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Exploiting Adjacent Similarity in Multi-Armed Bandit Tasks via
Transfer of Reward Samples

NR Rahul! and Vaibhav Katewa?

Abstract— We consider a sequential multi-task problem, where
each task is modeled as the stochastic multi-armed bandit with
K arms. We assume the bandit tasks are adjacently similar
in the sense that the difference between the mean rewards
of the arms for any two consecutive tasks is bounded by
a parameter. We propose two algorithms (one assumes the
parameter is known while the other does not) based on UCB
to transfer reward samples from preceding tasks to improve
the overall regret across all tasks. Our analysis shows that
transferring samples reduces the regret as compared to the case
of no transfer. We provide empirical results for our algorithms,
which show performance improvement over the standard UCB
algorithm without transfer and a naive transfer algorithm.

I. INTRODUCTION

In sequential multi-task settings, an agent encounters a
sequence of tasks to be solved. The agent can transfer
information from previously solved tasks to new and similar
tasks to help improve performance of the new task[1][2]. In
the context of multi-armed bandits [3][4], the information
from one bandit is used to make decisions in another
similar bandit task[5]. This is particularly useful in scenarios
such as the user cold start problem [6] in recommender
systems, where good initial recommendations are made by
using information gathered from similar users. Similarly,
in reinforcement learning, the learned policies/model from
one task is used in another similar task to help speed up
learning[7][8]. Reusing information also helps to address the
problem of data efficiency in reinforcement learning.

In this paper, we consider a sequential multi-task setting,
where the agent interacts with each task sequentially, one
after the other. Each task is modeled by a stochastic multi-
armed bandit problem, where the agent interacts by pulling
one of the arms at any given time and, in return, gets a ran-
dom reward. We assume the tasks are adjacently similar and
introduce a parameter € in Section II to capture this similarity
between tasks. The parameter e captures many interesting
scenarios like the similarity between different users based on
region, age, gender, etc, and the changing user preferences
in recommender systems, changing market trends in online
advertising, etc. The goal is to use the information from the
previously solved tasks in order to improve the performance
in the current task, therefore leading to overall performance
improvement. This is achieved by reusing/transferring reward
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samples from previously encountered tasks to the current
task. Our algorithm is inspired by [9], which is based on
Upper Confidence Bound (UCB) algorithm [10].

Related Work. Several works in transfer learning for bandits
have focused on linear[11], [12] or contextual bandits [13],
[14], where an explicit form of the reward function is
assumed. This makes the problem simpler and allows the
derivation of mathematical results. In contrast, we consider
transfer learning in the most generic case of stochastic multi-
armed bandits, where no such assumption of the reward
function is made. In [6], the authors study sequential transfer
in stochastic multi-armed bandits. However, they consider a
fixed number of MAB tasks. In contrast, we study sequential
transfer in stochastic multi-armed bandits for infinite tasks.
The authors in [15] have extended this framework to infinite
linear bandits tasks that are close in /5 distance. In our previ-
ous paper on transfer in MAB [9], we considered the notion
of universal similarity, where all tasks are similar. In contrast,
we study adjacent similarity in this paper. Therefore, we
transfer reward samples from the preceding task and not
from all previous tasks. Additionally, the number of reward
samples to transfer is controlled through a novel parameter,
which effectively transfers more samples if the tasks are close
and fewer samples if the tasks are not. On the other hand, in
[9], all previous reward samples are transferred. Thus, this
paper generalizes the setting of [9] in a non-trivial manner.

Another similar set of problems are non-stationary bandits
[16], [17], which are different from our setting in the sense
that the task-switching instants are unknown. Although,
in our setting, the task-switching instants are known, we
provide transfer algorithms to improve the performance over
the no-transfer UCB-based algorithm (NT-UCB). Note that
the algorithms in the literature of non-stationary bandits use
NT-UCB with known switching task instants as the oracle
algorithm. Therefore, we believe our approach of transferring
reward samples to non-stationary bandits will achieve better
performance (which we defer to future work).

