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Abstract— This paper addresses the problem of event-
triggered control of linear time-invariant systems over time-
varying rate limited communication channels. We explicitly
account for the possibility of channel blackouts, i.e., intervals
of time when the communication channel is unavailable for
feedback. Assuming prior knowledge of the channel evolution,
we study the data capacity, which is the maximum total
number of bits that could be communicated over a given time
interval, and provide an efficient real-time algorithm to lower
bound it for a deterministic time-slotted model of channel
evolution. Equipped with this algorithm we then propose an
event-triggering scheme that guarantees Zeno-free, exponential
stabilization at a desired convergence rate even in the presence
of intermittent channel blackouts.

I. INTRODUCTION

Control under communication constraints is of great the-
oretical and practical importance and has motivated a vast
amount of research. This paper is a contribution to the
growing body of results that employ either information-
theoretic or opportunistic triggered control to address the
problem of stabilization under constrained resources. We
seek to combine both approaches to deal with the control of
linear time-invariant systems under time-varying channels,
including for the possibility of blackouts, i.e., intervals of
time during which the channel is completely unavailable.

Literature review: The literature on information-theoretic
control focuses on identifying necessary and sufficient con-
ditions on the bit rates that guarantee stabilization under var-
ious assumptions on the (often stochastically modeled) com-
munication channels. Comprehensive overviews of this liter-
ature on may be found in [1], [2]. Early data rate results [3]–
[5] provided tight necessary and sufficient conditions on the
data rate of the encoded feedback for asymptotic stabilization
in the discrete-time setting. Since then, the problem has
been studied under increasingly complex assumptions on the
channels, see e.g., [6]–[8]. In the continuous-time setting,
the problem has been studied under either periodic sampling
or aperiodic sampling with known upper and lower bounds
on the sampling period for single input systems in [9],
[10], nonlinear feedforward systems in [11], and switched
linear systems in [12], which also analyzes the incident
convergence rate. In general, this literature has not explored
the potential advantages of tuning the sampling period in
the periodic case or if state-based aperiodic sampling can
provide any gains in efficiency and performance. In this
context, [13] explores the stabilization problem under a
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state based aperiodic transmission policy, with the inter-
transmission intervals being integral multiples of a fixed step
size. On the other hand, the event-triggered approach, see
e.g. [14]–[16] and references therein, exploits the tolerance to
measurement errors to design goal-driven opportunistic state-
based aperiodic sampling. The literature in this area mainly
focuses on minimizing the number of transmissions while
largely ignoring quantization, data capacity and other impor-
tant aspects of communication. Some of the few exceptions
include [17], [18], which utilize static logarithmic quantiza-
tion and [19]–[21] (see also references therein) which use
dynamic quantization. All these works guarantee a positive
lower bound on the inter-transmission times, while [19]–[21]
also provide a uniform bound on the communication bit rate
(i.e., the number of bits per transmission). However, these
references do not address the inverse problem of trigger-
ing and quantization given a limit on the communication
bit rate. Moreover, the channel is assumed to always be
available to the control system and hence event-triggered
designs typically do not take into account the possibility of
channel blackouts. An important exception to this statement
is [22], which uses the deadlines generated by a self-triggered
controller to perform a kind of instantaneous or short-term
scheduling. However, if the communication latency is time-
varying either because of a time-varying channel or because
of time-varying packet sizes, which is important in finite
precision feedback control, it is difficult to guarantee long-
term future schedulability and system performance. Our
recent work [23] combines the information-theoretic and
event-triggered control approaches to address the problem
of event-triggered stabilization of continuous-time linear
time-invariant systems under bounded bit rates. The event-
triggered formulation allows us to guarantee, in the absence
of channel blackouts, a specified rate of convergence in the
presence of non-instantaneous communication and possibly
time-varying communication rate.

Statement of contributions: We continue in the spirit
of [23] to address the stabilization problem for linear time-
invariant systems over time-varying rate-limited communi-
cation channels that may be subject to sporadic blackouts.
Our notion of scheduled channel blackouts and stabilization
despite their occurrence is a key contribution in the context
of event-triggered control. For effective control despite the
occurrence of blackouts, we define and use the concept of
data capacity, i.e., the maximum number of bits that may be
communicated over possibly multiple transmissions during
an arbitrary time interval under complete knowledge of the
channel evolution. This constitutes our first contribution. The
computation of data capacity for general time-varying chan-
nels is challenging. Our second contribution is the design



of an algorithm, for the class of piecewise constant channel
functions, to lower bound in real time the data capacity over
an arbitrary time interval. Our third and final contribution
is the synthesis of event-triggered control schemes that,
using prior knowledge of the channel information and the
available data capacity, plan the transmissions to guarantee
the exponential stabilization of the system at a desired
convergence rate, even in the presence of channel blackouts.

