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Abstract: This paper considers the problem of coordinating the passage of vehicles through a
traffic intersection with the aim of minimizing total travel time and energy consumption. The
intersection manager communicates with vehicles heading towards the intersection, groups them
into clusters (termed bubbles) as they appear, and determines an optimal order of passage and
average velocity profiles. Vehicles in a bubble receive the corresponding profile and implement
local control to avoid collision with other bubbles in the same road and within the bubble itself,
and reach the intersection at the prescribed time and with the bubble occupying the intersection

for no more than a prescribed duration.
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1. INTRODUCTION

Emerging technologies in intelligent transportation sys-
tems such as vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) communication have the potential
to hugely impact safety, traveling ease, travel time, and
energy consumption, eliminating road accidents and traf-
fic collisions. A particularly useful application of these
technologies is in the coordination of traffic at and near
intersections. In contrast to traditional intersection man-
agement, networked vehicle technologies allow us to co-
ordinate the traffic not just within the intersection, but
also by controlling the vehicles’ behavior much before they
arrive at the intersection. Such a paradigm offers the pos-
sibility of significantly reduced stop times and increased
fuel efficiency and is the subject of this paper.

Literature review

Much of the literature in the area of coordination-based
intersection management focuses on collision avoidance of
vehicles within the intersection. Supervisory intersection
management (intervention only when required to maintain
safety by avoiding collisions) is explored using discrete
event abstractions in (Dallal et al., 2013) and reachable set
computations in (Colombo and Del Vecchio, 2015; Hafner
et al., 2013). The works (Dresner and Stone, 2008; Fajardo
et al., 2011) and references therein describe a multiagent
simulation approach in which, upon a reservation request
from a vehicle, an intersection manager accepts or rejects
the reservation based on a simulation. Each vehicle at-
tempts to conform to its assigned reservation and if this
is prediced not to be possible at any time, the reservation
is canceled. (Kowshik et al., 2011) also uses a reservation-
based system to schedule intersection crossing times. In
addition, the paper also provides provably safe maneuvers
for vehicle following in a lane as well as for crossing the
intersection. Hult et al. (2015); Campos et al. (2014) use
model predictive control based method to coordinate the
intersection crossing by vehicles and obtain suboptimal
solutions to a linear quadratic optimal control problem.
In (Qian et al., 2014) a heuristic policy assigns priori-
ties to the vehicles, while each vehicle applies a priority-

preserving control and legacy vehicles platoon behind a
computer-controlled car.

We note that the ability to efficiently coordinate dimin-
ishes as the vehicles get closer to the intersection. This
is why here we take an expanded view of intersection
management that looks at the coordinated control of the
vehicles much before they arrive at the intersection. The
above methods are not suited for this setup or would prove
to be too computationally costly. An example of the ex-
panded view of intersection management is (Miculescu and
Karaman, 2014), in which a polling-systems approach is
adopted to assign schedules, and then optimal trajectories
for all vehicles are computed sequentially in order. Such
optimal trajectory computations are costly and depend
on other vehicles’ detailed plans, and hence the system
is not robust. Closer to this paper, the works (Jin et al.,
2012, 2013) describe a hierarchical setup, with a central
coordinator verifying and assigning reservations, and with
vehicles planning their trajectories locally to platoon and
to meet the assigned schedule. The proposed solution is
based on multiagent simulations and a reservation-based
scheduling (with the evolution of the vehicles possibly
forcing revisions to the schedule), both important differ-
ences with respect to our approach. (Li et al., 2014) is a
recent survey of traffic control with vehicular networks and
provides other related references.

Statement of contributions

We propose a provably safe hierarchical intersection man-
agement system aimed at optimizing a combination of
cumulative travel time and fuel usage. The proposed sys-
tem is composed of three main aspects: (i) clustering
to identify vehicles that must platoon before arriving at
the intersection. We refer to such clusters of vehicles as
bubbles; (ii) a branch-and-bound based scheduling algo-
rithm that identifies the optimal schedule for a simplified
cost function; (iii) a distributed control algorithm for the
vehicles that ensures overall safety and guarantees that
the actual intersection crossing schedule does not violate
the prescribed schedule. Advantages of our proposed sys-
tem include provably safe algorithms that do not require
extensive simulations; dynamic clustering to account for



the arrival of new vehicles in the problem domain and
reduce the computational load on the branch-and-bound
algorithm, a feature that also makes the algorithm applica-
ble to a varied range of traffic conditions; and a distributed
algorithm for local vehicular control which guarantees the
desired aggregated behavior of each bubble. Proofs are
omitted for reasons of space and will appear elsewhere.