Main Contributions. The main contributions of the paper
are:

1) We propose Tr-UCB algorithm to transfer information
using the reward samples from the preceeding task
to the current task in a sequential multi-task bandit
setting. We extend Tr-UCB to Tr-UCB2 algorithm to
handle the case of unknown parameter e.

2) We provide the regret analysis for Tr-UCB and Tr-
UCB2 and show that there is no negative transfer. Our
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regret upper bound clearly captures the performance
improvement due to transfer.

3) We provide empirical evaluation of the algorithms Tr-
UCB and Tr-UCB?2 and show effectiveness of transfer-
ring information from previous tasks.

Notations: 1{E} denotes the indicator function whose value
is 1 if the event (condition) F is true, and 0 otherwise.
Similarly, for n events Ey, Es, ---, E,, where n € N, we
define 1{F1, Es, -+, E,} as the indicator function whose
value is 1 if all the events are true, and O otherwise. Further,
let () denote the null set, and let [{] denote the set {1,2,--- 1}
for some [ € N.

II. PRELIMINARIES AND PROBLEM STATEMENT

We consider a sequential multi-task problem, where each
task is modeled as a stochastic multi-armed bandit with
K arms. Let J denote the total number of tasks, and n;
denote the task length/total steps in task j. Further, let the
total number of steps in the J tasks be denoted by 7" and
J
is given by T' = )" n,. In task j, at each time step t
j=1
(denotes the numbér of steps from the beginning of the
task j), the agent makes a decision denoted by I! € [K]
to pull one of the K arms, and in turn, receives a random
reward rp; € [0,1]. Let ! = {rI{,rIg,...,rlg} denote the
corresponding rewards received from steps 1 to ¢ in task j.
The reward samples are independent across time and across
arms, and their probability distributions are unknown. Let
1, be the mean reward of arm & in task j. We define k!
and p to be an optimal arm in task j and its mean reward,
respectively, and are given by
ki € AV = argmax{y)} and pf = max{ul}.
ke[K] ke[K]

Define Af; = /LZ; — ui > 0 as the sub-optimality gap of
arm k ¢ A’ in task j. In our setting, the agent encounters
a sequence of multi-armed bandit tasks (refer to Figure 1).
We assume the tasks are adjacently similar in the sense that
the mean rewards of consecutive tasks do not change con-
siderably. The following assumption captures the similarity
between any two consecutive tasks.

Assumption 1. We assume that | ui - ufjl| < e for all
j € [J — 1), and the parameter ¢, € [0,1),Vk € [K].

This assumption implies that for each arm k € [K], the mean
rewards between any two consecutive tasks do not differ
by more than €;. One application where this assumption
is relevant is online advertising and recommender systems,
wherein user preferences do not change drastically over time.
Note that for any given task, Assumption 1 can be leveraged
to have a better inference about the optimal mean reward
(and its corresponding optimal arm) of that particular task
by using additional reward samples from the previous similar
tasks.

The goal of the agent in the sequential multi-armed bandit
setting in any given task j and time ¢ is to make decisions I}

based on the reward samples {{r!, VZlrl |} to maximize
the expected total reward over all the bandit tasks. This is
captured in terms of the total pseudo-regret as

Zu-ﬁth S
t=1

Equivalently, the goal is to make decisions {Ig 1<t <
n;,Vj € [J]} to minimize the regret in (1).

J

J
Ry=> Rn => [nj,ui—E
j=1

j=1

Task 1 Task 2 Task J
« > = >
t=1ton; |t=1tony | t=1tony !

Fig. 1: Sequential multi-task bandit setting

In this paper, we leverage the relation between the mean
rewards of any two consecutive tasks (c.f. Assumption 1) in
order to minimize the regret R ;. This is accomplished by
reusing/transferring reward samples from previous tasks to
make decisions in the current task. In the next section, we
present two algorithms - one assumes that the parameter ¢, in
Assumption 1 is known, and the other for the case when ¢y, is
unknown. We provide the regret analysis of these algorithms
and compare them with the baseline algorithm, which works
without reusing/transferring reward samples from previous
tasks.