Notation: We let R, R≥0, Z>0, and Z≥0 denote the set
of real, nonnegative real, positive integer, and nonnegative
integer numbers, respectively. We let |S| denote the car-
dinality of the set S. We denote by ‖.‖2 and ‖.‖∞ the
Euclidean and infinity norm of a vector, respectively, or the
corresponding induced norm of a matrix. For a symmetric
matrix A ∈ Rn×n, we let λm(A) and λM (A) denote its
smallest and largest eigenvalues, respectively. For any matrix
norm ‖.‖, note that ‖eAτ‖ ≤ e‖A‖τ . For a number a ∈ R, we
let [a]+ , max{0, a}. For a function f : R 7→ Rn and any
t ∈ R, we let f(t−) and f(t+) denote the limit from the left,
lim
s↑t

f(s) and the limit from the right, lim
s↓t

f(s), respectively.

II. PROBLEM STATEMENT

We start with the description of the system dynamics,
then describe the model for the communication channel, and
finally state the control objective.

A. System description
We consider a linear time-invariant control system,

ẋ(t) = Ax(t) +Bu(t), (1)

where x ∈ Rn denotes the state of the plant and u ∈ Rm
the control input, while A ∈ Rn×n and B ∈ Rn×m are
the system matrices. Our starting point is the existence of
a continuous-time feedback stabilizer of the plant dynam-
ics (1). Formally, we select a control gain matrix K ∈ Rm×n
such that the matrix Ā = A + BK is Hurwitz. Under this
assumption, the continuous-time feedback u(t) = Kx(t)
renders the origin of (1) globally exponentially stable.

The plant is equipped with a sensor (the encoder) and an
actuator (the decoder) that are not co-located. The sensor
can measure the state exactly and the actuator can exert
the input to the plant with infinite precision. However, the
sensor may transmit state information to the controller at the
actuator only at discrete time instants of its choice, using
a finite number of bits. We let {tk}k∈Z>0

⊂ R≥0 be the
sequence of transmission times at which the sensor transmits
an encoded packet of data, {rk}k∈Z>0

⊂ R≥0 the sequence
of reception times at which the decoder receives a complete
packet of data, and {r̃k}k∈Z>0

⊂ R≥0 the sequence of
update times at which the decoder updates the controller
state. At a transmission time tk, the sensor sends bk bits,
which encode the plant state. Due to causality, r̃k ≥ rk ≥ tk,
and we denote by

∆k , rk − tk, ∆̃k , r̃k − tk,

the kth communication time and kth time-to-update, respec-
tively. The distinction between the reception times and the
update times is a generalization with respect to our previous

work [23] and provides greater flexibility in the presence of
time-varying channels.

B. Communication channel
Our model for communication channel is fully determined

by the map R : R≥0 → R≥0, where Ra = nR is the
minimum instantaneous communication-rate at a given time,
and the map p̄ : R≥0 → Z≥0, where b̄ = np̄ is the maximum
packet size that can be successfully transmitted at a given
time. We assume the kth communication time and the kth

time-to-update satisfy

∆̃k ≥ ∆k ≥ 0, (2a)

∆k ≤ ∆(tk, pk) ,
pk

R(tk)
=

bk
Ra(tk)

, (2b)

where the first condition is that of causal communication and
the second is an upper bound on the communication time.
Note that the actual instantaneous communication rate at tk
is bk/∆k and we can rewrite (2b) as

bk
∆k

=
npk
∆k
≥ npk

∆(tk, pk)
= Ra(t),

to realize that Ra(t) is a lower bound on the number of
bits communicated per unit time of all the bits transmitted at
time t. Thus, for example, if Ra(t) =∞, then the packet sent
at t is received instantaneously. The packet size bk = npk
that can be successfully transmitted starting at tk is upper
bounded as

pk ≤ p̄(tk), pk ∈ Z≥0 (3a)

for all k ∈ Z≥0. We refer to an interval of time during
which p̄ = b̄ = 0 as a (channel) blackout. We assume that
the encoder knows the functions t 7→ R(t) and t 7→ p̄(t) a
priori or sufficiently in advance.

Since the channel has bounded data capacity and in order
to maintain synchronization between the encoder and the
decoder, we require that the encoder does not transmit a
packet before a previous packet is received by the decoder
and the controller updated, i.e.,

tk+1 ≥ r̃k, (3b)

for all k ∈ Z≥0. We say the channel is busy at time t if
t ∈ [tk, rk), for some k ∈ Z>0. Finally, we refer to the
sequences of transmission times {tk} ⊂ R≥0, packet sizes
{bk} ⊂ Z≥0, and update times {r̃k} ⊂ R≥0 as feasible if (2)
and (3) are satisfied for every k ∈ Z>0.