2. PRELIMINARIES

We present here some basic notation and concepts on
graph theory used throughout the paper.

Notation

We let R, R>g, Z, N, and Ny denote the set of real,
nonnegative real, integer, positive integer, and nonnegative
integer numbers, respectively. For a non-empty ordered list
S = {i1,...,is}, we let |S| denote the cardinality of S.

Further, S(i) denotes the i! element of S. Thus, S(|S|)
denotes the last element of S. For convenience, we also use
the notation j € S (j ¢ S) to denote that j is (is not) an
element of the ordered list S. For two ordered lists S; and
Sa, we let S1 \ Sz denote the ordered list of elements that
belong to &1 but not to So, while %reserving the same order

as in ;. We let the notation [u]," denote the number u

lower and upper saturated by w,, and uy (um < up),
respectively, i.e.,

[u]ZM £ min{uys, max{t,,,u}}

Graph theory

We review basic notions following the exposition in (Bullo
et al., 2009). A digraph of order n is a pair G = (V, E),
where V' is a set with n elements called nodes and F is a
set of ordered pair of nodes called edges. A directed path
is an ordered sequence of nodes such that any ordered pair
of nodes appearing consecutively is an edge. A cycle is a
directed path that starts and ends at the same node and
that contains no repeated node except for the initial and
the final one. A digraph is acyclic if it has no cycles. A
directed (or rooted) tree is an acyclic digraph with a node,
called root, such that any other node of the digraph can
be reached by one and only one directed path starting at
the root. If (z,7) is an edge of a tree, i is the parent of j,
and j is the child of i. Given a tree, a subtree rooted at i
is the tree that has i as its root and is composed by all of
its successors in the original tree.

3. PROBLEM STATEMENT

Consider an intersection and the incoming traffic along
four branches as shown in Figure 1. For simplicity, we
assume that (i) there is a single lane in each direction,
(ii) all vehicles are identical with length L, (iii) vehicles
do not turn at the intersection, (iv) there are no sources
or sinks for vehicles along the branches - all new traffic
appears at the beginning of the branches and must cross
the intersection. It is possible to avoid assumption (iii) and
allow turning. However, the differing travel speeds when
turning and going straight affects the computation of the
intersection occupancy time. In order to keep the problem
setup and notation simpler, we make assumption (iii).

The dynamics of a vehicle with label j is given by
5 (t) = vy (1), (1a)

00(t) = ul(t), (1b)
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Fig. 1. Traffic near an intersection. Black dots represent
individual vehicles, which are clustered and contained
within bubbles, represented by grey boxes. A is the
length of the intersection and the numbers {1,2,3, 4}
are labels for the incoming branches.

where z7, vj € R are the position (negative of the distance

from the front of the vehicle to the beginning of the
intersection) and velocity of the vehicle, respectively and
ui(t) € [ty ups], with u, < 0 and ups > 0, is the input
acceleration. We use the superscript v for the state and
control variables of individual vehicles. We assume that
each branch has a maximum speed limit that the vehicles
must respect. Purely for the sake of simpler notation, we
assume that the speed limit on all branches is the same

and equals v™. Thus, for each vehicle j, vy (t) must be

constrained to belong to the interval [0,v*] for all time ¢
that the vehicle is in the system.

Each vehicle is equipped with vehicle-to-vehicle (V2V)
and vehicle-to-infrastructure (V2I) communication capa-
bilities. With the V2I communication, the vehicles inform
a central intersection manager (IM) about their positions
and velocities and receive from IM commands such as
time to arrive at the intersection. We assume IM has the
necessary communication and computing capabilities. We
seek a design solution that minimizes a cost function C,
that models a combination of cumulative travel time and
cumulative fuel cost, by scheduling the intersection cross-
ing of the vehicles and controlling their approach to the
intersection, all while avoiding collision. Solving this prob-
lem at the level of individual vehicles is computationally
expensive and not scalable. Thus,we aim to synthesize a
solution that makes this problem tractable to solve in real
time and is applicable to a wide range of traffic scenarios.

