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Abstract— The Linear Quadratic Regulator (LQR) is a
classical problem in optimal control theory which deals with
operating a linear dynamical system with optimized cost. In this
work, we study the discrete-time LQR problem with sparsity
constraints on the inputs. This problem has a combinatorial
complexity. We develop a convex optimization-based approach
to relax the problem into a semidefinite program which can be
solved with polynomial complexity. We explore two cases for in-
put sparsity: fixed temporal support and time-varying support.
Moreover, we also solve the minimum-energy control problem
with sparse inputs. Finally, using numerical simulations, we
show that our algorithms give near-optimum performance with
very good accuracy and time complexity.

I. INTRODUCTION

Sparse control of Linear Dynamical Systems (LDS) has
gained considerable interest in the recent years in the control
community [1]–[8]. It is an area which deals with efficient
control of LDS using control inputs with small number of
active actuators compared to the total available actuators. An
LDS with sparse control models various practical applica-
tions, including networked control systems [1]–[3], opinion
dynamics manipulation [5], [6] and computer vision [7],
[8]. For example, in networked control systems where the
communication with the actuators happens over bandwidth-
limited channels, minimizing the number of nonzero control
inputs reduces the amount of communication between the
controller and the actuators. Since sparse vectors admit
compact representations, they can be used in such energy
or bandwidth-limited scenarios. In this paper, we focus on
the Linear Quadratic Regulator (LQR) problem with sparsity
constraints on the control inputs. This is a variant of the
classical LQR problem since our goal is not only to minimize
a quadratic cost function but also to enforce sparsity in the
control inputs.
Related work: The authors in [9] consider sparse control
inputs design problem for a continuous-time LDS by mini-
mizing a quadratic cost for a finite time horizon. They use ℓ1
and total variation regularization to promote sparsity in the
solutions. This approach can be extended to the discrete-time
case by discretizing the system dynamics that results in a set
of coupled nonlinear difference equations, which are difficult
to solve. Also, the regularization based approach requires
tuning of the regularizer term using trial and error to obtain
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the desired level of sparsity. In contrast, our regularization-
free approach does not require tuning and inherently achieves
the exact desired level of sparsity. Sparse actuator scheduling
for continuous-time systems by maximizing the trace of
the controllability Gramian is studied in [10], [11]. The
problem of achieving optimal H2 norm performance for
discrete-time LDS through the design of sparse and struc-
tured feedback matrices is addressed in [12], [13]. In [14],
[15], an ADMM-based algorithm is developed for leader
selection in stochastically-forced dynamic networks. Paper
[16] explores optimal control problem that minimizes the ℓ1
norm of outputs and inputs of a discrete-time LDS using
linear programming that results in an idle or deadbeat solu-
tion. Further, ℓ1 norm-regularized Model Predictive Control
(MPC) has been studied using ADMM in [17]. Finally, [18]
proposes an information-theoretic regularization for LQR
problem in networked control systems that results in a sparse
feedback matrix. However, to the best of our knowledge no
work has been done on discrete-time finite-horizon LQR
problem with sparsity constraints on the inputs. Finding
the sparse supports of control inputs of a given sparsity
level that optimizes the LQR cost is a NP-hard problem
in general. We develop a novel convex optimization based
algorithm to solve the problem in polynomial time with near-
optimal performance. The core contribution of this work is
to use techniques from convex optimization theory to solve
sparsity-constrained LQR problem.
Notation: Boldface capital letters denote matrices, boldface
small letters denote vectors and calligraphic letters denote
sets. The ith entry of a vector a is denoted by ai. (a)I
indicates the subvector of a formed by choosing the entries
of a indexed by the set of indices I. In and 0n denote
the n × n identity matrix and zero matrix, respectively.
The ℓ0 norm of a is denoted by ∥a∥0, and it is the
number of nonzero entries in a. For a sequence of vec-
tors {a(k)}N−1