C. Encoding and decoding
We use dynamic quantization for finite-bit transmissions

from the encoder to the decoder and focus exclusively on
its zoom-in stage, during which the encoded feedback is
used to asymptotically stabilize the system. We assume both
the encoder and the decoder have perfect knowledge of
the plant system matrices, have synchronized clocks, and
synchronously update their states at update times {r̃k}k∈Z>0

.
For simplicity, we assume that at transmission tk the sensor
(encoder) encodes each dimension of the plant state using pk
bits so that the total number of bits transmitted is bk = npk.



The state of the encoder/decoder is composed of the
controller state x̂ ∈ Rn and an upper bound de ∈ R≥0 on
‖xe‖∞, where xe , x − x̂ is the encoding error. Thus, the
actual input to the plant is given by u(t) = Kx̂(t). During
inter-update times, the state of the controller evolves as

˙̂x(t) = Ax̂(t) +Bu(t) = Āx̂(t), t ∈ [r̃k, r̃k+1). (4a)

Let the encoding and decoding functions at the kth iteration
be represented by qE,k : Rn × Rn 7→ Gk and qD,k :
Gk × Rn 7→ Rn, respectively, where Gk is a finite set of
2bk symbols. At tk, the encoder encodes the plant state as
zE,k , qE,k(x(tk), x̂(t−k )), where x̂(t−k ) is the controller
state just prior to the encoding time tk, and sends it to the
controller. The decoder can decode this signal as zD,k ,
qD,k(zE,k, x̂(t−k )) at any time during [rk, r̃k]. At the update
time r̃k, the sensor and the controller also update x̂ using

x̂(r̃k) = eĀ∆̃k x̂(t−k ) + eA∆̃k(zD,k − x̂(t−k ))

, qk(x(tk), x̂(t−k )), (4b)

where qk : Rn × Rn 7→ Rn represents the quantization that
occurs as a result of the finite-bit coding. We allow the
quantization domain, the number of bits and the resulting
quantizer, qk, for each transmission k ∈ Z>0 to be variable.
The evolution of the plant state x and the encoding error xe
on the time interval [r̃k, r̃k+1) can be written as

ẋ(t) = Āx(t)−BKxe(t), (5a)
ẋe(t) = Axe(t). (5b)

While the encoder knows the encoding error xe precisely,
the decoder can only compute a bound de(t) on ‖xe(t)‖∞
as follows

de(t) , ‖eA(t−tk)‖∞δk, t ∈ [r̃k, r̃k+1), k ∈ Z≥0 (6a)

δk+1 =
1

2pk+1
de(tk+1). (6b)

One can design a pair of algorithms for the encoder and the
decoder to implement (4b) in a manner that they maintain
consistent x̂(t) and de(t) signals for t ≥ t0 (see [23] for
example). For brevity, we do not present these algorithms
here and it suffices to say that ‖xe(t)‖∞ ≤ de(t) for all
t ≥ t0 if ‖xe(t0)‖∞ ≤ de(t0).

D. Control objective
We measure the performance of the closed-loop system

through a Lyapunov function. Given an arbitrary symmetric
positive definite matrix Q ∈ Rn×n, let P be the unique
symmetric positive definite matrix satisfying PĀ+ ĀTP =
−Q. Define x 7→ V (x) = xTPx and let

Vd(t) = Vd(t0)e−β(t−t0), (7)

with β > 0, be the desired control performance. We assume

W ,
λm(Q)

λM (P )
− aβ > 0, (8)

with a > 1 an arbitrary constant. Assumption (8) is sufficient
to guarantee a convergence rate faster than β for the dy-
namics (1) under the continuous-time, unquantized feedback
u(t) = Kx(t).

Our objective is to design an event-triggered commu-
nication and control strategy that ensures the exponential
stability of the origin. Formally, we seek to synthesize an
event-triggered control strategy that recursively determines
the sequences of transmission times {tk}k∈Z>0

and update
times {r̃k}k∈Z>0

, along with a coding scheme for messages
and a rule to determine the number of bits {bk}k∈Z>0

to be
transmitted, so that V (x(t)) ≤ Vd(t), for all t ≥ t0.

III. TRIGGER FUNCTIONS

To achieve the control objective of Section II-D with
opportunistic transmissions, we need a performance-trigger
function that tells us how close the system state is to
violating the convergence requirement. Bounded precision
quantization further requires us to keep track (through a
channel-trigger function) of the number of bits required at
any moment to guarantee performance at least for a certain
period of time. Threshold crossings of these two functions
form the primary basis of our event-triggering mechanism.