III. ALGORITHMS AND REGRET ANALYSIS

Our algorithms are based on Upper Confidence Bound al-
gorithm (UCB) [10] for bandits. UCB is a popular strategy
for balancing exploration and exploitation by selecting arms
based on the upper confidence bounds of their estimated
mean rewards. A simple extension of UCB to the sequential
bandit setting is to use UCB separately for each task. In
particular, this approach uses reward samples only from
the current task to compute the upper confidence bounds
of the estimated mean rewards. We call this approach as
No Transfer-UCB (NT-UCB) algorithm. However, NT-UCB
does not leverage the relation between any two consecutive
tasks (c.f. Assumption 1). In contrast, we leverage Assump-
tion 1 by transferring reward samples from the previous task
to the current task. We call this algorithm Transfer-UCB (Tr-
UCB). Next, we discuss these algorithms in detail.

A. No Transfer-UCB (NT-UCB)

The NT-UCB algorithm is a straightforward extension of the
UCB algorithm [10] to the sequential multi-armed bandit
task setting. It involves resetting the mean reward estimates
and, therefore, the upper confidence bounds at the beginning
of a new task. Essentially, when transitioning to a new task,
NT-UCB discards reward samples from previous tasks and
recomputes the confidence bounds based on the rewards
obtained in the current task. In any task, the NT-UCB
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algorithm (shown in Algorithm 1) begins by pulling each
arm once. From ¢ > K + 1, the algorithm computes the
sample average estimates of mean reward denoted by

t .
> ri]l{]T =k}
=1

(1) = : 2
/le(t) ng(t) ) ( )

where N ,z (t) denotes the number of times arm k is pulled
until time ¢ in the task j. Let ¢], (¢) denote its corresponding
confidence width which is computed as follows

j _ [ alogt 3

where o > 2. Next, the NT-UCB algorithm uses ﬂ{ Bt —
1)+ ¢}, (t —1) to make decision I/ at time ¢ in task j based
on the “optimism in the face of uncertainty principle”

1 =agmax {fd, (t - ) + gt -1} @
ke[K]

Next, we provide the regret upper bound of the NT-
UCB algorithm. Let AP = max {AJ} and AP =
J>

min {Afg} denote the universal (over all tasks) upper
§>1,A1>0

and lower bound on the sub-optimality gap of arm k. Let
o > 2 be a positive integer. Then, we have the following

bound on the regret.

Lemma 1. The total pseudo-regret of NT-UCB satisfies

K J J
2alog n; o j
RJSE E N +a72§ Avl. (%)
k=1 | j=1 k j=1
A7 >0

Proof. Follows from the regret upper bound of standard
UCB algorithm [3]. O

Remark 1. When the total number of tasks satis-
fies J = O(T?), where 3 € [0,1), the regret in

K
Lemma 1 becomes Ry = (9< (Z Aim) T8 log(T)> +
k=1"F

(9< (fj AkmaX) Tﬁ> = O(T"log(T)).

k=1
B. Transfer-UCB (Tr-UCB) with parameter ¢€j, known

The NT-UCB algorithm uses reward samples from the cur-
rent task to make decisions I;. However, by Assumption 1,
the mean rewards of consecutive tasks are similar. Hence,
samples from previous tasks contain information about the
mean reward of the current task. To leverage this informa-
tion, we construct an auxiliary estimate using the reward
samples from the preceding task. Subsequently, the UCB
and auxiliary estimates are combined to make decisions I;.
Next, we describe this Tr-UCB algorithm in detail (shown
in Algorithm 2).

