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Abstract— Minimum-gain pole placement is a classical prob-
lem that aims to find a static state feedback matrix with the
minimum norm that places the closed-loop poles at desired
locations. In this paper, we present the direct data-driven for-
mulation of this problem without identifying the system model.
We derive and discuss the conditions for pole placement using
data matrices, and propose a projection-based gradient descent
algorithm to solve the problem. We also consider sparsity
constraints on the feedback matrix and obtain approximately
sparse solutions. Our simulations show that the proposed direct
method is more accurate than the model-based approach in
placing the poles as well as in obtaining a feedback matrix
with lower norm.

I. INTRODUCTION
The pole placement problem for linear time-invariant

(LTI) systems is a classical problem in the control theory.
It involves designing a static feedback controller to place
the poles of a closed-loop system at some desired loca-
tions to achieve certain desired behaviors such as stability,
robustness, etc. The feedback gain matrix determined as
the solution to the pole placement problem is not unique
in general, especially for multi-input multi-output (MIMO)
systems. The non-uniqueness provides a choice to select a
feedback matrix that ensures certain other control objectives
in addition to pole placement like minimum-norm gain, ro-
bustness, enforcing certain sparsity structure on the feedback
matrix, etc.

Traditionally, the pole placement problem is model-based
and non-sparse. It relies highly on the precise knowledge
of system matrices to determine the feedback gain matrix.
However, obtaining accurate models can be challenging
due to uncertainties, nonlinearities, or incomplete system
identification. This motivates us to leverage the data-driven
control methods to address the pole placement problem.
These methods utilize data generated by the system to
achieve the design objectives, where system identification
may or may not be required.

In this paper, we address the non-sparse and sparse
minimum-gain pole placement problems. We use the open-
loop data of the system and propose algorithms to design
the feedback gain matrix with minimum-norm and desired
sparsity structure.
Related Work: The model-based, non-sparse pole placement
problem is well studied in literature [1], [2], [3]. Building
on these, problems to achieve certain design and control
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objectives like robustness [4], [5] and minimum-gain feed-
back [6], [7], [8] were addressed. In recent times, the sparse
feedback problem has gained attention as sparsity patterns
appear inherently in interconnected systems and decentral-
ized control problems [9]. In [8], iterative algorithms were
provided for minimum-gain approximately sparse and sparse
feedback design problems, and it was shown that the sparse
problem is NP-hard.

While these works addressed various types of pole place-
ment problems, they assume the availability of highly reliable
system models. This may pose a challenge when system
identification is infeasible and inaccurate [10]. In recent
times, data-driven methods have gained attention for various
control problems [11], [12]. The data-driven pole placement
problem is addressed in [13], [14]. In [13], the exact pole
placement and eigenstructure assignment problem is studied
in contrast to [15], where robustness guarantees are provided
for pole placement in linear matrix inequality (LMI) regions.
In contrast, we study the minimum-gain pole placement
problem which is more difficult than the pole placement
problem. Also, in contrast to [13], we present an alternate
formulation for data-driven pole placement that relies on
Sylvester equation-based parameterization [3]. The data-
driven sparse feedback problem is recently studied in [14]
in which the set of all feasible gain matrices is characterized
using the open-loop data. Using this, the authors also present
minimum-gain pole placement formulation. However, this
formulation and the corresponding constraints are at a more
abstract level, which might be difficult to implement and
solve. In contrast, we address the minimum-gain pole place-
ment more explicitly by computing the gradient and then
using the projection-based gradient-descent to arrive at the
solution.

The main contributions of this paper are:
1. We present data-driven formulation of the non-sparse and
approximately-sparse minimum-gain pole placement prob-
lems.
2. We provide a projection-based gradient-descent algorithm
to numerically solve the above problems.
3. We present numerical simulations to compare the model-
based and direct methods in the presence of noisy data. Our
results show that direct methods perform better than model-
based methods when data is corrupted with noise.
Mathematical Notations: ∥·∥ denotes the Frobenius norm
of a matrix throughout this paper. (·)T , (·)∗ and (·)H denote
the transpose, conjugate and conjugate transpose of a vec-
tor/matrix. Tr(·) denotes the trace of a matrix. ◦ and ⊗ denote
the Hadamard product and Kronecker product, respectively.
(·)† denotes the Moore-Penrose inverse of a matrix. I denotes
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the identity matrix. vec(·) and Mat(·) denote the vectoriza-
tion of a matrix and reverse of vectorization of a matrix,
respectively. Diag(·) denotes the diagonalization of a vector.
j =
√
−1 denotes the unit imaginary number. (·)R and and

(·)I denote the real and imaginary parts of a complex entity,
respectively. 1n and 1m×n denote a vector and matrix of all
ones, respectively. Null(·), Range(·) and Rank(·) denotes the
null space, range space and rank of a matrix, respectively.