A. Performance-trigger function
The performance-trigger function is the ratio between the

Lyapunov function V and the desired performance Vd,

hpf(t) ,
V (x(t))

Vd(t)
. (9)

Note that the control objective is to maintain hpf(t) ≤ 1 at all
times. This is why, in general, it is of interest to characterize
the open-loop evolution of the performance-trigger function.
The next result provides an upper bound on the value of hpf

in the future as a function of the information available now.
Lemma 3.1: (Upper bound on open-loop evolution of

performance-trigger function [23]). Given tk ∈ R>0 such
that hpf(tk) ≤ 1, then

hpf(τ + tk) ≤ h̄pf(τ, hpf(tk), ε(tk)),

for τ ≥ 0, where

ε(t) ,
de(t)

c
√
Vd(t)

, h̄pf(τ, h0, ε0) ,
f1(τ, h0, ε0)

f2(τ)
, (10)

f1(τ, h0, ε0) , h0 +
Wε0
w + µ

(e(w+µ)τ − 1), f2(τ) , ewτ ,

c ,
W
√
λm(P )

2
√
n‖PBK‖2

, w ,
λm(Q)

λM (P )
− β > 0, µ , ‖A‖2 +

β

2
.

This result motivates the definition of the function

Γ1(h0, ε0) , min{τ ≥ 0 : h̄pf(τ, h0, ε0) = 1,
dh̄pf

dτ
≥ 0},

as a lower bound on the time it takes hpf to evolve to 1
starting from hpf(tk) = h0 with ε(tk) = ε0.

B. Channel-trigger function
We define, for h0 ∈ [0, 1] and a design parameter T > 0,

ρT (h0) ,
(w + µ)(1− h0)

W (e(w+µ)T − 1)
+ 1, (11)

and the channel-trigger function as

hch(t) ,
ε(t)

ρT (hpf(t))
. (12)



The channel-trigger function hch depends on the bound on
the encoding error de through ε. Note that the channel-
trigger function hch through its dependence on de, which
evolves as (6), also jumps at the update times r̃k. In turn,
for any time s0 ≥ t0, if hch(s0) ≤ 1, then hpf(t) ≤ 1
for at least t ∈ [s0, s0 + min{T,Γ1(1, 1)}) even without
any transmissions or receptions. Thus, assuming that the
communication delays are smaller than min{T,Γ1(1, 1)}, a
transmission strategy is to ensure that, for each k, hch(r̃k) ≤
1 so that Γ1(hpf(r̃k), ε(r̃k)) ≥ min{T,Γ1(1, 1)}. Thus, we
now require an upper bound on the open-loop evolution of
hch, which is provided in the following result.

Lemma 3.2: (Upper bound on the channel-trigger func-
tion at the update times r̃k). If tk ∈ R>0 is such that
hpf(tk) ∈ [0, 1], then

hch(r̃k) ≤ h̄ch(r̃k − tk, hpf(tk), ε(tk), pk), (13)

where bk = npk bits are transmitted at tk and

h̄ch(τ, h0, ε0, p) ,
‖eAτ‖∞e

β
2 τ ε0

ρT (h̄pf(τ, h0, ε0))
· 1

2p
. (14)

Note that for t, t + τ ∈ [r̃k, tk+1), for any k ∈ Z≥0, we
have hch(t + τ) ≤ h̄ch(τ, hpf(t), ε(t), 0). Now, analogous
to Γ1, we define

Γ2(b0, ε0, p) , min{τ ≥ 0 : h̄ch(τ, b0, ε0, p) = 1}, (15)

which essentially is an upper bound on the communication
delay r̃k− tk, for which we can still guarantee hch(r̃k) ≤ 1.
Given the interpretation of Γ2, one of the conditions in our
event-triggering rule would be to check if Γ2 is less than a
maximum communication delay.

Lemma 3.3: (Lower bound on Γ2). If ε0 ∈ [0, ρT (h0)]
then Γ2(h0, ε0, p) ≥ T ∗(p) with

T ∗(p) , min{τ ≥ 0 : g(τ, p) = 1},

g(τ, p) ,
‖eAτ‖∞e

β
2 τ

2p
· e(w+µ)T − 1

e(w+µ)T − e(w+µ)τ
.

IV. CHARACTERIZATION OF THE DATA CAPACITY

Our study of data capacity here is motivated by the need
of the encoder to know how much data can be transmitted
successfully before a channel blackout.

A. Data capacity
We denote the data capacity during the time interval

[τ1, τ2] by D(τ1, τ2) and define it as the maximum data
that can be communicated, bits that are transmitted and
also received, during the time interval under all possible
communication delays, i.e.,

D(τ1, τ2) , max
{tk},{pk}
s.t. (3) holds

n

kτ2∑
k=kτ1

pk, (16)

where kτ1 = min{k : tk ≥ τ1} and kτ2 = max{k :

tk + ∆̃k ≤ τ2}. Note that a greedy approach does not
necessarily maximize the communicated data. In general, the
precise computation of D(τ1, τ2) involves solving an integer
program with non-convex feasibility constraints. Given the

difficulty of solving this problem, we seek a class of channel
functions R and b̄ that are meaningful and yet simple enough
to efficiently compute a lower bound for the data capacity.
To this end, we make the following observation.