k=0 , ãN = [a(0)T ,a(1)T , · · · ,a(N − 1)T ]T

denotes the concatenation of the vectors in a column vector.
Blkdiag(A1, · · · ,AN ) denotes a block diagonal matrix with
square matrices A1, . . . ,AN along its diagonal. diag(a)
denotes a diagonal matrix with entries of a along the
diagonal. The operator diag(A) is the vector containing
the diagonal entries of A. Sn represents the set of n × n
symmetric matrices, and the notation X ⪰ Y implies that
the matrix X−Y is positive semidefinite. λmin(A) denotes
the minimum eigenvalue of A. For two sets A and B,
the XOR operation A ⊕ B ≜ (A ∪ B) \ (A ∩ B) yields the
elements that are not common between A and B. |A| denotes
the cardinality of set A. ⌈·⌉ denotes the ceiling operation.
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II. PROBLEM FORMULATION

We consider a discrete-time LDS, with state transition
matrix A ∈ Rn×n and input matrix B ∈ Rn×m whose
dynamics are governed by

x(k + 1) = Ax(k) +Bu(k), (1)

where x(k) ∈ Rn and u(k) ∈ Rm are the state and input
at time k, respectively. We denote the initial condition x(0)
by x0. We consider the LQR problem for the system in (1)
where the goal is to minimize a quadratic cost on system’s
state and control inputs by choosing optimal control inputs.
We aim to solve the LQR problem in presence of sparsity
constraints on the control inputs. Specifically, we constrain
the control inputs to be s-sparse (s is a positive integer),
that is, u(k) can have at most s non-zero entries for every
time instant k ∈ {0, 1, · · · , N}. This sparse LQR problem is
formulated as the following optimization problem:

min
{u(k)}N−1

k=0

J =

N−1∑
k=0

(x(k)TQx(k) + u(k)TRu(k))+

+ x(N)TQx(N) (2)
s.t. x(k + 1) = Ax(k) +Bu(k), x(0) = x0

∥u(k)∥0 ≤ s ∀k = 0, · · · , N − 1,

where Q ∈ Rn×n ⪰ 0n and R ∈ Rm×m ≻ 0m. The LQR
problem without any sparsity constraints on the inputs can
be solved using dynamic programming, which results in a
backward Riccati recursion. However, an alternate way to
solve the problem is to “unroll” the dynamics to write the
state in terms of the control inputs, and then formulate it as
an unconstrained optimization problem where the cost is a
quadratic function of the inputs. Although this approach has
high computational complexity and does not reveal the feed-
back structure of the optimal control inputs, it is required for
developing the solution for the sparsity-constrained problem.

By “unrolling” the dynamics, the state x(k) can be ex-
pressed in terms of the initial condition x0 and sequence of
control inputs {u(i)}k−1

i=0 as

x(k) = Akx0 + C̃kũk, (3)

where C̃k ≜ [Ak−1B,Ak−2B, · · · ,AB,B] is the con-
trollability matrix and ũk denotes the concatenated input
sequence. Further, concatenating the state vectors for time
instants 0, · · · , N, we get

x̃N+1 = ÕNx0 + Γ̃N ũN , where (4)

ÕN ≜


In

A

A2

...
AN

 , Γ̃N ≜



0 0 0 . . . 0
B 0 0 . . . 0
AB B 0 . . . 0

A2B AB B . . . 0
...

...
...

. . .
...

AN−1B AN−2B . . . . B


.

Next, we compactly express the LQR cost in (2) in terms of
x̃N+1 and ũN as

J = x̃T
N+1Q̄x̃N+1 + ũT

NR̄ũN , (5)

where Q̄ = Blkdiag(Q, · · · ,Q) with N + 1 blocks and
R̄ = Blkdiag(R, · · · ,R) with N blocks. Substituting (4) in
the cost (5), we get

J = (ÕNx0 + Γ̃N ũN )T Q̄(ÕNx0 + Γ̃N ũN ) + ũT
NR̄ũN

= ũT
N (Γ̃

T

NQ̄Γ̃N + R̄)ũN + 2xT
0 Õ

T

NQ̄Γ̃N ũN

+ xT
0 Õ

T

NQ̄ÕNx0

= ũT
NGũN + 2hT ũN + c, (6)

where G ≜ Γ̃
T

NQ̄Γ̃N + R̄, h ≜ Γ̃
T

NQ̄
T
ÕNx0 and c ≜

xT
0 Õ

T

NQ̄ÕNx0. Thus, the sparsity constrained LQR prob-
lem is reformulated as

min
ũN

ũT
NGũN + 2hT ũN + c (7)

s.t. ∥u(k)∥0 ≤ s ∀k = 0, · · · , N − 1.