4. OVERVIEW OF HIERARCHICAL SOLUTION

This section gives an outline of our hierarchical solution to
the problem stated in Section 3. Our algorithmic solution
combines optimized planning and scheduling of groups of
vehicles with local distributed control to avoid collision
and execute the plans, and has three distinct aspects,

1) grouping the vehicles into clusters,

2) scheduling the passage of the clusters through the
intersection,

(3) local vehicular control to achieve and maintain cluster
cohesion, to avoid collisions, and to ensure the clusters
meet the prescribed schedule.

Each of these aspects is coupled with the other two.
Moreover, an overarching theme is the dynamic nature of
the problem due to the arrival and departure of vehicles.



Any complete or partial solution has to be computed as
new vehicles come in (event based) or at regular time
intervals (time based). For now though, we focus on the
‘static’ aspect of the solution and denote by to an initial
time at which the intersection manager ‘samples’ the state
of traffic and solves the static scheduling problem. In
what follows, we provide a general description of the main
ingredients of each aspect.

Aspect 1 - clusters and bubbles. The primary motivation
to cluster vehicles is to reduce the number of independent
entities in the scheduling optimization problem. Clustering
also has the advantage that, depending on the available
computational resources, the maximum number of clusters
could be fixed so that the more computationally expensive
aspect of the solution (i.e., scheduling) remains scalable.
At time tg, the vehicles present in the four branches are
grouped into N clusters, with N; clusters on branch 1.
Given the position information of the vehicles at ¢y, we use
k-means clustering on each branch individually to identify
the clusters (cf. Section 5).

The relative positions of the vehicles of a cluster may vary
significantly over the course of their travel and the vehicles
may not be in the form of a well-defined platoon at all
times. Hence, we refer to a cluster of vehicles, by a generic
term, as a bubble (shown as grey boxes in Figure 1). The
defining characteristic of a bubble is that all the vehicles
of a bubble cross the intersection uninterrupted. The state
of the i*" bubble is given by the tuple

fi = (xi,vi,mi,L) c RS X {1,2,3,4},

where x;, v; and m; are, respectively, the position of the
lead vehicle in the bubble, the velocity of the lead vehicle in
the bubble, and the number of vehicles in the bubble. The
quantity Z; denotes which of the four incoming branches
the bubble is on. For each branch, we require the order of
the bubbles to remain constant during the bubbles’ travel
(i.e., there is no passing allowed within each branch). To
capture the order of the bubbles on a branch, we define
the function R,

]., if Iz = Ij, Z’j(fo) < xi(to),

ﬂk‘ s.t. Iy, = Ii, l‘j(to) < l‘k(to) < .’)Si(to),
0, otherwise.
In this definition, R(%,j) = 1 if and only if bubble j and

i are on the same branch and bubble j is the immediate
follower of bubble .

R(i,j) £

Aspect 2 - scheduling of bubbles. For the sake of simplic-
ity, we restrict ourselves to only those schedules in which,
at any given time, vehicles from a single incoming branch
use the intersection. The job of the scheduler is to prescribe
to each bubble an approach time 7; - the time from tg
that the i*" bubble takes to reach the beginning of the
intersection, i.e., we require x;(to + 7;) = 0.

Aspect 3 - local vehicular control. The local vehicular
control has various equally relevant goals. The first goal is
to avoid collisions within each bubble and among different
bubbles in the same branch. The second goal is for the local
vehicular control to ensure that the bubble approaches the
intersection in the prescribed time 7; and that the occu-
pancy time of the bubble, 70 (the time the intersection
is occupied by bubble ¢), is no more than 79, which in
turn depends on m;, the number of the vehicles in bubble
i, and other system parameters and initial conditions. We
assume that the control law at the vehicle level ensures
that a vehicle does not change bubbles during the course

of its travel time. Thus, as far as the scheduling aspect is
concerned, m; may be assumed constant in time.