Lemma 4.1: (Data capacity under constant communica-
tion rate). Suppose ∀t ∈ [τ1, τ2] (i) R(t) = R ≥ 0 and (ii)
p̄(t) ≥ 1 (no blackouts). Then, D(τ1, τ2) = nbR(τ2 − τ1)c.

Motivated by this result, we assume that the channel
function R is piecewise constant so that the problem of
finding a reasonable lower bound on D(τ1, τ2) is tractable
while also ensuring that the overall problem is meaningful.
According to (2b), R is a lower bound on the instantaneous
communication rate and it is reasonable to assume it is
piecewise constant. Also, note that p̄ takes integer values and
hence is piecewise constant. Specifically, we assume that

R(t) = Rj , ∀t ∈ (θj , θj+1] (17a)
p̄(t) = π̄j , ∀t ∈ (θj , θj+1] (17b)

where {θj}∞j=0 is a strictly increasing sequence of time
instants and π̄j ∈ Z≥0 for each j. We also denote Tj ,
θj+1 − θj as the length of the jth time slot Ij , (θj , θj+1].
Again note that identical {θj} sequences for R and p̄ is not a
restriction because one can always refine the sequence {θj}.
We assume, without loss of generality, that τ1 = θj0 and
τ2 = θjf , for some j0, jf ∈ Z≥0.

B. Formulation as an allocation problem

Here we show that, for piecewise constant channel func-
tions, we can think of the computation of D(θj0 , θjf ) as
an allocation problem: that of allocating the number of bits
{nφj}, with φj ∈ Z≥0, to be transmitted in the time slots
{Ij} for j ∈ N jf

j0
, {j0, . . . , jf − 1}. For convenience, we

let φjfj0 , (φj0 , . . . , φjf−1). Given φ
jf
j0

, the sequences {tk}
and {pk} are determined so that transmissions start at the
earliest possible time in Ij and the channel is not idle until
all the allocated bits φj are received, i.e., tk+1 = r̃k = rk =
∆(tk, pk) during Ij and {pk} during Ij is any sequence that
respects the channel upper bound π̄j and adds up to φj . Our
forthcoming discussion focuses on expressing the constraints
in the optimization problem in terms of the φ variables. In
the sequel, a standing constraint is that φj ∈ Z≥0 for each j,
unless we mention otherwise.

Maximum bits that may be transmitted: According to
Lemma 4.1, in the time slot Ij , nbRjTjc bits could be
transmitted and received within bRjTjc/Rj ≤ Tj units of
time. In addition, nπ̄j more bits could be transmitted during
the closed interval [ bRjTjc, θj+1], though these bits are
received only in subsequent time slots. Thus, for j ∈ N jf

j0

nφj ≤

{
nRjTj + nπ̄j , if π̄j > 0

0, if π̄j = 0
(18)

where in the first case we have used the fact that φj ∈ Z≥0

to avoid the use of the floor function.
Reduced channel availability in a time slot due to prior

transmissions: As noted above, if φj > bRjTjc, then these
bits take up some of the time in Ij+1 and possibly even



subsequent slots. Thus, effectively the time available in Ij+1

and consequently the upper bound on φj+1 is reduced.
Moreover, in general, the number of bits transmitted in Ij
has an effect on the number that could be transmitted in all
subsequent intervals either directly or indirectly. Thus, for
each j1, j ∈ N

jf
j0

, we introduce

T̄j1,j(φ
jf
j0

) ,
(
Tj −

j−1∑
i=j1

( φi
Ri
− Ti

))
= θj+1 − θj1 −

j−1∑
i=j1

φi
Ri
.

As we shall see in the next result, these functions determine
the available time in slot Ij given φjfj0 .

Lemma 4.2: (Available time in slot Ij). Let T̄j(φ
jf
j0

) be the
time available in the slot Ij given the allocation φjfj0 . Then,

T̄j(φ
jf
j0

) =
[

min
j1∈N

jf
j0

{T̄j1,j(φ
jf
j0

), Tj}
]

+
.