III. SOLUTION TO THE SPARSITY CONSTRAINED LQR
PROBLEM

In this section, we derive a relaxed solution to the sparsity
constrained LQR problem (7). We consider two sparsity
patterns in the control inputs: (a) fixed temporal support,
and (b) time-varying support.

A. Fixed Temporal Support

We consider the case when the inputs are constrained to
have a fixed common support of s non-zero entries for all
time steps k = 0, . . . , N−1. We introduce the support vector
w to represent the active/non-active entries (support) of
u(k): w = [w1, w2, . . . , wm]

T
, wi ∈ {0, 1} where wi = 1

implies that the ith entry of uk is allowed to be nonzero, and
wi = 0 implies that the entry is constrained to be zero. Note
that since the support is fixed over time, w does not depend
on k. In order to capture the nonzero entries of u(k)’s we
define a selection matrix S ∈ {0, 1}∥w∥0×m. It is the sub-
matrix of diag(w) after removing all rows corresponding to
the zero entries of the u(k)’s. Hence, Su(k) = (u(k))S ∈
R∥w∥0 is the nonsparse vector containing the nonzero entries
of u(k) where S is the support set of u(k). The selection
matrix S has following properties:

SST = I∥w∥0
and STS = diag(w). (8)

Next, we concatenate all vectors {Su(k)}N−1
k=0 and denote it

as ũS̄N
≜ S̄ũN , where

S̄= Blkdiag(S, · · · ,S) with N blocks. (9)

With this, we write the cost in (6) in terms of ũS̄N
as

J(S) = ũT
N S̄

T
S̄GS̄

T
S̄ũN + 2hT S̄

T
S̄ũN + c

= ũT
S̄N

(S̄GS̄
T
)ũS̄N

+ 2(S̄h)T ũS̄N
+ c. (10)

Further, we rewrite the sparsity constraint (7) in terms of the
support vector w to get the following optimization problem

min
ũS̄N

,w
ũT
S̄N

(S̄GS̄
T
)ũS̄N

+ 2(S̄h)T ũS̄N
+ c (11)

s.t. 1Tw ≤ s, and w ∈ {0, 1}m
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where 1 denotes a column vector of all ones and there exists
a one-to-one mapping between w and S as evident from
(8)-(9) and hence cost in (11) is a function of w and ũS̄N

.
We first solve the above problem for a fixed support vector

w, and subsequently find the optimal support vector.
Lemma 1: Let w be a given binary support vector of

control inputs that satisfies the sparsity constraint ∥w∥0 = s.
Further, consider a decomposition of the form G = aI +L
where 0 < a < λmin(G) is a scalar and L is a symmetric
positive definite matrix. Define

w̄ ≜ [wT ,wT , · · · ,wT ]T ∈ RmN×1. (12)

Then, the optimal cost of problem (11) is given by

J∗(S) =

c− hT
(
L−1−L−1

(
L−1+ a−1 diag(w̄)

)−1
L−1

)
h. (13)

Proof: To begin, note that since G ≻ 0, we can always
find (a,L) such that the decomposition G = aI +L holds.
Next, since ũS̄N

is a non-sparse vector, we compute the
gradient of J(S) in (10) with respect to ũS̄N

and set it to
0 to get the optimal inputs as

ũ∗
S̄N

= −(S̄GS̄
T
)−1S̄h. (14)