Constraints. The preservation of the order of intersection
crossing by the bubbles on the same branch takes the form,

Tj ZTZ‘+7_'iOCC, lfR(Z,]):l, (2&)
for i,7 € {1,...,N}. Note that these constraints only
ensure that the passage of bubbles on a branch through the
intersection occurs in the same order as they have arrived,
but they do not necessarily exclude collisions for the entire
travel time. The intra-branch collisions are avoided at
a local level and we accept the resulting sub-optimality.
On the other hand, the no-collision constraint between
bubbles on two different incoming branches takes the form,

TiZTj+7:J(-)CC ORTjZTi-l-’T_'iOCC, lfIZ#IJ, (Qb)
for i,5 € {1,...,N}. The constraints (2b) make the
problem combinatorial in nature because of the need to
determine whether 7 or j goes first. Since the order on each
branch is to be preserved, the number of sub-problems is
the number of permutations of the multiset {Z;}¥,, i.e.,

4
NI _ (Zi:l N7)' (3)
1 = 1 J
Hi:l N;! Hi:l N;!
where recall that IV; is the number of bubbles on branch %
and N us the total number of bubbles.

5. DYNAMIC VEHICLE CLUSTERING

The primary motivation for clustering vehicles into bub-
bles is to reduce the computational burden on the sched-
uler. Consequently, we impose an upper bound, A/, on the
number of bubbles that the scheduler needs to consider at
any given instance. Further, as new vehicles arrive, they
need to be assigned to new bubbles. In order to balance
both requirements, we divide each incoming branch into
three zones: staging zone, mid zone and the exit zone, as
shown in Figure 2. For each branch ¢, we let Z7, Z™™ and
Z¢ be the set of positions on the branch 4 corresponding
to the staging, mid and exit zones, respectively.

Staging zone Mid zone Exit zone Inter-
Rt e Bt section
Ly Ly, Le A~
Fig. 2. Division of an incoming branch into zones.
The clustering algorithm is executed every T., < £ units

v
of time, where L, is the length of the staging zone and
vM is the max speed limit. At each clustering instance
sT.s, s € Z, the vehicles in the staging zone that do not

already belong to a bubble are clustered. Thus, the choice
Tes < ULW ensures that every vehicle belongs to a bubble
before it leaves the staging zone and enters the mid zone.
At a clustering instance sT,s, let us suppose there are n}*¢
new vehicles to be clustered in the staging zone of branch <.
Then, these vehicles are clustered based on their position
using k-means algorithm with £ = M; = min{n*, N;},
where N is an upper bound on the number of new bubbles
that may be created on branch 7 at the clustering instance.

At each instance sT,s, the IM also schedules all the newly
created bubbles as well as some or all of the previously
created bubbles. If a bubble previously scheduled has
already entered the exit zone, then its schedule is not
modified any further. Similarly, scheduling is a costly



operation and we do not want the IM to schedule more
than A bubbles at any instance. Thus, if the number of
newly created bubbles and the previously created bubbles
yet to enter the exit zone exceeds N then we pop out
the required number of bubbles from the top of the
list of bubbles previously scheduled and finalize their
schedules. We present the precise algorithm to achieve
this in Algorithm 1. The algorithm takes in the list of

Algorithm 1: Clustering into bubbles at sT.,

Input: £, {Ordered list of bubbles scheduled at (s —1)T.s}

L L+ Lp\{JEL:Tj=1 Nz ¢ Z7UZ"}

{remove bubbles that have already entered exit zone}
2: for i =1to 4 do
3N {max new bubbles on branch i}
4: M; < min{n}* N;} {no. of new bubbles on branch ¢}
5: Cluster new vehicles on branch ¢ using k-means algorithm,

with &k = M;

6: end for

7: M<—ZM¢

1
8: if M + |L| > N then _
9:  Remove first M + |£| — N bubbles from £
10: end if
11: Append new bubbles to £
12: 7™in  max ({T;,ni“} U{m + 72 ri € Lp )\ E})
{min. approach time for the bubbles L}

bubbles scheduled on the last iteration £, and a minimum

approach time Tzﬂnin used when scheduling £,,. The output

of the algorithm is a list of bubbles £ to be scheduled and
the minimum approach time for them 7™™.

Remark 5.1. (On zone lengths). The lengths of the three
zones illustrated in Figure 2 has a huge effect on the
resulting traffic coordination. Systematic design of these
zone lengths is out of the scope of this paper. However,
we can identify some basic principles. Staging zone length
Ls has a direct effect on the time step of the periodic
execution of clustering and scheduling as well as on the
number of vehicles per bubble. The mid zone length L,,
has an effect on the likelihood of revising a bubble’s
schedule on the next iteration. The exit zone length L. has
an effect on the feasibility of the scheduling problem. For
simplicity, we assume that L. is large enough for a vehicle
to come to a complete stop from a maximum speed of v™
in under a distance L.. In any case, we envision these zone
lengths to be of the order of several tens of meters. °

6. SCHEDULING OF BUBBLES

This section describes the scheduling algorithm employed
by the intersection manager to decide the order of passage
of the bubbles £ through the intersection. This algorithm
is also executed every T.s units of time.