II. PROBLEM FORMULATION

We consider the following discrete linear time-invariant
(LTI) system

x(t+ 1) = Ax(t) +Bu(t), (1)

where t ∈ R≥0 denotes the time instant, x ∈ Rn, u ∈ Rm are
the state and input vectors, A ∈ Rn×n, B ∈ Rn×m are the
system and input matrices, respectively. We assume a static
state feedback controller of the form u(t) = −Kx(t), where
K ∈ Rm×n is the feedback matrix. The resulting closed-loop
dynamical system is given by

x(t+ 1) = (A−BK)x(t). (2)

The feedback modifies the dynamics of the open-loop
system (1) and affects its properties and performance. One
of the problems of interest is to select K such that the
eigenvalues/poles of the closed-loop matrix A−BK coincide
with a given set of eigenvalues/poles, which is known as
the Pole Placement (PP) problem. By assigning eigenvalues
at appropriate locations, one can achieve certain desired
properties like stability, response time etc.

Let P = {λ1, λ2, · · · , λn} denote the set of desired eigen-
values of the closed-loop system. Since A−BK is real, we
assume that the set P is closed under complex conjugation.
Define Λ = Diag(λ1, λ2, · · · , λn) as the diagonal matrix
consisting of the desired eigenvalues. Further, let X ∈ Cn×n

be an invertible eigenvector matrix whose columns are the
eigenvectors of A − BK. Then, the Pole Placement (PP)
problem is

PP: Find (K,X) s.t. (A−BK)X=XΛ,Rank(X)=n. (3)

Since the uncontrollable modes of (A,B) cannot be
shifted by static state feedback K, we make the following
assumption.

Assumption 1. For the pole placement problem, all uncon-
trollable modes of (A,B) are contained in P .

For MIMO systems, the solutions (K,X) to (3) are not
unique in general. Thus, there is flexibility to choose K to
achieve certain design objectives. In this paper, we focus on
determining the minimum-norm gain matrix K that achieves
the desired pole placement. This is called the Minimum-Gain
Pole Placement (MGPP) problem and is formulated as

MGPP : min
K∈Rm×n,X∈Cn×n

1

2
∥K∥2 (4)

s.t. (A−BK)X = XΛ (4a)

Often, there may be some sparsity constraints present on
the entries of K, that is, only certain entries of K are
allowed to be non-zero. This arises especially in multi-agent
networked settings where an agent may not have access to
the states of all other agents. To address this, we impose
sparsity constraints on K as follows. Let S ∈ {0, 1}m×n be
a binary sparsity matrix specifying the sparsity pattern of K
as

Kij =

{
∗ if Sij = 1,

0 if Sij = 0,

where ∗ ∈ R is a scalar. Then, the sparsity constraints are
specified as

Sc ◦K = 0, (5)

where Sc ≜ 1m×n−S is complement of the sparsity matrix.
The case where S = 1m×n is the non-sparse case. With this,
we formulate the MGPP problem with sparsity constraints
as

Sparse MGPP : min
K∈Rm×n,X∈Cn×n

1

2
∥K∥2 (6)

s.t. (A−BK)X = XΛ (6a)
Sc ◦K = 0. (6b)

Due to the sparsity of K, it may be possible that the
eigenvalues of A − BK cannot be assigned to the desired
locations given in P . In fact, full characterization of deter-
mining whether pole placement under sparsity constraints
is feasible or not does not exist in the literature, although
partial analysis exists [8]. Thus, for tractability, we make the
following assumption on the feasibility of Sparse-MGPP
problem.

Assumption 2. There exists a K satisfying constraints (6a)
and (6b).