As a consequence of Lemma 4.2, for each j ∈ N jf
j0

and
j1 ∈ Z≥0 ∩[j0, j − 1], consider the constraints

nφj ≤

{
nRj T̄j1,j(φ

jf
j0

) + nπ̄j , if T̄j1,j(φ
jf
j0

) > 0

0 otherwise
(19a)

which we obtain using the same reasoning as in (18) with
Tj replaced by T̄j1,j(φ

jf
j0

). Note that if T̄j1,j(φ
jf
j0

) ≥ Tj , then
the constraint (19a) is weaker than (18) and hence inactive.
For T̄j1,j(φ

jf
j0

) ∈ (0, Tj), the constraint reflects the reduced
available time in the time slot Ij and if T̄j1,j(φ

jf
j0

) ≤ 0,
for some j1 ∈ Z≥0 ∩[j0, j − 1], then it corresponds to the
case when the channel is busy for the whole time slot Ij
(T̄j(φ

jf
j0

) = 0). Thus (19a) reflects the effect of reduced
available time during the slot Ij due to prior transmissions.

Counting only the bits transmitted and received during
[θj0 , θjf ]: Finally, since in the computation of D(θj0 , θjf ),
we are interested in the maximum number of bits that can
be communicated (transmitted and received), we require that
any bits transmitted during the slot Ij are received before
θjf , i.e., for each j ∈ N jf

j0
and j1 ∈ Z≥0 ∩[j0, j]

φj
Rj
≤

{
T̄j1,j(φ

jf
j0

) + θjf − θj+1, if T̄j1,j(φ
jf
j0

) > 0

0, otherwise.
(19b)

Then, the data capacity is given as

D(θj0 , θjf ) = max
φj∈Z≥0,∀j∈N

jf
j0

s.t. (18), (19) hold

n

jf−1∑
j=j0

φj . (20)

Ignoring the fact that this is an integer program, the con-
straints (19) still make the problem combinatorial.

C. Efficient approximation of data capacity
The following result is the basis for the construction of a

sub-optimal and efficient solution to the problem (20).
Lemma 4.3: (Bound on “channel variation”). If there

exists J ∈ Z≥0 such that

π̄j
Rj

<

i=j+1+J∑
i=j+1

Ti, ∀j ∈ N jf
j0
, (21)

then, for any j ∈ N jf
j0

, any bits transmitted in time slot Ij
would be received strictly before the end of the slot Ij+1+J .

Lemma 4.3 relates the three sequences of parameters,
{Rj}, {π̄j} and {Tj}, that define the channel state at any
given time. The parameter J may be interpreted as a uniform
upper bound on the number of consecutive time slots that
may be fully occupied due to a prior transmission.

1) Guaranteed channel availability in each time slot: We
address here the case of J = 0, which is of special interest.

Lemma 4.4: (Data capacity in the case of J = 0).
Suppose the channel is such that J = 0 for all j ∈ N jf

j0
.

Then, the constraints (19a) reduce to

nφj + nRj

j−1∑
i=j1

φi
Ri
≤ nRj(θj+1 − θj1) + nπ̄j , (22a)

for each j ∈ N jf
j0

and j1 ∈ Z≥0 ∩[j0, j − 1] while the
constraints (19b) reduce to

jf−1∑
i=j1

φi
Ri
≤ θjf − θj1 , (22b)

for each j1 ∈ Z≥0 ∩[j0, jf − 1]. The data capacity is

D(θj0 , θjf ) = max
φj∈Z≥0,∀j∈N

jf
j0

s.t. (18), (22) hold

n

jf−1∑
j=j0

φj . (23)

Note that for J = 0 all the constraints, (18) and (22) are
linear, though φj are still restricted to be integers. This brings
us to the next result.

Proposition 4.5: (A sub-optimal solution and quantifica-
tion of sub-optimality in the case of J = 0). Suppose the
channel is such that J = 0 for all j ∈ J = {j0, . . . , jf}.
Let Ds(θj0 , θjf ) , n

∑jf−1
j=j0

φNj where φN , bφrc ,
(bφrj0c, . . . , bφ

r
jf−1c),

φr = argmax
φj∈R≥0, ∀j∈N

jf
j0

s.t. (18), (22) hold

jf−1∑
j=j0

φj .

Then φN is a sub-optimal solution to (23), i.e.,
Ds(θj0 , θjf ) ≤ D(θj0 , θjf ) and

D(θj0 , θjf )−Ds(θj0 , θjf )

≤ n|{j ∈ Z≥0 ∩[j0, jf−1] : π̄j > 0}|.
2) No guaranteed channel availability: If J > 0, we forgo

optimality in favor of an easily computable lower bound of
the data capacity. With a slight abuse of notation, we let

φNj = bRj(θj+1 − θj)c, j ∈ Z≥0,

which is the number of bits that can be communicated (trans-
mitted and received) during the time slot Ij = [θj , θj+1).
Hence, {φNj }j∈Z≥0

is a feasible solution and, again with an
abuse of notation, we denote

Ds(θj0 , θjf ) , n

jf−1∑
j=j0

φNj ,

which is a sub-optimal lower bound of the data capacity.