6.1 Cost function

We consider cost functions of the form

N
cs Zmi(n + Fi(f}i))

i=1

N d N
:Zmz<gz+Fz('Dz)) éZGﬁi(@i), (4)
i=1 ¢ i=1

where v; is the average velocity of the lead vehicle in
bubble i for t € [to,tg + 7], ie., 7, = %, where d; £
—x;(to). The optimization variables are v; (or equivalently

7;) for each bubble i. Note that in the cost function C, the
functions F; could, in general, depend on initial conditions
as parameters - such as the distance to travel d;. So, we
see the cost function models a combination of cumulative
travel time and total fuel usage.

As for the constraints, conditions on the travel times can
be re-expressed as conditions on average velocities as

d; d;
T2 T AT = > L
V; Uj
d' %QCC
- - - j J
— Uy > CjiV; + bji’UjUZ‘, Cji = E, bj‘ = T (5)
T 1

Thus, we re-express the no-collision constraints (2) as
Vj 2 Cji0; + bjiT}jT)i OR v; > CijV; + bij@if}j, if 7, # Ij
Vi 2 €05 + bijﬂi@j7 if R(Z,]) =1. (6&)
In addition, we also need to ensure that 7; for the bubbles
scheduled at the instance sT,; is no less than 7™, defined

in step 12 of Algorithm 1. Thus, for each bubble 7, we have
the constraint 7; > 7™ or equivalently
v; < di

Tl’l’lln

(6b)

Next, motivated by the fact that fuel efficiency is typically
an increasing function of vehicle speed for speeds under
the limits enforced at most intersections, we make the
following assumption.

(A) For each i, F; : [o™, oM

decreasing function.

] = Ry is a monotonically

Note that the scheduling problem is combinatorial in
nature due to the no-collision constraints. Thus, though
the cost function C is somewhat simple and optimization
variables are restricted to the average velocities v;, we
believe it provides a good balance between usefulness and
computational tractability. Further, the local vehicular
control we present in Section 7 seeks an optimal control
profile to achieve the prescribed average velocity for the
bubble, which justifies the restriction to v; as the optimiza-
tion variables in the scheduling aspect. Thus our solution,
although quite sub-optimal, is still principled.

We now focus on solving the problem of minimizing C
in (4) under the constraints (6) and 9; € [0, 9M]. Note
that the lower and upper limits on the average velocity, v;"
and v respectively, depend on the initial conditions of the
vehicles and desired speed limits and their computation
is described in Section 7.1. Similarly, the upper bounds
79°¢ on the occupancy times may be computed as in
Section 7.2. Now, we are ready to describe our solution to
the scheduling problem. In the first part of the solution, we
address the problem of determining the optimal schedule
and optimal cost given a fixed order of bubble passage
through the intersection. Then, we use a branch-and-
bound algorithm to find the optimal order and schedule.

6.2 Optimal bubble average velocity given fixed order

Here we address the problem of determining, given a
desired order of bubble passage through the intersection,
the optimal average velocities of the bubbles and the
associated optimal cost. For this purpose, define an order
of the approach times of the bubbles as a permutation,
P, of the integers from 1 to |P| < N. We use the notation

P(i) to denote the i*® element in the order, with the bubble
P(1) passing through the intersection first and so on. We
use the notation op(i) to denote the position of bubble i



in the order P. Clearly, for a permutation to respect the
intra-branch orders, op(i) < op(j) if R(4,j) = 1. Given an
order P that respects the intra-branch orders, Algorithm 2
finds a solution to the optimization problem.