Algorithm 1 NT-UCB

Require: Total tasks J, parameter o, and number of arms
K
1: for task j =1,2,....,J do
2 fort=1,---,K do
3 I] =t (Pull each arm once)
4 end for
5: fort=K+1,---,n; do
6
7
8

compute /i1, (t — 1) using (2), Vk € [K]
compute qi, (t — 1) using (3), Vk € [K]

select arm I = argmax{f], (t—1)+q], (t—1)}
kE[K]

9: update number of pulls N} (t), Vk € [K]
10: end for
11: end for

Let ﬂ; «(t) denote the auxiliary estimate of the mean reward
of arm k at time ¢ in task j. The auxiliary estimate /i, ()
is computed using the reward samples from the current tas%(
j and the preceding task j — 1. Further, let B = "Z:‘;’“
denote the maximum number of transferred samples for arm
k from the preceding task, where n > 8. The term By, is large
when the parameter €, is small, which means a large number
of reward samples from the preceding task are allowed to
be transferred; on the other hand, fewer reward samples
are transferred when ¢ is large. By limiting the number of
transferred reward samples through By, the amount of bias
introduced in the estimation of mean in the current task is
not excessive and remains sufficient to facilitate the transfer.
Then, the auxiliary estimate [}, (¢) is computed as:

St
R, + > rp W{I; =k}

~7 =1
Mgk(t): ; ; ) (6)
Ni () + Mj,
. nj—1 . .
where R} = S v} 1{I, = kN 7'(r) < By}
T=1

denotes‘ the sum of transferred rewards, and M i =
min{N/ " '(n;_), By} denotes the number of transferred
reward samples for the arm &. Note that for €, = 0, we have
M = N,i_l(nj_l), which means all the reward samples
from the preceding task are transferred. Further, observe
that the reward samples from the previous tasks other than
the preceding task also carry information about the mean
reward of the current task and, therefore, can be used to
compute the auxiliary estimate. This is particularly useful
if the length of the preceding task is small, which means
there are fewer reward samples to transfer, even though the
term By is very large. However, to keep the algorithm and
the analysis simple, we have considered transferring reward
samples only from the preceding task'. Next, we compute the
confidence width denoted by ¢3, (t) of the auxiliary estimate

IThe extension of the proposed algorithm to the case of transferring
reward samples from multiple previous tasks is similar, and we defer it
to future work.
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il (t) as follows:

; log (B
dty = | 1Bt ™
2(Ni(t) + M})

Finally, the Tr-UCB algorithm makes decision Ig at time
t by combining the upper confidence bounds of the mean
reward computed using the sample average estimate [ﬂl (1)
and the auxiliary estimate /:Lj2 «(t) as follows:

Ig =arg max{min{ﬂ{k(t -1+ q{k(t — 1),ﬂ%k(t -1+

kE[K]
@t —=1)}}. (8)

Taking the minimum of the upper confidence bounds of the
two estimates gives a conservative upper bound on the true
value of the mean reward, which allows the algorithm to
be less optimistic. This leads to increased exploitation and
decreased exploration, therefore leading to a reduction in
regret.

Next, we provide the regret result of Tr-UCB. For simplicity,
we introduce the following notations:

;i a 2nlog(Bg +nj)

2ar] i
o 2alog(ng) g o ,
(A7)?

d . 9
(a2 ®

J
Ul

Theorem 1. Let u]lk and uék be defined as in (9). The
pseudo-regret of Tr-UCB satisfies

K r£z21
Ry gZAg‘ax« > min{U,i,V,j}> + W+

k=1 1=0
« 8
J — |,
(a—2 " 77—8))
where,

UL = uli 1 {AZH > 0} + ut P21 {AZF2 > 0},

(10)

Vi= (@ﬁj%milﬂ > 0} + ug, P1L{AFF? > 0}) -

: 2041 2142
m1n{max{u2k y Usy, },Bk}

and Wy = 1{J is odd, A} > 0} <min {u{k,ugk})

Proof. Refer to the Appendix in the full version of the paper
archived paper at [18]. O

Remark 2. Observe that when the total number of tasks
J = O(T?), where 3 € [0,1), the regret in (10) follows
Ry = O(TPlog(T)), which is the same as for NT-UCB.
Therefore, Tr-UCB ensures there is no negative transfer by
using reward samples from the preceding tasks.

Although the algorithms have the same order of growth with
respect to 1", we show the benefit of transfer by comparing
the actual regret expressions.