The MGPP and Sparse MGPP problems have been
studied when the system model (matrices A,B) is known.
However, there may be scenarios where (A,B) are not
known or cannot be modeled [11], but the system is available
for experimentation. In this case, input and state data can be
generated by probing the system over time. The aim is to
use this data to solve the problems mentioned above.

In this paper, we study the data-driven formulations and
solutions of the MGPP and Sparse-MGPP problems based
on the input-state trajectories generated by the open-loop
system (1). The proposed methods are direct, that is, no
system identification (of matrices (A,B)) is required.

III. DATA-DRIVEN PP, MGPP AND SPARSE-MGPP
PROBLEMS

For the data-driven formulation, we assume the availability
of the input-state trajectory data (u[0,T−1], x[0,T ]) generated
by open-loop system (1). Here, T is the time horizon until
which the data is recorded. Using the trajectory data, we
construct the following data matrices:

U0 =
[
u(0) u(1) · · · u(T − 2) u(T − 1)

]
,

X0 =
[
x(0) x(1) · · · x(T − 2) x(T − 1)

]
,

X1 =
[
x(1) x(2) · · · x(T − 1) x(T )

]
.
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Since the data is collected from system (1), the matrices
satisfy the relation X1 = AX0 + BU0. In the data-driven
analysis, it is essential to ensure that the collected data is rich
and sufficiently informative such that any trajectory can be
expressed as a linear combination of the recorded data [11].
Hence, we make the following assumption on the persistency
of excitation.

Assumption 3. The data matrices U0 and X0 satisfy the
following rank condition

Rank
([

X0

U0

])
= n+m.

A. Pole Placement (PP) Problem

The equation (3) provides conditions for pole placement in
terms of system matrices (A,B). Next, we present equivalent
conditions in terms of the system data.

Lemma 1. (Data-driven pole placement) Let Assumption 3
hold true. Then, there exist (K,X) satisfying the conditions
in (3) if and only if there exists a G ∈ CT×n satisfying

X1G = X0GΛ, Rank(G) = Rank(X0G) = n. (7)

Further, if such a G exists, then K = −U0G(X0G)−1 and
X = X0G achieve pole placement.

Proof. From Theorem 2 in [11], we have that all feedback
and closed-loop matrices can be parametrized as K =
−U0M and A − BK = X1M , respectively, where M ∈
RT×n is a full column rank matrix satisfying X0M = I .
Thus, existence of (K,X) satisfying (3) is equivalent to
existence of (M,X) satisfying

X1MX=XΛ, X0M=I,Rank(M)=Rank(X) = n. (8)

In this case, K = −U0M archives the pole placement.
Next, we reparametrize the conditions in (8) by substituting
G = MX , which yields M = GX−1. Following this
reparametrization, the second equality in (8) becomes X =
X0G. Since X is full rank, this necessitates that G be full
rank. Substituting X = X0G in the first equality in (8), we
get that existence of (M,X) satisfying (8) is equivalent to
the existence of G satisfying (7).

Remark 1. (Comparison with [13]) The pole placement
characterization in (7) is same as presented in Theorem 4.1
in [13]. However, a couple of comments are in order. First,
the parameter M in [13] is real, thereby resulting in a real
eigenvector matrix X = X0M . Thus, their formulation will
not work when the desired eigenvalues are complex since it
results in complex eigenvectors. In contrast, our parameter
G is complex and supports complex eigenvalue assignment.
Second, our derivation directly uses the parametrization pre-
sented in [11] and a Sylvester equation-based parametriza-
tion1. Note that the former utilises the condition of persis-
tently excited data (data-based) [16] whereas the latter is

1In this, the parametrization G = KX is used in (3) to get the Sylvester
equation AX − XΛ = BG. Then, G is considered a free variable, and
corresponding invertible X is obtained from the above Sylvester equation
and feedback matrix is obtained as K = GX−1.

a model-based equation parameterized to obtain a single
free variable G. Therefore, this alternate derivation neatly
connects these two fundamental results.

Next, we discuss the feasibility of (7).

Lemma 2. (Feasibility of pole placement) Let Assumption
3 hold true. Define Ni = Null

([
A− λiI B

])
⊂ Cm+n.

Then,
(i) there always exists a G satisfying X1G = X0GΛ,
(ii) Rank(G) = Rank(X0G) = n if and only if there exist
linearly independent vectors {yi}ni=1, yi ∈ Cn that satisfy[
yi
zi

]
∈ Ni for some zi ∈ Cm.