Algorithm 2: Bubbles’ velocity optimization

Input: Order P

1: C+0

2: for k=1 to |P| do

3 i+ P(k) {bubble ¢ is in position k in P}

4: if k =1 then

5: EZP — ﬁlM

6: else

7 j« Pk—1) {bubble j is in position k—1 in P}
of

8: oF + min{o}M, W}

9:  end if {vF is the optimizer for bubble i}

10:  C+ C+¢;(vF) {update cost}

11: end for

Algorithm 3 Upper bound on optimal average
velocity of a bubble, given list of bubbles
preceding it

1: 1+ P(|P|)
2: Compute ﬁlp using Algorithm 2
3: for k=1to 4 do

{l is last bubble in P}

4: Ok < Qr \P {pop-out P from Q}

5. if Qp # 0 then

6: i< Qr(1) {i is first of remaining bubbles in Oy}
. P

7 HP « min{vM, 7”#;“5;: }

8: for s =2 to |Qy| do

9: R Qk(s)

10: J Qk(s — 1)

11: HP « min{v}M, W}

12: end for

13: end if

14: end for

The following result shows that, for a fixed order P that
respects the intra-branch order, the algorithm finds the
average velocities that optimize the cost.

Lemma 6.1. (Algorithm 2 optimizes the schedule given an
order P that respects the intra-branch orders). Consider
the optimization of C (4) under assumption (A) and the
constraints (6) and v; € [0, 9M], for i € P. Suppose
an order P respects the intra-branch orders. Then, 7 =
(@F,...,v%) and C given by Algorithm 2 are the optimizer
and the optimum cost, respectively, for the order P.

6.3 Optimal ordering via branch-and-bound

We propose a branch-and-bound algorithm to solve the op-
timal scheduling problem. To describe the branching pro-
cess, we introduce four queues (ordered lists), one for each
branch. The queue for branch k, Qr = (ig1,- .,k N, )
is initialized to the list of all the bubbles on branch k
in their order of arrival. Thus, R(ix ;,ik j+1) = 1 for all
j € {1,...,Ny — 1}. We let P be any ordered list of
up to length N with non-repeating numbers drawn from
{1,..., N} and preserving the required individual branch
orders. Thus, P = ) (the empty list), denotes the root of
the tree representing all feasible orders. P = (iy,...,ix)
denotes the subtree of all the feasible orders in which
bubble i; crosses the intersection first, so on until bubble
i is the k'™ to cross and with the rest of the order
undetermined.

Now, notice that step 8 in Algorithm 2 updates the higher
limit on the feasible v; given the order of all the bubbles
preceding it. We could update/improve the higher limit
even if we knew only part of the order preceding a bubble.
We denote the higher limit on v; given that a non-empty
P precedes bubble i by H and it is given by Algorithm 3.
Now, given P we can lower bound the optimal cost for any

order in the subtree P in terms of o] and H] as

CP 2y o)+ eu(H]). (7)
icP i¢P
With this, we can now implement a branch-and-bound
algorithm to find an optimal schedule for the bubbles.

The branch-and-bound algorithm starts by picking a can-
didate order, computing the cost for it, using Algorithm 2,
and storing the two as the current best solution and cost.
Then, starting at the root node of the tree of all feasible
orders, the algorithm searches (e.g. depth-first or breadth-
first) for an optimal solution. If at any time a leaf node,

which corresponds to a complete order, is reached and its
cost is better than the current best, then the current best
solution and cost are updated. For any other node P in
the tree, (7) provides a lower bound C7 on the cost of
all the orders represented by the node P. And if C% is
greater than the current best cost then the subtree P may
be safely disregarded. In this way, the algorithm eventually
finds an optimal solution.

7. LOCAL VEHICULAR CONTROL

The control at the local vehicular level broadly involves
two tasks - the first is to compute the parameters v/, M
and 7 of bubble 7 for the scheduler; and the second is to
control the vehicles so that all the vehicles of bubble ¢ cross
the intersection within the time interval [, 7,+77°¢] that is
prescribed by the scheduler. Successful execution of each of
these tasks requires a better understanding of the coupled
dynamics of the vehicles with desired safety constraints.
To be precise, we introduce the following definitions of the
maximum braking maneuver and a safe-following distance.

Definition 7.1. (Maximum braking maneuver (MBM)).
The MBM, for a vehicle j, is a control action with uj = u,,
until the vehicle comes to a stop and uy = 0 thereafter. o

Definition 7.2. (Safe-following distance). Let j — 1 and
j be the indices of two vehicles on the same branch,
with vehicle j immediately following j7 — 1. We say a
quantity D(vj_;(t),v}(t)) is a safe-following distance at
time ¢ for the pair of vehicles j — 1 and j if x3_,(¢) —
z?(t) > D(vj_,(t),v}(t)) and if each of the two vehicles
were to perform the MBM then the two vehicles would be
safely separated (z%_; — L > «?) for all future. °

Note that according to this definition a safe-following
distance is not uniquely defined, which in fact provides
a certain leeway in designing the local vehicle control.
Given this definition, we can now precisely quantify a safe-
following distance as in the following lemma.