Note that S̄GS̄
T is invertible since S̄ has full row rank and

G is invertible. Substituting (14) in (10), we get the optimal
cost

J∗(S) = −hT S̄
T
(S̄GS̄

T
)−1S̄h+ c. (15)

Next, using G = aI +L, we get

S̄
T
(S̄GS̄

T
)−1S̄ = S̄

T
(
aI∥w̄∥0

+ S̄LS̄
T
)−1

S̄

(a)
= L−1 −L−1

(
L−1 + a−1S̄

T
S̄
)−1

L−1

(b)
= L−1 −L−1

(
L−1 + a−1 diag(w̄)

)−1
L−1, (16)

where in step (a), we have used the matrix inversion lemma,
and step (b) holds due to the property of S given in (8).
Substituting (16) in (15), we get the optimal cost (13).
Note that the decomposition of G is not unique and (16)
holds for all possible pairs (a,L) and they give rise to same
cost and hence the solution of the optimization is unaffected.

The expression (13) provides the optimal LQR cost for a
given support vector w. Next, we optimize this cost over all
possible support vectors that satisfy the sparsity constraints.
Hence, we get the following optimization problem

min
w

hTL−1
(
L−1 + a−1 diag(w̄)

)−1
L−1h (17)

s.t. 1Tw ≤ s, and w ∈ {0, 1}m,

where we have omitted the constant term c − hTL−1h in
the cost that does not affect the optimization.

The above cost contains an inverse term, which makes
it a non-linear function of the optimization variable, and
therefore, difficult to analyze. To address this, we convert it
into a linear optimization problem by change of variables. We

reformulate the above problem by introducing an auxiliary
variable V ∈ SmN as follows

min
w,V

hTV h (18)

s.t. V ⪰ L−1
(
L−1 + a−1 diag(w̄)

)−1
L−1, (18a)

1Tw ≤ s, and w ∈ {0, 1}m.

Note that the optimization problem (17) is equivalent to (18).
Further, we apply the Schur complement theorem to (18a),
and convert it to a linear matrix inequality (LMI). With this,
the optimization problem is reformulated as

min
w,V

hTV h (19)

s.t.
[

V L−1

L−1 L−1 + a−1 diag(w̄)

]
⪰ 0, (19a)

1Tw ≤ s, and w ∈ {0, 1}m (19b)

Problem (19) is combinatorial and NP-hard due to the
boolean constraint (19b) on w. Thus, we relax this con-
straint using semidefinite relaxation (SDR) [19], [20]. Since
w2

i = wi, the boolean constraints on w are relaxed as
diag

(
wwT

)
= w. This also forces wi to take non-negative

values, and hence, w ⪰ 0 is ensured. We introduce an
auxiliary variable W as a proxy for wwT , which enforces a
rank-one constraint W = wwT . This rank-one constraint is
also nonconvex. Hence, we relax it to W ⪰ wwT , which is
convex. Using the Schur complement theorem, this constraint
is equivalent to [

W w
wT 1

]
⪰ 0. (20)

Thus, the boolean constraints on w are relaxed and replaced
by (20) and diag(W ) = w. Further, the sparsity level is
enforced by tr(W ) ≤ s. Thus, the resulting relaxed problem
is given as

min
w,W ,V

hTV h (21)

s.t. LMI in (19),

tr(W ) ≤ s,diag(W ) = w,

[
W w
wT 1

]
⪰ 0.

The above problem is a semidefinite program (SDP) problem
that can be solved numerically in an efficient manner (it has
polynomial complexity), for instance, using the interior-point
method. The solution of the SDP yields a vector w in which
s entries are very close to 1 and remaining entries are close
to 0. This demonstrates that the convex relaxation effectively
enforces sparsity at the desired level s in the solution. After
obtaining the solution, we map the s largest entries of w to 1
and all other entries to 0 to satisfy the sparsity level. Finally,
we use the resulting w to compute the optimal control inputs
using (14).

