the set specified
by Corollary 2, that is,

xns,k ∈ (xnew
s,k ⊕ Tk,K(Γ)) ∩ X 2(k) = {xnew

s,k } (due to (28)).

However, this is not possible since xnew
s,k and xns,k must be

different. Thus, if x(k) ∈ X 2(k)\X 1(k) is taken as a secret
state, it will not be KSO. Therefore, X 2(k)\X 1(k) does not
add any KSO secret states beyond what was present in X 1(k).

Finally, note that Statement 1(b) holds for each KSO secret
set. Hence, the other option of constructing a larger KSO secret
set from X 1(k) by converting a non-secret state in X 1(k) to
a secret state is also not possible. This is because if this is
done, then the largest KSO secret set in X 1(k) will no longer
be KSO.

If: Since there exists x(k) ∈ X 2(k)\X 1(k) for which

(x(k)⊕ Tk,K(Γ)) ∩ X 2(k) ̸= {x(k)},

we have that there exists x′(k) ̸= x(k) for which

x′(k) ∈ (x(k)⊕ Tk,K(Γ)) ∩ X 2(k). (29)

The state x′(k) belongs in either the set X 2(k)\X 1(k) or
the set X 1(k). We consider these two cases separately:
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Case 1: x′(k) ∈ X 2(k)\X 1(k)
If x(k) and x′(k) are chosen as a new secret and a non-

secret state, respectively, that is, x(k) = xnew
s,k and x′(k) =

xns,k, then due to (29), xnew
s,k

kso−−→ {xns,k} (c.f. Corollary 2).
Case 2: x′(k) ∈ X 1(k)
In this case, x′(k) is either a non-secret state or a KSO

secret state in the set X 1(k) (since X 1(k) is KSO). These
two sub-cases are analyzed below:

Sub-case (i): x′(k) = xns,k ∈ X 1(k)
Here, if x(k) is chosen as a new secret state xnew

s,k , then, due

to (29), we have that xnew
s,k

kso−−→ {xns,k} (c.f. Corollary 2).
Sub-case (ii): x′(k) = xs,k ∈ X 1

s,k

Let x(k) be chosen as a new secret state, denoted by xnew
s,k .

Also, let us denote the secret state x′(k) by x1
s,k. By (29),

x1s,k ∈ (xnew
s,k ⊕ Tk,K(Γ)) ∩ X 2(k). (30)

Further, since x1
s,k is KSO, there exists a proxy x1

ns,k ∈
X 1

ns,k that satisfies

x1ns,k ∈ (x1s,k ⊕ Tk,K(Γ)) ∩ X 1(k). (31)

Finally, in order to make xnew
s,k KSO, there should exist a

proxy non-secret state xns,k that satisfies

xns,k ∈ (xnew
s,k ⊕ Tk,K(Γ)) ∩ X 2(k). (32)

In the following, we show that the non-secret state x1
ns,k ∈

X 1
ns,k can acts as proxy for xnew

s,k by satisfying (32). We use
(30) and (31) to obtain:

(x1s,k ⊕ Tk,K(Γ)) ∩ X 1(k)

⊆
((

(xnew
s,k ⊕ Tk,K(Γ)) ∩ X 2(k)

)
⊕ Tk,K(Γ)

)
∩ X 1(k)

⊆
(
(xnew

s,k ⊕ Tk,K(Γ))⊕ Tk,K(Γ)
)
∩ X 1(k)

=
(
xnew
s,k ⊕ Tk,K(Γ)

)
∩ X 1(k). (33)

Due to (31) and (33), we have that

x1ns,k ∈ (xnew
s,k ⊕ Tk,K(Γ)) ∩ X 1(k)

⊆ (xnew
s,k ⊕ Tk,K(Γ)) ∩ X 2(k).

Hence, we have that x1
ns,k satisfies (32) and x1

ns,k ∈ X 1
ns,k.