Lemma 7.3. (A safe-following distance). Let j—1 and j be
labels of a pair of vehicles, with j following j — 1. Then, a
safe-following distance for j as a function of the velocities
of the pair of vehicles is

D(vj_(t),vj (1)) =
L + max {0, % ((U;J(t))2 - (U;jl(t))2)} ) (8)

where recall that L is the vehicle length.



Remark 7.4. (Vehicle indices). In the remainder of this
section, we index the vehicles in bubble i as (i, 1), . . ., (i,m;),
where (i,1) refers to the lead vehicle in bubble i and so
on until (i,m;), the last vehicle in the bubble. We also
find it convenient for the label (4,0) to represent the last
vehicle (i',m;) of the bubble i’ that precedes bubble ¢ on
the same branch or if there is no bubble preceding bubble
i on the branch then we let (i,0) be an imaginary vehicle
located at co. We drop the index i whenever there is no
ambiguity with regard to the bubble. °

7.1 Lower and upper limits on average velocity

Recall that v; is the average velocity of the lead vehicle
of bubble ¢ from ty and until the lead vehicle reaches the
beginning of the intersection at 7;. Thus, it would seem
that computing bounds on the achievable average velocity
of the lead vehicle in the bubble is sufficient to determine

oM and v™. However, ignoring the initial conditions of

the other vehicles in the bubble in the computation of 5
and v]" poses the risk of lengthening a guaranteed upper
bound on the occupancy time, 77°°. Thus, we propose the
following alternative solution. In bubble i, for each vehicle
(i, k), we let 77} be the earliest time vehicle (4, k) can reach
the intersection ignoring the other vehicles on the branch.
The quantity 7,7, — o is the time it takes z7 to reach 0
from z¥ (t) for the trajectory with maximum acceleration
until v¥ = v™ and zero acceleration thereafter. Assuming
a nominal speed v™°™ for vehicles when entering the
intersection, we define D™ £ D(y"om M) which has
the connotation of a safe inter-vehicle distance given a
vehicle is traveling at the maximum allowed speed v™ and
the vehicle leading it traveling at a speed higher than v™°™.
Then, we also define 7m°™ £ Duom /ynom a5 the nominal
inter-vehicle arrival time. Then, we define earliest time of
arrival of the bubble i, 7/ as

i max{7/y — (k= 1)T"" : k€ {1,...,mi}} (9)
and let oM = =200 Analogous computations with

maximum deceleration yield the latest time of arrival of
the bubble i, 7 and ¥". However, to guarantee the
feasibility of the scheduling problem in a simple fashion,
we assume that the exit zone length L, is large enough for
7" to be zero (7 to be infinity).

7.2 Upper bound on guaranteed occupancy time

The idea for computing 7% is similar to that used in

the computation of v}. However, the local vehicular con-
trol may not be able to achieve inter-vehicular distances
strictly upper bounded by D"°™ when crossing the in-
tersection. Instead we allow the inter-vehicle distances to
be upper bounded by oyD"°™ where o9 > 1 is a design
parameter. Thus, we obtain

L+ A

l/IlOII]

—0cCC
T

= (7’TLz — 1)0_0Tnom + (10)

7.8 Local vehicular control

For a bubble i, the scheduler prescribes a time 7; at which
the vehicles in bubble ¢ may start to cross the intersection.
The local vehicular control must ensure that the vehicles
of bubble ¢ start and finish crossing the intersection
within the time interval [r;,7; + 79°°], respecting the
safety constraints (8). In this subsection, we describe an

algorithm to achieve this task. The algorithm has two main
parts - an uncoupled controller that ensures the vehicle
arrives at the intersection at a designated time ignoring
other vehicles, which is applied when the precedent vehicle
is sufficiently far in front; and a controller that ensures the
vehicle follows the precedent safely otherwise; and a rule
to switch between the two.