B. Time-Varying Support

Here, we allow the support of the control inputs to vary
with time. However, the sparsity level s remains fixed at
every time instant. This is more general than the fixed
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temporal support setting in the previous subsection. Let
wk denote the support vector of u(k) and define w̄ =
[wT

0 ,w
T
1 , · · ·wT

N−1]
T . Let Sk denote the selection matrix

at time k that is constructed from wk similarly as before.
Following similar steps as in Section III-A, the optimiza-

tion problem for this case can be formulated as

min
{wk}N−1

k=0 ,V
hTV h (22)

s.t.
[

V L−1

L−1 L−1 + a−1 diag(w̄)

]
⪰ 0,

1Twk ≤ s and wk ∈ {0, 1}m ∀k = 0, · · ·N − 1.

We relax the boolean constraints on wk similar to Section III-
A, and the final SDP is given as

min
{wk,W k}N−1

k=0 ,V
hTV h (23)

s.t. LMI in (22),
tr(W k) ≤ s, diag(W k) = wk,[

W k wk

wT
k 1

]
⪰ 0, ∀k = 0, · · · , N − 1.

Note that the number of optimization variables and con-
straints in this case is more than in the fixed temporal support
case, resulting in a higher computational complexity.

The SDP in (21) and (23) can be solved using standard
convex optimization packages (e.g. CVX) that use an interior
point solver. The computational complexity of SDP is a poly-
nomial function of dimensions of optimization variables. The
asymptotic complexity scales as O(m4.5) and O(N4.5m4.5)
[19] for fixed temporal support and time-varying support case
respectively. This is a vast improvement over solving the
problem by exhaustively searching for the optimal support,
the complexity of which grows exponentially with Nm.

IV. MINIMUM ENERGY CONTROL

In this section, we consider the minimum energy control
problem, where the goal is to to transfer the state of the
system from a given initial condition x(0) = x0 to a given
final state x(N) = xf in N time steps using the least amount
of control input energy. We wish to solve this problem under
sparsity constraints on the inputs with fixed temporal support
as considered previously in Section III-A. The cost function
for this problem can be obtained by setting Q = 0n and
R = Im in the LQR cost (5), which yields the control energy
J =

∑N−1
k=0 ∥u(k)∥22 = ∥ũN∥22. Further, using (3), the final

state constraint is x(N) = ANx0 + C̃N ũN = xf . Thus,
the minimum energy control problem1 is formulated as

min
ũN

∥ũN∥22 (24)

s.t. ANx0 + C̃N ũN = xf

∥u(k)∥0 ≤ s ∀k = 0, · · · , N − 1.

1It is possible to formulate the problem in LQR framework, where the
equality constraint x(N) = xf is incorporated as a quadratic penalty term
in the objective function. By minimizing the cost: ∥ũN∥22 + c∥x(N) −
xf∥2, (c is a large weightage) minimum energy control problem can be
approximately solved using LQR formulation presented in Section III.

We assume that the system satisfies the conditions of s-sparse
controllability [21], which implies that the above problem is
feasible for any (x0,xf ) under the sparsity constraints. We
first solve the above problem for a fixed support vector w
as defined above, and subsequently find the optimal w.

Lemma 2: Let w be a given binary support vector that
satisfies the sparsity constraint ∥w∥0 = s. Let d ≜ ANx0−
xf . Then, the optimal cost of problem (24) is given by

J∗ = dT
(
C̃N diag(w̄)C̃

T

N

)−1

d, (25)

where w̄ is as defined in (12).
Proof: Since the sparsity constraints are assumed to

be satisfied, we ignore them in (24). Further, since all the
inputs have a (given) common support vector w, we have
∥ũN∥22 = ∥S̄ũN∥22 = ∥ũS̄N

∥2 where ũS̄N
is a non-

sparse vector and S̄ is as defined in (9). Also, C̃N ũN =

C̃N S̄
T
S̄ũN =

(
C̃N S̄

T
)
ũS̄N

since S̄
T
S̄ = diag(w̄).

Hence, (24) becomes

min
ũS̄N

∥ũS̄N
∥22 (26)

s.t. ANx0 +
(
C̃N S̄

T
)
ũS̄N

= xf .