Proof. (i) Let the columns of G be G = [g1, g2, · · · , gn].
Then, X1G = X0GΛ can be decomposed column-wise as n
equations:

X1gi = X0giλi i = 1, 2, · · · , n

⇒
[
A− λiI B

] [X0

U0

]
gi = 0

⇒
[
X0

U0

]
gi ∈ Ni, (9)

where we have used the property X1 = AX0 +BU0. Since

Range
([

X0

U0

])
= Rm+n, there always exists gi ∈ CT

satisfying (9) for any Ni.
(ii) Suppose there exist linearly independent vectors

{yi}ni=1, yi ∈ Cn that satisfy
[
yi
zi

]
∈ Ni. Then, set X0gi =

yi and note that such a gi always exist since Range(X0) =
Rn. This results in X0G =

[
y1, y2, · · · , yn

]
to be of

full rank n. Finally, since Rank(X0G) = n, this implies
that Rank(G) = n. The converse statement can be proved
similarly.

Lemma 2 shows that the existence of full rank X0G
depends on the geometry of the null spaces Ni. A partial
analysis of these null spaces is presented in [17], and the
authors show that the parameterized variable G has full rank
almost always. We defer the complete geometric analysis of
the null spaces as a future work.

Next, using the data-based parametrization of the PP, we
present the data-driven MGPP problem.

B. Minimum-Gain Pole Placement (MGPP) Problem

Using Lemma 1, we re-parametrize the MGPP problem
(4) in terms of parameter G and replace constraint (4a) by
(7).

MGPP : min
G∈CT×n

J =
1

2
∥−U0G(X0G)−1∥2 (10)

s.t. X1G = X0GΛ. (10a)

As mentioned before, we have assumed that the rank
conditions on G and X0G in (7) are satisfied, and therefore,
we have omitted them from the above problem. We also
remark that in our simulations, we have verified that these
rank conditions are always satisfied.

Problem (10) has a linear constraint. However, the cost
function contains an inverse term, which makes the problem
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non-convex. Thus, it may exhibit multiple local minima.
We aim to solve the constrained optimization Problem (10)
using the projection-based gradient descent method. Next,
we provide an analytical expression of the gradient of the
cost in (10).

Theorem 1. (Gradient for MGPP) The gradient of the cost
in (10) with respect to G is given by

∇GJ =
∂J

∂G
= −((X0G)−1KT (U0 +KX0))

T , (11)

where K = −U0G(X0G)−1.

Proof. Let d(·) denote the differential operator. Using
the properties ∥Y ∥2 = Tr(Y TY ) and dTr(Y TY ) =
2Tr(Y T dY ), we get

J =
1

2
∥K∥2 =

1

2
Tr(KTK)⇒ dJ = Tr(KTdK). (12)

Applying the property dY −1 = −Y −1dY Y −1 on K =
−U0G(X0G)−1, we get

dK = −(U0dG− U0G(X0G)−1X0dG)(X0G)−1. (13)

Substituting (13) in (12), we get

dJ = −Tr(KT (U0dG+KX0dG)(X0G)−1)

= −Tr((X0G)−1KT (U0 +KX0)dG).

Let ∇f be the gradient of f(N) : Cn → R, then df =
(∇Nf)TdN , [18] thus (11) follows.

To maintain feasibility during the gradient descent, we per-
form a projection on the constraint space at every iteration.
Specifically, if Gk is the iterate at time k, then its projection
is obtained by solving the following optimization problem

min
G∈CT×n

JG =
1

2
∥G−Gk∥2 (14)

s.t. (10a) holds.

The above problem has quadratic cost and linear constraints,
hence it is convex. The next result provides its optimal
solution.

Lemma 3. (Projection) Define following matrices and Kro-
necker products:

X̄1 =

[
XT

1 0
0 X1

]
, X̄0 =

[
XT

0 0
0 X0

]
,

Ī =

[
0 I
0 0

]
, Ḡk =

[
G∗

k

0

]
,

C1 = (I ⊗ X̄1 − Λ⊗ X̄0), C2 = I ⊗ Ī .