Benefit of Transfer. We show the benefit of transfer by
comparing the expressions of regret in (10) and (5). The
first term in the regret bound captures the benefit of transfer,
and therefore we compare the first terms of (10) and (5),
respectively. Define the following terms for the tasks 27 + 1

and 2 + 2, for some ! € {0,1,---,[Z52]}

Il & Amaxyrl Il A Amaxy/l
AL ApSUL BL S APV,

1 A& 2041 A20+1 2042 A 2042
Fy = ufy, 7 AT g T AL

Further, we rewrite the regret upper bound of NT-UCB in
(5) using F,i as follows,
P
l J
i)+ a3
Jj=1
(1)

K 321
med (X
= A2l+1>l0=gz”2>o
k =k

We analyze the benefit of transfer for the consecutive tasks
20 + 1 and 2[ + 2. Note that for the transfer to be useful for
the tasks 2/ + 1 and 2/ + 2, we need min{AL, B} < F}.
Since AL > F ,i, this can happen only if E,lC < F ]i Observe
that when By, is very small, the term E,ﬁ is relatively large,
and as By increases, the term E,lC decreases in comparison
with F}. Hence, for some large enough By, we get B! < F},
which leads to a decrease in the regret upper bound of Tr-
UCB. Recall that By, depends on the parameter ¢; through
an inverse relationship, i.e. as €, decreases Bj increases.
Therefore, the regret upper bound of Tr-UCB decreases in
comparison to NT-UCB, when the parameter ¢; decreases.

Algorithm 2 Tr-UCB - Parameter ¢ is known

Require: Total tasks J, number of arms K, and parameters
an, €, Yk € [K]
1: for task j =1,2,...,J do
2 repeat steps 2 to 4 of Algorithm 1
3 fort=K+1,---,n; do
4 compute /i1, (t — 1) using (2), Vk € [K]
s: compute ¢, (t — 1) using (3), Vk € [K]
6: compute fior(t — 1) using (6),Yk € [K]
7 compute ¢3, (t — 1) using (7), Vk € [K]
8 select arm I} using (8) at time ¢
9: update number of pulls N}/ (t), Vk € [K]
10: end for
11: end for

C. Transfer-UCB (Tr-UCB2) with parameter €j, unknown

The Tr-UCB algorithm discussed previously assumes that
the parameter values ¢ are known. However, access to these
parameters may not be available in practice. One approach to
address this problem is to estimate the value of €; using the
past reward samples and then follow the Tr-UCB algorithm
using the estimated value. We employ the same approach
but with a minor modification to the Tr-UCB algorithm. To
increase the confidence in the estimates of €, we pull the
arms uniformly for a fixed number of steps. This increases
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the number of reward samples for each arm, and therefore,
increases the confidence in the estimates of €. We call this
approach Tr-UCB2. Next, we describe Tr-UCB2 algorithm
in detail (refer to Algorithm 3 for pseudo-code).

I Phase 1 H Phase 2 I
U;J{,‘I’r"'; Tr-ucB

| | | Task | Task
Task 1 |Task 2| .... |Task L as - |Task J

| | | L+1 |L+2

| | >

o Lo : ! Lo !
) ' ' 1 1 1 ' : :
' ' ' ' > >
'np ' mg ! '“mnp ' npyr " npge ! nJ

Fig. 2: Pictorial representation of Tr-UCB2

As depicted in Figure 2, the algorithm’s behavior is divided
into two phases. Let L > 2 denote the number of tasks in
phase 1. For each task in phase I, the Tr-UCB2 algorithm
begins by pulling the arms uniformly for steps 1 < t < [,
where | = a K, for some a € N. This ensures enough reward
samples from each arm are generated for estimating €5 with
good confidence. For ¢ > [, the algorithm uses an estimate of
€ (described below) and follows the Tr-UCB strategy. The
estimate of ¢ is computed at the beginning of every task
using the reward samples from the previous tasks. After L
tasks, the algorithm enters Phase II which is similar to Phase
I except that there is no uniform sampling in the tasks of
Phase II. Similar to Phase I, an estimate of ¢ is computed at
the beginning of every task in Phase II and Tr-UCB strategy
is used. Algorithm 3 mentions all steps of TR-UCB2.