D. Computing data capacity in real time
As mentioned earlier, we want the encoder to compute a

lower bound for the data capacity up to the end of the next
blackout period. However, the computation of Ds(τ1, τ2)
in the case of J = 0 involves solving a linear program
and hence may not be suitable for real-time computation.
Thus, given D(θj0 , θjf ) (or Ds(θj0 , θjf )), we propose a
simpler procedure to compute a lower bound on D(t, θjf ) (or
Ds(t, θjf )) for any t ∈ [θj0 , θj0+1). We present the procedure
in the following result.

Proposition 4.6: (Real-time computation of data capac-
ity). Let φ∗ (or φN ) be any optimizing solution to D(θj0 , θjf )
(or Ds(θj0 , θjf )). Let

D̂(t, θjf ) ,
[
n
⌊
φ∗j0 −Rj0(t− θj0)

⌋]
+

+ n

jf−1∑
j=j0+1

φ∗j

D̂s(t, θjf ) ,
[
n
⌊
φNj0 −Rj0(t− θj0)

⌋]
+

+ n

jf−1∑
j=j0+1

φNj ,

for any t ∈ [θj0 , θj0+1). Then, 0 ≤ D(t, θjf )−D̂(t, θjf ) ≤ n
and 0 ≤ Ds(t, θjf )− D̂s(t, θjf ) ≤ n.

Proposition 4.6 provides a method to reuse a previously
computed solution to find a tight sub-optimal solution to the
data capacity problem in real-time.

V. EVENT-TRIGGERED STABILIZATION

In this section, we address the problem of event-triggered
control under a time-varying channel. Section V-A address
the case with no channel blackouts. Section V-B builds on
this design and analysis to deal with channel blackouts.

A. Control in the absence of channel blackouts
In the case of no channel blackouts, the encoder may

choose to transmit at any time and, in addition, we assume
the channel rate R is sufficiently high at all times so that there
is no need to resort to the computation of data capacity. For
this reason, we are able to consider arbitrary (not necessarily
piecewise constant) functions t 7→ R(t). For p ∈ Z≥0, let

TM (p) = σmin{Γ1(1, 1), T, T ∗(p)}, (24)

where σ ∈ (0, 1) is a design parameter, T is the parameter
chosen in (11) and T ∗ is as defined in Lemma 3.3. As we
show in the sequel, if TM (p) is an upper bound on the
communication delay when b = np bits are transmitted,
then it is sufficient to design an event-triggering rule that
guarantees the control objective is met.

In the presence of communication delays, we need to make
sure that (i) the control objective is not violated between a
transmission and the resulting control update and (ii) at the
control update times, the encoding error is sufficiently small
to ensure future performance. To this end, we define

L1(t) , h̄pf (TM (p̄(t)), hpf(t), ε(t)) , (25a)

L2(t) , h̄ch (TM (p̄(t)), hpf(t), ε(t), p̄(t))) , (25b)

to take care of each of these requirements. If up to b̄ =
np̄ bits are transmitted at time t, then L1(t) provides an

upper bound on the performance-trigger function hpf at the
reception time which would be less than t + TM (p̄(t)),
while L2(t) provides an upper bound on the channel-trigger
function hch if the control is updated as soon as the packet
is received.

Theorem 5.1: (Event-triggered control in the absence of
blackouts). Suppose t 7→ p̄(t) is piecewise constant, as
in (17b), with a uniform lower bound 1 (i.e., no blackouts)
and a uniform upper bound pmax. Assume that

R(t) ≥ p

TM (p)
, ∀p ∈ {1, . . . , p̄(t)}, ∀t. (26)

Consider the system (1) under the feedback law u = Kx̂,
with t 7→ x̂(t) evolving according to (4) and the sequence
{tk}k∈Z≥0

determined recursively by

tk+1 = min{t ≥ r̃k : L1(t) ≥ 1 ∨ L1(t+) ≥ 1 ∨
L2(t) ≥ 1 ∨ L2(t+) ≥ 1}. (27)

Let {rk}k∈Z≥0
and {r̃k}k∈Z≥0

be given as r̃0 = r0 = t0
and r̃k = rk ≤ tk + ∆k for k ∈ Z>0. Assume the encoding
scheme is such that (6) is satisfied for all t ≥ t0. Also assume
that L1(t0) ≤ 1, L2(t0) ≤ 1 and that (8) holds. Let pk be

pk,min{p ∈ Z>0 : h̄ch

(
p

R(tk)
, hpf(tk), ε(tk), p

)
≤ 1}.