Therefore, x1
ns,k exists in X 1(k) such that xnew

s,k
kso−−→ {x1

ns,k}.
Note that in all the cases above, X 1(0) = B(X 1(k)) ensures

that for all output sequences produced by the system to reach
xnew
s,k (with some initial states and input sequences), there

exist initial states in X 1(0) (and also X 2(0)) such that the
system reaches x1

ns,k while producing the same outputs (with
corresponding input sequences).

In all the former cases, it is seen that there exists x(k) ∈
X 2(k)\X 1(k) that can be chosen as a KSO secret state. This
implies that there is an addition of a KSO secret state due to
expansion of X 1(k) to X 2(k). Hence, X 2

s,k ⊃ X 1
s,k.

Statement 2(a): We have by Lemma 9 that:

X 1(0) ⊂ X 2(0) =⇒ Ũ1
u(k) ⊆ Ũ2

u(k) ∀ k ≥ 0.

Statement 2(b): We have that Ũ1
u ⊂ Ũ2

u if and only if there
exists Ũ2

u ∈ (R(k+1)p\Ũ1
u) such that for all k ≥ 0,

F Γ̃
k Tk[Ũ

2
u] ∈ Ok

(
X 2(0)⊕−X 2(0)

)
(c.f. Lemma 9),

and there exists some k0 such that for all k ≥ k0,

F Γ̃
k Tk[Ũ

2
u] /∈ Ok

(
X 1(0)⊕−X 1(0)

)
(c.f. Lemma 9).

The above is equivalent to the fact that there exists some
k0 such that for all k ≥ k0,

F Γ̃
k Tk[Ũ

2
u] ∈

(
Ok

(
X 2(0)⊕−X 2(0)

)
\Ok

(
X 1(0)⊕−X 1(0)

))
,

which is again equivalent to: Range(F Γ̃
k ) ∩

(
Ok

(
X 2(0) ⊕

−X 2(0)
)
\Ok

(
X 1(0)⊕−X 1(0)

))
̸= ϕ. Since Ok

(
X 2(0)⊕

−X 2(0)
)
⊇ Ok

(
X 1(0) ⊕ −X 1(0)

)
, we have that the above

is equivalent to:

Range(F Γ̃
k ) ∩Ok

(
X 2(0)⊕−X 2(0)

)
⊃

Range(F Γ̃
k ) ∩Ok

(
X 1(0)⊕−X 1(0)

)
.

Statement 2(c). If Γ̃ is chosen such that D̃ is square full
rank, then F Γ̃

k is also square and full rank for all k ≥ 0
(minimum rank of lower triangular matrix is sum of rank of
diagonal blocks). Therefore,

Ũu(k) = (F Γ̃
k )

−1
Ok(X (0)⊕−X (0)) ∀ k ≥ 0.

Consequently, since Γ̃ is observable (by Assumption 4), it
holds that:

X 1(0) ⊂ X 2(0) =⇒ Ũ1
u(k) ⊂ Ũ2

u(k) ∀ k ≥ n.

Note that Statement 2(c) also follows from Statement 2(b)
because both Ok and F Γ̃

k are full rank when D̃ is square and
full rank. Consequently, Statement 2(b) holds in this case.

E. Proof of Lemma 8

S1 cannot be equal to S2 ⊕W . This is because if it were
equal, there will exist some state s in both S1 and S2, which
is not possible since these sets are disjoint.

Let W be a matrix whose columns form a basis of W . Since
S1 ̸= S2 ⊕ W , we have that S1 ⊂ S2 ⊕ W is equivalent to
the fact that for all s1 ∈ S1, there exists s2 ∈ S2 and vector
w such that s1 = s2 +Ww ⇐⇒ s1 − s2 ∈ Range(W ). This
is again equivalent to PW⊥(s1 − s2) = 0 ⇐⇒ PW⊥s1 =
PW⊥s2 ⇐⇒ PW⊥S1 ⊆ PW⊥S2.
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