Next, we explain the computation of the estimate of € in
detail. Let ¢, denote an estimate of the parameter ¢, for arm
k in task j. Then, éfc is computed as follows:

; 1 , 1<y <2
%“=Y  max {|@5 (ni) — @i (ng) b2 << J
i€[j—1],ci <co
(12)
where
i Nt (ng Ni(n; 2
= k “E?f +1) + ik(n ) log (5>, and § € (0,1),
2Nk (nH_l)Nk(n,)

_ Kl 2
co=[7log{5 ]

We outline the motivation for the expression of the estimate
¢ in the following three steps:

(i) From Assumption 1, we know that |u} — uit'| < €.
Hence, we compute a high probability upper bound on the
true value of €, using the difference between the empirical

averages of the mean rewards, i.e., i\t (nit1) — fit, ().
By using Hoeffding’s inequality [19], it can be shown that
with probability at least 1 — 0, the true difference of the
mean rewards fﬁi - ML—H lieSA in the interval [[ﬂf,gl(m 41) —
fiy(ni) — ¢, i3y (nir) — figg(ni) + ¢ .

(ii) By considering |2\t  (niy1) — fit, (n;) £ ci|, we are
essentially taking the maximum possible value of the dif-
ference in the mean rewards from the confidence interval
[ (i) = 2 () — €y ATk (i) — i, (ni) ¢ ). This
method is pessimistic (biased towards higher values of €) in
estimating the true value of €, thus helping in minimizing
the negative transfer, especially when the estimates are not
sufficiently accurate.

(iii) Since the parameter €; upper bounds the difference in
the mean rewards, we take the maximum value among all the
estimates of the difference in the mean rewards. Note that the
constraint c?C < ¢p ensures the estimates of the difference in
mean rewards it (ni11) — /ftik(m) have good confidence.
This is because, the constraint ¢ < cq ensures that cj, is
never too large, in other words, the estimates computed using
fewer samples are not considered. Therefore the constraint
ensures the estimates have high confidence.

In the following theorem, we provide the regret analysis of
Tr-UCB2,

Theorem 2. The pseudo-regret of Tr-UCB2 satisfies

K 1L < o 8
max J S
Rr<) A (K+Zu1k+J(a—2 77—8)
k=1 Jj=1
+TJ5>. (13)

Furthermore, if the total number of tasks satisfies J =
O(T?) and confidence parameter satisfies § = %, then the
regret follows Ry = O(T# log(T)).

Proof. Refer to the Appendix in the full version of the paper
archived paper at [18]. O

Next, we analyze the regret upper bound 13 of Tr-UCB2
algorithm. The first term in (13) captures the increased regret
due to the uniform pulling of arms in phase I. This means
that increasing the parameters [ and L, increases the regret.
However, to estimate ¢, with high confidence, the parameters
l and L need to be chosen sufficiently large. Hence, there is a
tradeoff in estimating €, with high confidence and reducing
the regret contributed by uniformly pulling the arms. The
second term of (13) does not explicitly capture the transfer
benefit, unlike the regret upper bound of Tr-UCB in (10).
However, Tr-UCB?2 is atleast as good as NT-UCB since both
follow the same regret order and the empirical results in
Section IV further demonstrate that Tr-UCB2 performs better
than NT-UCB. Nevertheless, this result is somewhat loose
and does not fully capture the transfer benefit, which we
aim to improve in future work. The last term captures the
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increased regret due to the error in the estimate of ¢;. By
decreasing 9, the regret due to the last term decreases. How-
ever, the parameter [ needs to be increased simultaneously in
order to increase confidence in the estimate of €, showing
a trade-off.