The Lagrangian of the above equality-constrained optimiza-
tion problem is given by

L(ũS̄N
, λ) = ∥ũS̄N

∥22 + λT (d+ C̃N S̄
T
ũS̄N

), (27)

where λ is the Lagrange multiplier and d ≜ ANx0 − xf .
Setting ∇ũS̄N

L = 2ũS̄N
+ S̄C̃

T

Nλ = 0, we get the optimal
inputs as

ũS̄N
= −1

2
S̄C̃

T

Nλ. (28)

Further, ∇λL = 0 =⇒ d + C̃N S̄
T
ũS̄N

= 0, and using
(28) we get

λ = 2(C̃N S̄
T
S̄C̃

T

N )−1d = 2(C̃N diag(w̄)C̃
T

N )−1d. (29)

Substituting (29) in (28), we obtain

ũ∗
S̄N

= −S̄C̃
T

N

(
C̃N diag(w̄)C̃

T

N

)−1

d. (30)

Finally, the optimal cost is given by

J∗ = ∥ũ∗
S̄N

∥2

= dT
(
C̃N diag(w̄)C̃

T

N

)−1

C̃N S̄
T

· S̄C̃T

N

(
C̃N diag(w̄)C̃

T

N

)−1

d.

Using the property S̄
T
S̄ = diag(w̄), we get (25).

Next, using the optimal cost in (25), we aim to find
the optimal support vector that minimizes this cost and
satisfies the sparsity constraints. Towards this, we formulate
the following optimization problem

min
w

dT
(
C̃N diag(w̄)C̃

T

N

)−1

d (31)

s.t. 1Tw ≤ s, and w ∈ {0, 1}m.
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The cost in (31) contains inverse of a matrix, which makes
it a non-linear function of the optimization variables, and
therefore, difficult to analyze. To address this, we convert it
into a linear optimization problem by change of variables.
We introduce an auxiliary variable Z ∈ Sn and reformulate
(31) as

min
w,Z

dTZd (32)

s.t.
(
C̃N diag(w̄)C̃

T

N

)−1

⪯ Z, (32a)

1Tw ≤ s, and w ∈ {0, 1}m. (32b)

Next, we introduce another auxiliary variable V ∈ Sn such
that the matrix inequality (32a) is expressed equivalently by
the following two inequalities

V ⪰ Z−1, (33)

C̃N diag(w̄)C̃
T

N ⪰ V . (34)

Next, applying the Schur complement theorem, (33) is equiv-
alent to the following LMI[

V I
I Z

]
⪰ 0. (35)

Finally, we use the same Semidefinite Relaxation (SDR)
mentioned previously (below (19)) to the constraints (32b).
With all these steps, we obtain the following SDP for the
relaxed minimum energy control problem:

min
w,Z,V ,W

dTZd (36)

s.t. LMIs in (34) and (35),
tr(W ) ≤ s, diag(W ) = w,[

W w
wT 1

]
⪰ 0.

As before, the above SDP can be solved efficiently. After
obtaining the solution, we map the s largest entries of w
to 1 and all other entries to 0. The resulting w is used to
compute the optimal control inputs using (30).

Remark 1 (Time-varying Support): The minimum energy
control problem for time-varying support can be formulated
in a similar manner as above. To avoid repetition, we do not
present all the steps. The final SDP in this case is given as

min
{wk,W k}N−1

k=0 ,Z,V
dTZd (37)

s.t. C̃N diag(w̄)C̃
T

N ⪰ V ,

[
V I
I Z

]
⪰ 0,

w̄ = [wT
0 , . . . ,w

T
N−1]

T ,

tr(W k) ≤ s, diag(W k) = wk,[
W k wk

wT
k 1

]
⪰ 0 ∀k = 0, . . . , N − 1.