Uncoupled controller.  Let us first define, for each vehicle
ke{1,...,m;} in bubble 1,

Tz’,k é T; + (k — 1)Tnom. (11)
Note that by design 7; € [r/™, 7], which together with (9)

(3
implies that 7, € [1]7, T%] Now, let

(2] s 07 ) = Gue(Tisks t, T3 15 07 k)
be a feedback controller that ensures that for the dy-
namics (1) @7, (7;,) = 0 starting from the current state
(21, (t), v}, (t)) at time ¢ (assuming feasibility), respecting
the control and velocity constraints but not necessarily

the inter-vehicle safety constraints. Such a controller exists

for each vehicle at least at ¢ = ty due to the fact that

Tik € [T} TZZV,[C} In this paper, we let g,. be defined as the

optimal feedback controller that generates velocity profiles
T

as shown in Figure 3 obtained by optimizing / |[uj (s)|ds,
to

with 7 = 7, and the optimization variables ai, ao,
vy (T) and V! (or v*), where a; and ay are the areas of
the indicated triangles. Among the constraints are that
vi(r) > v"™ and that the total area under the curve
must be equal to —x(tg). The feedback controller may be
found by tabulating the optimal control solution.

_______ o W)

.
nom

Fig. 3. Candidate velocity profiles to obtain g,..

Controller for safe following.  As mentioned earlier, this
controller is applied only when a vehicle is sufficiently close
to the vehicle preceding it. Besides maintaining a safe
following distance, the controller must also ensure that
the resulting evolution of the vehicles in the bubble i is
such that the occupancy time is no more than 7. Here,
we present a design to achieve these goals. For a pair of
vehicles j — 1 and j, with j following j — 1, we let
A x;')fl(t) - l‘;’(t)
ORI O] 12
J—=1\"/5 "y
Notice from (8) that D is a continuous function of the
vehicle velocities v¥_; and v} and that if v¥_;(t) > v} (t)
then o; only increases and safety is guaranteed. Thus, it is
sufficient to design a controller that ensures safe following
when v} (t) > vj_,(t). For a vehicle j € {1,...,m;} of
bubble i, consider the controller

v v v A
gsf(t, 05,07 1,07, uf_1) =

min{gue (Ti ks 20 1 0 1)s [9us (05, 01, 05 uf 1)),

(13)

where g, is the unsaturated controller



v v v A
Gus (5, Vj—1,; 7uj71) =

Y u? _
-1 <1+aj “)—1 ( ”m>.
v} — Uy, oF

Switching controller.  Now, we specify the rule to switch
between the controllers g,. and gs¢ or in other words the
switching controller. We let the control for vehicle j be

v _ J Yuc; if (’U;‘]—la 1};, Uj) §é Cs
uj(t) = {gsf7 if (v;_1,vj,05) €Cs (1)
where C; is the coupling set given by
Cs & {(wj_q1,v],05) :vj > 0]y Noj €100} (15)

with 09 > 1 a design parameter. Then, we can show the
following result, which says that the controller (14) ensures
safety and satisfies the prescribed schedule.

Theorem 7.5. (Provably safe traffic coordination). Con-
sider the vehicle dynamics (1). If a bubble precedes bub-
ble ¢ on its branch, then suppose the vehicle (i,0) (see
Remark 7.4) reaches the intersection within its designated
time and while crossing the intersection has a velocity of
at least v™°™. Then, for each vehicle (,7), j € {1,...,m;}
in the bubble ¢ and for all t € [to,7; + 7£°°] (i) the
controller (14) is feasible and (ii) inter-vehicle safety is
ensured, i.e., 0;(¢t) > 1. In addition, the bubble crosses the
intersection within the interval [, 7; + 7). [ |

8. CONCLUSIONS

We have studied the problem of coordinating traffic at an
intersection in order to reduce travel time and improve
vehicle energy efficiency while avoiding collisions. Our in-
tersection management solution relies on communication
among vehicles and the infrastructure, and combines hi-
erarchical and distributed control to optimally schedule
the passage of vehicle clusters or bubbles through the
intersection. Our dynamic bubble-based approach has the
advantage of reducing the complexity of the computation-
ally intensive scheduling problem and making the solution
applicable for different traffic conditions. Future work will
explore the computational complexity of the proposed
algorithm, incorporation of privacy preservation require-
ments, comparison with classical stop-and-go policies, and
the extension to coordinated management for networks of
intersections. Preliminary simulations (not included here
due to lack of space) verify our proposed algorithm and
in future further simulations will be performed to study
the performance of the algorithm and to compare with
traditional intersection management solutions.
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