Let L ∈ Cn×n be the matrix of Lagrangian multipliers and

define Q =

[
L
G

]
= QR + jQI . Further, let q = qR + jqI =

vec(Q) and ḡk = ḡRk + jḡIk = vec(Ḡk). Then, the solution
to Problem (14) is given by

G = GR + jGI =
[
0 I

] [
Mat(qR) + j Mat(qI)

]
, (15)

where[
qR

qI

]
= C̄†

[
ḡRk
ḡIk

]
, C̄ =

[
CR

1 + CR
2 −CI

1

CI
1 CR

1 − CR
2

]
. (16)

Proof. Using the property ∥Y ∥2 = Tr(Y HY ), we get

JG =
1

2
Tr((G−Gk)

H(G−Gk)).

Let L ∈ Cn×n be the matrix of Lagrangian multipliers asso-
ciated with constraint (10a). Then, the Lagrangian function
is given by (see [19]):

L=Tr((G−Gk)
H(G−Gk))+1T

n (L◦(X1G−X0GΛ))1n

+1T
n (L ◦ (X1G−X0GΛ))∗1n

= Tr((G−Gk)
H(G−Gk)) + Tr(LT(X1G−X0GΛ))

+Tr(LH(X1G−X0GΛ)∗).

Differentiating L with respect to G and equating to 0, we
get

∂L
∂G

= (G−Gk)
∗ +XT

1 L−XT
0 LΛ = 0. (17)

Let Q =

[
L
G

]
. Combining (10a) and (17) yields

X̄1Q− X̄0QΛ + ĪQ∗ = Ḡk. (18)

Next, we vectorize (18) using properties vec(AB) = (I ⊗
A)vec(B) and vec(ABC) = (CT ⊗A)vec(B) to get

(I ⊗ X̄1 − Λ⊗ X̄0)q + (I ⊗ Ī)q∗ = ḡk. (19)

Expressing (19) in terms of real and imaginary components
results in

(CR
1 + jCI

1 )(q
R + jqI) + CR

2 (qR − jqI)= ḡRk + jḡIk. (20)

Now, separating and equating the real and imaginary parts
of (20), we get

C̄

[
qR

qI

]
=

[
ḡRk
ḡIk

]
. (21)

Thus, (16) follows from (21). Finally, since qR = vec(QR)
and qI = vec(QI), we get

GR =
[
0 I

]
Mat(qR), GI =

[
0 I

]
Mat(qI),

which results in (15).

Remark 2. (Implementation of Projection in Algorithm 1) At
each iteration, rank conditions for G must hold. If they are
violated at any instance, we can randomly perturb G slightly
such that it satisfies the conditions. Note that we have not
encountered this scenario in our simulations presented in
Section IV.

Using the gradient and projection expressions in (11) and
(15), we implement the projection-based gradient descent
Algorithm 1 given below.

In Algorithm 1, we use steepest descent which takes longer
to converge in general. To aid the convergence, we use
Armijo’s rule or backtracking line search to choose the step
size instead of setting a fixed step size.
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Algorithm 1 MGPP: Projection-based gradient descent

Require: X0, X1, U0

Output: K
Initialize: G
repeat

α← Update step size (Armijo’s rule)
G← G− α∇GJ (using (11))
G← Projection of G using (15)

until convergence
K ← −U0G(X0G)−1

C. Approximately Sparse-MGPP Problem

Similar to the MGPP problem, we reparametrize the
Sparse-MGPP problem (6) in terms of variable G to obtain

min
G∈CT×n

1

2
∥−U0G(X0G)−1∥2 (22)

s.t. (10a) holds, (22a)

Sc ◦
(
−U0G(X0G)−1

)
= 0. (22b)

Note that the reparametrized sparsity constraint (22b) is
nonlinear in G, and hence, computing the projection on this
constraint is not tractable. Therefore, we relax the problem
by removing the explicit sparsity constraints and modifying
the cost function to add a penalty for violating the sparsity
constraints. The penalty is added through a weighing matrix
W given by

Wij =

{
1 if Sij = 1,

≫ 1 if Sij = 0.

The weight/penalty Wij is large for a sparse entry, thereby
forcing Kij to be small.

With the weighing matrix W , the relaxed Approximately-
Sparse-MGPP (AS-MGPP) optimization problem becomes

AS-MGPP : min
G∈RT×n

JW =
1

2
∥W ◦(−U0G(X0G)−1)∥2 (23)

s.t. (10a) holds.