V. SIMULATION RESULTS

In this section, we present empirical results for the SDPs
developed for sparsity-constrained LQR and minimum en-
ergy control problems. To solve the SDPs, we use the CVX
package [22] in MATLAB 2024a. To verify the effectiveness

and accuracy of our proposed SDPs, we compare our re-
laxed solutions against the optimal solutions obtained via an
exhaustive search. For the fixed temporal support case, we
exhaustively explore

(
m
s

)
support vectors and compute the

optimal inputs for each of them. For the time-varying support
case, we exhaustively search over

(
m
s

)N
support vectors. It

is evident that exhaustive search becomes computationally
infeasible even for moderate values of m and N due to the
exponential increase in search space size. Hence, we keep the
problem dimensions small to facilitate a comparison between
our proposed methods and the true optimal solution obtained
through the exhaustive search.

We randomly generate the system matrices and initial
condition as

A =


0.05 −0.29 −0.61 −0.40
0.25 0.41 0.33 −0.79
0.55 0.08 −0.18 0.08
0.49 −0.25 0.02 −0.03

 ,

B =


1.19 −0.93 0.72 −1.42 1.40 0.66
0.80 −1.26 −0.77 0.71 0.40 2.13
1.05 0.49 0.83 −0.77 0.92 0.54
−0.74 2.78 −1.12 0.31 −1.60 −1.54

 ,

x0 = [−13.85,−19.56, 4.2, 4.01]T ,

and select N = 4. The sparsity level of the input is varied
from s = 1 to s = 6.
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Fig. 1. Performance comparison of the LQR cost obtained from our SDP-
based algorithm with the true optimal cost (obtained from exhaustive search)
for different sparsity levels.

Figure 1 shows the LQR cost achieved by our SDP-
based algorithm and the optimal cost obtained via exhaustive
search for different sparsity levels s. We make the following
observations from the figure: (i) Our SDP-based algorithm
provides a near-optimum solution in both fixed and time-
varying support cases, validating its effectiveness and ac-
curacy. (ii) The optimal cost decreases with increasing s
since the inputs become less restricted. (iii) The optimal cost
achieved by time-varying support is smaller than the fixed
support case since the latter case is more restrictive than the
former, (iv) At s = m, all curves coincide as this case is
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Fig. 2. Sparse supports obtained from our SDP-based algorithm and the exhaustive search. Horizontal axis represents time steps from k = 0, · · · , N −1.
kth column of each table represents support vector of the input uk .

equivalent to the conventional LQR without any sparsity, (v)
The SDP-based cost nearly coincides with the optimal cost
at all s values, although there is a small gap s = 3 and s = 4.

Let Sk denote the support set of u(k), that is, the index
set of entries of u(k) which are allowed to be nonzero.
Figure 2 shows the support sets obtained by our SDP-based
algorithm and the true optimal support sets obtained by
the exhaustive search. We observe that both the support
sets match in the majority of the cases, showing that our
SDP-based algorithm performs well in obtaining the optimal
support. The exceptions are when s = 3 for fixed temporal
support case (SDP-based support set is {1, 4, 6} and the
optimal support set is {1, 2, 6}), and when s = 3, 4 for
the time-varying support case. However, from the previous
result, we see that the cost obtained by the SDP-based
algorithm is only marginally away from the optimal cost
obtained via exhaustive search, showing that the difference
in the support identified by the two approaches does not
significantly impact the performance.

Next, we quantify the accuracy of support sets obtained by
our SDP-based algorithm. Let Sk and S∗

k denote the support
sets obtained by the SDP-based algorithm and the exhaustive
search. Then, the total number of incorrect support indices
for uk obtained by SDP-based algorithm is given by |S∗

k ⊕
Sk|/2. Averaging over inputs at all time instants, we define
the false support rate (FSR) as

FSR =
1

N · s

N−1∑
k=0

|S∗
k ⊕ Sk|
2

. (38)

For fixed temporal support case, (38) reduces to |S∗⊕S|
2·s .

