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Remote real-time tracking
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Fast or Precise?

» What is the optimal strategy for real-time tracking of a
discrete time process under periodic sampling?

» Slow and precise or Fast but loose
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Application

» Many cyber-physical systems often employ tracking of sensor
data in real time

» Examples: sensing, surveillance, real-time control, ...

» Communication is limited by the following constraints:

» Cost of frequent sampling
» Limited channel resources



Existing Works

Sequential coding for correlated sources

> Rate-distortion region characterization [Viswanathan2000TIT]
> Real-time encoding for Gauss-Markov source [Khina20171TW]

Remote estimation under communication constraints

> Real-time estimation of Wiener process [Sun20171SIT]
> Real-time estimation of AR source [Chakravorty2017TAC]

Recursive state estimation algorithms under communication

constraints

> Gaussian AR process [Stavrou20171TW]
» Linear system over lossy channel [Matveev2003TAC]

Current setting

» Rate-limited channel with unit delay per channel use

> Real-time estimation of AR(1) process



Source Process

Encoder Channel Decoder
() (nR bps) (ve)

F—> Xe = ve(CT )

v

Innovation process &; € R” is i.i.d. and n-dimensional

v

Discrete AR(1) n-dimensional source process

Xt = CkXt_]_ + é.t for all t 2 0

v

Source process X; is sub-sampled at 1/s, to obtain samples
Xis at t = ks

supiezt +1/E|[Xk|3 is bounded
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Communication Setting
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Encoder
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Channel
(nR bps)

Decoder

Encoder has
ss t

access to
decoder state

> )%t\t =¢(C1)
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Encoder: ¢; : X**1 — {0,1}"Rs at t = ks

Channel: Error free, limited capacity causes delayed

transmission

Decoder: 1, : {0,1}"R(t=1) — X at t = ks

Performance metric:

1 ~
Dt(éawa X) = EEHXt - Xt\t”%



Optimal Decoder Structure

Optimal
Decoder

From Channel — )?t\t = o'E[Xs|Ct]

» Decoder at time t = ks + i for i € {1,...,s}
» For the mean squared error, estimate conditional mean

» Utilize the latest information to refine the last sample Xjs



Encoder Structure

st

Decoder state

Quantizer

» Find the error in the decoder estimate of the last sample

» Transmit the quantized error



Periodic Successive Update Scheme

> At t = ks+jp, j € [0,5/p—1], encode Yi; = Xks — Xis|ks jp-

Xt s =4,p=2

Q(Y0,0) Q(Yo,1) Q(Ya,0) Q(Ya,1) Q(Ys,0) Q(Ys,1)




Encoder at time t = ks + jp
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(0, £)-quantizer

Fix 0 < M < co. A quantizer Q : R” — {0,1}"R constitutes an

nR bit (6,¢)-quantizer if for every vector y € R" such that
Llyll2 < M, we have

Elly = Q)13 < llyl36(R) + ne?.

for0<f<1land0<e.



jp+i

Decoder at time t = ks +

0

for all subsequent
time instants
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13



Performance of Periodic Successive Update Scheme

Lemma

For t = ks + jp + i, the p-SU scheme employing a nRp bit (0, €)
quantizer satisfies

Di($p, ¥y X) < a2 E=5)O(RpY Dys(dp, 1, X)+
o?(1 — a2t=k)) £ (e, B).

B : Upperbound on the probability of encoder failure



Proof Idea

(v No updation in estimate of Xo

| 1 : ; I i ‘ Feee —f

1 P s T
Transmit

prp =aP(Xgo + Q(Yoo))
Q(Yoo)

_ P -
> X, =aPXo+ > 0 aP7lE,
. . v o P "
» When encoding is successful, Xp‘p =« X0|p,

1 ~ N
Dp = a2p;EHXO — Xojo — Q(Xo — Xmo)”% +0°(1—a?P)
1 .
< a®PO=E||Xo — Xopll3 + € + o*(1 — a?P)
n

» Else, use Cauchy-Schwartz Inequality



Performance of Periodic Successive Update Scheme

Lemma

For a fixed time horizon T, periodic successive update scheme with
a (0,¢) quantizer gives

1 T 2 g(s)a 2
= z:; De(¢p, Ve, X) < 0 [1 e "(Rp)ﬂ

for a very low probability of encoder failure and g(s) £ (e



Example: 1 Uniform Quantizer

R = log[2M/€]

» Say we quantize y, ||y||3 < /nM
» The quantizer parameters : 6 = 0, €2 = nM?22—2R

» Optimal pis 1



Example:2 Average Distortion Upper Bound for
Gain-Shape Quantizer
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Figure: (a) gives a case where p =s is the best and in (b) p =1 minimizes
the bound



A quantizer design

Norm Quantizer : Quantizes the norm B = ||y||2/+/n into B such
that |B— B| <e.

no.ofbits = log[M/€]

L L L L L
T T T T T
M

Angle Quantizer! : A random codebook C consisting of 2"F
independent vectors distributed uniformly over the unit sphere S in
R".

For any unit vector y € R",the quantizer gives

Qly) = /7 cos - argmaxycc(y, y').

6 chosen to guarantee that there is one codeword y’ such that,
{(y,y') > cos@ for all y.

1 Amos Lapidoth. “On the role of mismatch in rate distortion theory”. In: |EEE Trans. Inf. Theory 43.1
(1997), pp. 38-47.



Performance of the quantizer
For any y € R" the quantizer gives
Qy) = V1 B cosd - arg maxycely, y').

Consider a vector y € R" with ||y||3 = nB?. Suppose that B < M
and let |B — B| <. Then,

Ty - QU s 2 X8+ 2
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Special Case: Successive Update scheme

» Fast and Loose
» Setp=1

Q(Yo0)  Q(Yo,) QY,2)  Q(Yo3)
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Performance of the scheme

Lemma

Let t = ks + i, for i € [1,s], for n sufficiently large, the successive
update scheme used with a (0, €) quantizer realisation with
O(R) = 2R satisfies

De($,9,X) < a? 272K Dy (¢,90, X) + 0*(1 — *) + f,

where f,, — O for large n.
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Optimum min-max tracking accuracy

We define the accuracy,

LS Do, 9, X)

o2

5T(¢,¢»Xn) =1-
Then, optimum asymptotic maxmin tracking accuracy,

o T a o T
é (R,S,X)—Tlgnoonlggo[(sdfg))gggné (¢7¢7Xn)]'
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Main Result

Theorem (Lower bound for maxmin tracking accuracy: The

achievability)

For R > 0 and s € N, the asymptotic minmax tracking accuracy is
bounded below as

5*(R757X) > 5O(R)g(s)‘

for So(R) £ ©0=270) and g(s) 2 U=2%) for all s > 0.

1—a?22-2R) — s(1-a?)

This bound is achieved using successive update scheme for p =1
and the given realisation of (6, €) quantizer.
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Theorem (Upper bound for maxmin tracking accuracy: The

converse)

For R > 0 and s € N, the asymptotic minmax tracking accuracy is
bounded above as

0*(R,s,X) < dp(R)g(s)-

The upper bound is obtained by considering the Gauss-Markov
Processes.
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Conclusion

» We provide an information theoretic upper bound for maxmin
tracking accuracy for a fixed rate and sampling frequency.

» It is shown that for a fixed rate, high dimensional setting, the
strategy of being fast but loose achieves this bound.

» We outline the performance requirements of the quantizer
needed for achieving the optimal performance.

» For non-asymptotic regime our studies show that the optimal
strategy might differ.
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