Algorithm 3 Tr-UCB?2 - Parameter ¢ is unknown

Require: Parameters «, [, L, K and J
1: for task j =1,2,...,J do

2. compute estimate ¢, Vk € [K]

3 if 7 < L then

4 fort=1,---,0ldo

5 I; =tmod K

6: end for

7 fort=10+1,---,n; do ‘
8 repeat steps 4 to 9 of Algorithm 2 using €,
9 end for

10 else ]
11: repeat steps 2 to 10 of Algorithm 2 using €},
12: end if

13: end for

IV. NUMERICAL SIMULATIONS

In this section, we present the simulation results showing
the empirical improvement of algorithms Tr-UCB, Tr-UCB2
over NT-UCB and a naive transfer algorithm (called Naive-
Transfer), indicating the benefit of transfer. Naive-Transfer
is an empirical algorithm that transfers all reward samples
from the preceding task, assuming that the samples come
from the same distribution. We consider a sequence of tasks,
where each task is a multi-armed bandit with K = 5 arms.
The total number of tasks J = 1000, with task length
n; = 10000,Vj € [J]. The mean rewards {yu}} | of the
first task are generated by uniformly sampling from the [0, 1]
interval. The mean rewards of the subsequent tasks have
to satisfy Assumption 1. Towards this end, we construct
uniform distributions of mean g}, and width 2¢;, for each
arm k. If the support of any distribution lies outside [0, 1]
interval, then we appropriately adjust the width. Then, the
mean rewards p2 of task 2 are uniformly sampled from these
distributions. The mean rewards of the subsequent tasks are
generated from the mean rewards of the preceding task in
a similar manner. The rewards for arm £ in any task j are
generated by sampling from uniform distributions of mean
py, with width d = 0.1. Once again, the widths are adjusted
if they fall outside the [0, 1] interval.

Figure 3 shows the empirical regret over the total steps of
algorithms NT-UCB, Tr-UCB, Tr-UCB2, and Naive-Transfer
for different values of €¢,. We have considered ¢, = ¢,Vk €
[K]. The plots are generated by averaging over 20 realiza-
tions. The parameter values used in Tr-UCB2 algorithm are
1l =2000, L =20, =0.1 and « = n = 8.1. The same
value of « is used for NT-UCB algorithm.

Next, we analyze the results in Figure 3. For each value
of €, the regret of the Tr-UCB algorithm is the lowest
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Fig. 3: Empirical Regret Vs Total Steps of NT-UCB, Tr-
UCB, Tr-UCB2 and Naive-Transfer algorithms for different
values of ¢,
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among all algorithms, which means transferring the reward
samples with the knowledge of € helps reduce the regret
significantly. Next, observe that Tr-UCB2 incurs more regret
than Tr-UCB since ¢; is not known. Also, both Tr-UCB
and Tr-UCB2 have significantly lower regret than NT-UCB,
especially when € values are small and lie below NT-UCB
overall ¢, values considered (no negative transfer). This
implies transferring reward samples from preceding tasks
is beneficial. On the other hand, Naive-Transfer performs
well when ¢, values are small, with increasing €y, values, the
performance starts degrading and performs worse than NT-
UCB for larger values of €. The reason for this behavior is
that transferring a large number of reward samples naively
introduces a large bias in the mean estimates of the reward
in the current task. Further, Tr-UCB2 incurs high regret in
the initial tasks because of uniform sampling of the arms
and inaccurate estimates of €,. However, it performs better
as more tasks are encountered.

V. CONCLUSION

We considered a sequential multi-task setting, where each
task is a stochastic multi-armed bandit. We introduced the
parameter ¢, to capture the adjacent similarity between tasks.
We analyzed the transfer of reward samples and proposed
two transfer algorithms based on UCB; one assumes the
knowledge of ¢, and the other estimates this parameter from
data. We provided a regret analysis of the algorithms and
validated our approach via numerical experiments. One of
the future research directions is to address the gap between
the performance of Tr-UCB and Tr-UCB2. Other research
directions include computation of lower bound on the regret,
and studying transfer learning in the context of varying task
similarity parameters, non-stationary bandits and reinforce-
ment learning.
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