We compute the FSR for 100 trials, where in each trial

TABLE I. Percentage of incorrect support (FSR in %) obtained from
SDP-based algorithm for different sparsity levels

Support Type s = 1 s = 2 s = 3 s = 4 s = 5
Fixed temporal 4.0 3.5 3.66 3.75 1.8
Time-varying 11.7 4.0 3.91 2.31 0.85

(A,B,x0) are generated randomly from a Gaussian distri-
bution. The FSR values averaged over all trials are reported
in Table I. We observe that the FSR values are within 4%
for all s (except for s = 1), i.e., the SDP-based algorithm
achieves good accuracy in recovering the optimal support.
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Fig. 3. Performance comparison of the minimum-energy control cost
obtained from our SDP-based algorithm with the true optimal cost (obtained
from exhaustive search) for different sparsity levels. In all cases system
reaches it’s final state xf .

Next, we show the performance of SDP-based algorithm
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for the minimum energy control problem. The parameters
A,B,x0 are the same as mentioned before and we set xf =
[−0.7132,−9.3830, 1.6136,−2.6818]T . Figure 3 shows the
control energy obtained by the SDP-based algorithm and the
optimal control energy obtained by the exhaustive search for
different sparsity levels. Similar to the LQR case, we observe
that the SDP-based algorithm obtains near optimum solution
for all values of s. Further, all observations made for the
LQR case hold true here as well.
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Fig. 4. Runtime comparison of SDP-based algorithm with exhaustive search
for sparsity constrained LQR problem.

Finally, we show the superiority of SDP-based algorithms
over exhaustive search-based approach in terms of runtime
complexity. We fix n = 4, N = 2 and m is varied from
1 to 23. The sparsity level s is set at

⌈
m
2

⌉
. (A,B,x0)

are generated randomly from standard normal distribution.
In Figure 4, we plot the runtime of the SDP-based and
exhaustive search algorithms for different input dimensions
for sparsity-constrained LQR problem. Since the scale is
logarithmic, the linear trend observed in the runtime of the
exhaustive search-based approach indicates its exponential
growth in complexity with respect to m. In contrast, the
SDP-based algorithms exhibit a significantly slower increase
in runtime compared to exhaustive search. While exhaustive
search is feasible for small values of m, its runtime rapidly
escalates for even moderate values of m. Therefore, for large-
scale systems with high input dimensions, the use of SDP-
based algorithms is preferred.

VI. CONCLUSION

We studied the sparsity-constrained LQR and sparsity-
constrained minimum-energy control problem for a discrete-
time linear dynamical system. Obtaining the optimal sparse
control inputs for these problems is NP-hard in general due to
combinatorial complexity. We developed convex relaxation-
based approaches to reformulate the nonconvex optimization
problem into a tractable semidefinite program that can be
solved in polynomial time. Extending the work for the
infinite horizon case and for linear quadratic Gaussian (LQG)
control and Model Predictive Control (MPC) are interesting
directions for future work.

REFERENCES

[1] A. Olshevsky, “Minimal controllability problems,” IEEE Trans. Con-
trol Network Syst., vol. 1, no. 3, pp. 249–258, Sep. 2014.

[2] M. Siami, A. Olshevsky, and A. Jadbabaie, “Deterministic and ran-
domized actuator scheduling with guaranteed performance bounds,”
IEEE Trans. Autom. Control, vol. 66, no. 4, pp. 1686–1701, Jun. 2020.

[3] M. Nagahara and D. E. Quevedo, “Sparse representations for pack-
etized predictive networked control,” IFAC Proc. Volumes, vol. 44,
no. 1, pp. 84–89, Jan. 2011.

[4] A. Jadbabaie, A. Olshevsky, G. J. Pappas, and V. Tzoumas, “Minimal
reachability is hard to approximate,” IEEE Trans. Autom. Control,
vol. 64, no. 2, pp. 783–789, May 2018.

[5] N. Wendt, C. Dhal, and S. Roy, “Control of network opinion dynamics
by a selfish agent with limited visibility,” IFAC-PapersOnLine, vol. 52,
no. 3, pp. 37–42, Jan. 2019.

[6] G. Joseph, B. Nettasinghe, V. Krishnamurthy, and P. K. Varshney,
“Controllability of network opinion in Erdös-Rényi graphs using
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