Similar to the MGPP problem (10), we aim to solve the
AS-MGPP problem using projection-based gradient descent.
Note that the constraint in both problems are identical.
Hence, we use (15) to compute the projection. The next
results provides the gradient of the cost for AS-MGPP
problem.

Lemma 4. (Gradient for AS-MGPP) Let g ≜ vec(G) and
k ≜ vec(K). Then, the gradient of the cost in (23) with
respect to g is given by

∇gJW = −(kT W̄ [(X0G)−T ⊗ (U0 +KX0)])
T , (24)

where W̄ = Diag(vec(W ◦W )).

Proof. Using the properties (i) ∥Y ∥2 = Tr(Y TY ) =
vec(Y )T vec(Y ), and (ii) vec(Y ◦ Z) = vec(Y ) ◦ vec(Z),
we get

JW =
1

2
(vec(W ) ◦ k)T (vec(W ) ◦ k) = 1

2
kT W̄k.

Taking differential, we get

dJW = kT W̄dk (25)

Next, we derive an expression for dk. Taking the differential
on both sides of KX0G = −U0G and vectorizing, we get

dK(X0G) +KX0dG = −U0dG

=⇒ dK = −(U0 +KX0)dG(X0G)−1

=⇒ dk = −[(X0G)−T ⊗ (U0 +KX0)]dg. (26)

Substituting dk in (25) and using df = (∇xf)
Tdx results

in (24).

The algorithm to solve the AS-MGPP is exactly same as
Algorithm 1 except that in the gradient-descent step, we use
the gradient ∇gJW instead of ∇GJ .

D. Model-based (Indirect) Method for Pole Placement

The data-driven methods discussed in previous subsections
for PP, MGPP and AS-MGPP are direct methods which
do not require identification of system model (A,B). An
alternate approach would be to first identify (A,B) from the
data and then use the existing model-based methods to solve
these problems. This is known as the model-based/indirect
data-driven approach.

Following Theorem 1 in [11], we can identify the system
matrices as [

Ad Bd

]
= X1

[
X0

U0

]†
, (27)

where the subscript d denotes that the matrices are ob-
tained from the data. Once (Ad, Bd) are identified, Algo-
rithm 1 and Algorithm 2 in [8] can be used for solving
MGPP and AS-MGPP, respectively. These algorithms use
Sylvester equation-based parametrization. One advantage of
this model-based approach is that the resulting optimization
problem is unconstrained, and therefore, no projections need
to be computed in each iteration. A numerical comparison of
model-based and direct approaches is presented in Section
IV.

IV. NUMERICAL SIMULATIONS

In this section, we present the numerical validation of
our algorithms. We implement the algorithms in MATLAB
2023a. We first present simulations for both MGPP and
AS-MGPP problems, and later compare the performance of
model-based and direct approaches for noisy data.

A. Implementation of algorithms for MGPP and AS-MGPP
We consider the following example from [8] for the

MGPP problem:

A =


−3.7653 −2.1501 0.3120 −0.2484
1.6789 1.0374 −0.5306 1.3987
−2.1829 −2.5142 −1.2275 0.2833
−13.6811 −9.6804 −0.5242 2.9554

 ,

B =

[
1 1 2 5
1 3 4 2

]T
.
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This is an unstable system with eigenvalues λ(A) =
{−2,−1, 1± 2j}. We choose the set of desired closed-loop
poles as P = {−2,−1,−0.5± 1j} to shift the two unstable
poles to the stable region (left-half plane). We generate input-
state data for the open loop system in (1) for T = 10
using i.i.d Gaussian input signal to excite the system and
assume zero initial conditions. We initialize Algorithm 1 at
a feasible G that is obtained as in (9) (refer Lemma 2). At
each iteration of the algorithm, pole placement is guaranteed
due to projection on the feasible set. As discussed in the
previous section, multiple local minima may exist for the
MGPP problem. To capture the global minima, we run the
algorithm multiple times with different initializations. One
of the solutions obtained by Algorithm 1 is:

K =

[
−0.0678 0.3490 −0.1571 0.4603
0.2289 0.1644 0.0358 −0.0668

]
,

with ∥K∥ = 0.6694.
Next, for the AS-MGPP problem, we consider the exam-

ple from [14] with following system matrices and sparsity
constraints:

A =


1.1178 0.001 0.511 −0.403
−0.051 0.661 −0.011 0.061
0.076 0.335 0.560 0.382
0 0.335 0.089 0.849

 ,

B =


0.004 −0.087
0.467 0.001
0.213 −0.235
0.213 −0.016

, S =

[
0 1 1 1
1 1 0 1

]
.

This is an unstable system with eigenvalues λ(A) =
{1.22, 1.0049, 0.4206, 0.6025}. We choose the set of desired
closed-loop poles as P = {−0.3, 0.2, 0.5, .7}. To induce
sparsity, we set the elements of the weighing matrix Wij =
100 for Sij = 0. The input-state data is generated in the same
manner as explained before. One of the solutions obtained
by the algorithm is:

K =

[
10−4 2.8133 2.71 0.423
−2.2621 1.305 10−4 1.21

]
,

with ∥K∥ = 4.8705. Note that the entries of K correspond-
ing to the zero entries in S are of small magnitude and not
exactly zero. For this example, we also show a sample run
of algorithms for MGPP and AS-MGPP in Figure 1. We
observe that the ∥K∥ decreases as the iterations progress
and eventually converges to a local minimum. Further, the
cost achieved by AS-MGPP is higher than MGPP since the
former is a more constrained problem as compared to the
latter.

B. Model-based vs direct methods

In this subsection, we compare the pole placement
achieved by model-based and direct methods with noisy data.
We generate the noisy data by simulating the following open-
loop system:

x(t+ 1) = Ax(t) +Bu(t) + w(t),

Fig. 1: Sample run of Algorithms for MGPP and AS-MGPP.

with following random signals: x(0) ∼ N (0, I), u(t) ∼
N (0.25, 0.5I) and w(t) ∼ N (0, σ2I). We vary n from 2
to 10 and pick m randomly between 1 to n. For each n, we
generate a random pair (A,B) ensuring that Assumption 1
holds. The binary sparsity matrix and the number of sparse
entries required for AS-MGPP is also generated randomly.

For the model-based method, we identify system ma-
trices (A,B) using (27) and use Algorithms 1 and 2 in
[8] for MGPP and AS-MGPP problems, respectively. The
K computed via these methods are denoted as KM and
KMAS , respectively. Similarly, the K computed via data-
based methods are denoted as KD and KDAS , respectively.

To evaluate the effectiveness of pole placement, we com-
pute the error between desired poles and achieved poles using
the Hausdroff distance (denoted by |·|H .), which measures
the distance between two subsets of a metric space. We
calculate the following errors associated with the model-
based MGPP and AS-MGPP: eM = |P − λ(A−BKM )|H
and eMAS = |P − λ(A − BKMAS)|H . Similarly, for the
direct methods, we define eD = |P − λ(A − BKD)|H and
eDAS = |P−λ(A−BKDAS)|H associated with MGPP and
AS-MGPP, respectively. Figure 2 shows the pole placement
errors for each n averaged over 100 runs. We observe that
the errors are considerably small, and direct methods perform
better than model-based methods. Further, for larger levels
of noise variance, errors observed in model-based methods
are larger.

Next, we analyze the accuracy of MGPP and AS-MGPP
algorithms in achieving the state feedback matrix with a
lower gain. Table I shows the average norm of K over
100 runs. We observe that the average ∥K∥ values for the
direct case is lower than the model-based case, indicating
a better performance by the direct method. The difference
between the two increases as the noise level increases.
This is because an additional step of system identification
from noisy data is required for model-based methods. These
experiments provide empirical evidence that direct methods
work efficiently with noisy data as well.

V. CONCLUSION

We proposed a projection-based gradient descent method
to solve the data-driven minimum-gain pole placement prob-
lem in a direct manner. We also studied the sparse version
of the problem with sparsity constraints on the feedback
matrix and obtained approximately-sparse solutions. Our
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(a) Noise variance σ2 = 0.1

(b) Noise variance σ2 = 1

(c) Noise variance σ2 = 10

Fig. 2: Pole placement errors as a function of n for different
noise variances.

simulations show that under noisy data, our approach works
better than the model-based approach. As future work,
we aim to fully characterize the rank conditions on our
parametrization based of the geometry of the null spaces of[
A− λiI B

]
. Further, we also aim to solve the exactly-

sparse pole placement problem in a data-driven manner
without any approximations.
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