Then, the following hold:
(i) p1 ≤ p̄(t1). Further for each k ∈ Z>0, if pk ∈

Z>0 ∩[pk, p̄(tk)], then pk+1 ≤ p̄(tk+1).
(ii) the inter-transmission times {tk+1−tk}k∈Z>0 and inter-

update times {r̃k+1− r̃k}k∈Z>0 have a uniform positive
lower bound,

(iii) the origin is exponentially stable for the closed-loop
system, with V (x(t)) ≤ Vd(t0)e−β(t−t0) for t ≥ t0.

The interpretation of the three claims of the result is
as follows. Claim (i) essentially states that if the number
of bits transmitted in the past is according to the given
recommendation, then in the future, the sufficient number
of bits bk = npk to guarantee continued performance will
respect the time-varying channel constraints. Claim (ii) is
sufficient to guarantee non-Zeno behavior and claim (iii)
states that indeed the control objective is met.

B. Control in the presence of channel blackouts
Here, we address the scenario of channel blackouts build-

ing on our developments in Section V-A. The main difficulty
comes from the fact that in the presence of blackouts, the
channel might be completely unavailable. Thus, the event-
triggering condition not only needs to be based on the
functions L1 and L2 in (25), but also on the available data
capacity up to the next blackout.

Throughout the section, we assume both R and p̄ are
piecewise constant functions, as in (17) and, without loss
of generality, that time slots with p̄ = 0 are not consecutive.
We let Bk , (θjk , θjk+1] denote the kth blackout slot, with
k ∈ Z>0. Also, for any t ≥ t0, we let

τl(t) , min{s ≥ t : p̄(s) = 0},
τu(t) , min{s ≥ τl(t) : p̄(s) > 0},



give, respectively, the beginning and the end times of the
next channel blackout slot from the current time t. When
there is no confusion, we simply use τl and τu, dropping the
argument t. Hence, for t ∈ [t0, θj1), we have τl(t) = θj1
and τu(t) = θj1+1. Similarly, for any k ∈ Z>0 and t ∈
(θjk , θjk+1

], we have τl(t) = θjk+1
and τu(t) = θjk+1+1. At

time t, the length of the next channel blackout slot, Tb(t) ,
τu(t) − τl(t), determines a sufficient upper bound on the
encoding error de(τl), or equivalently ε(τl), for non-violation
of the control objective during the blackout or immediately
subsequent to it. We quantify it next.

Lemma 5.2: (Upper bound on required ε before blackout).
For t ∈ [t0,∞), suppose

ε(τl(t)) ≤ εr(t) , min

{
(ewTb(t) − 1)(w + µ)

W (e(w+µ)Tb(t) − 1)
,

1

eµ̄Tb(t)

}
,

(28)
where µ̄ , ‖A‖∞ + β

2 . If hpf(τl(t)) ≤ 1, then hpf(s) ≤ 1
for all s ∈ [τl(t), τu(t)] and hch(τu(t)) ≤ 1 (in particular
ε(τu(t)) ≤ 1).

The ability to ensure that ε(τl) is sufficiently small is
determined by the data capacity D(t, τl). To have a real-
time implementation, we make use of the sub-optimal lower
bound D̂s(t, τl) instead. However, notice that maximizing
the data throughput and satisfying the primary control goal
of exponential convergence at a desired rate may not be
compatible in general. Thus, to still be able to use the
intuition and the building blocks from Section V-A, we need
to impose a time-varying artificial bound on the allowed
packet size in place of p̄(t) that prevents the system from
affecting the data capacity until the next blackout. To this
end, we store in the variable Pj the value of φNj , where φN

is as defined in Section IV-C for Ds(θj , τl(θj)). Define

Φτl(t) , [bPj −Rj(t− θj)c]+ , t ∈ (θj , θj+1]. (29)

We notice from Proposition 4.6 that nΦτl(t) is the optimal
number of bits to be transmitted during (t, θj+1] to obtain
the sub-optimal data capacity D̂s(t, τl(t)). Note that some of
nΦτl(t) bits may be received after θj+1. Now, we let

ψτl(t) , min{p̄(t),Φτl(t)} (30)

be the artificial bound on the packet size for transmissions.
Notice that Φτl(t) may at times be zero, even when p̄(t) > 0,
which means letting ψτl(t) be the bound on packet size may
itself introduce artificial blackouts. However, we can state
how long artificial blackouts may be, as the next result shows.

Lemma 5.3: (Upper bound on the length of artificial
blackouts). Let B̃j , {t ∈ Ij = (θj , θj+1] : ψτl(t) = 0}.
Then, for each j ∈ Z≥0, B̃j is an interval and if π̄j > 0,
then the length of B̃j is less than 2/Rj = 2/R(θj+1).

With this in place, we define functions analogous to L1

and L2 to, respectively, monitor the compliance with the
control objective and ensure the encoding error is sufficiently
small at the control update times to ensure future perfor-
mance. In addition, we define one more function to capture

the effect of the data capacity,

L̃1(t) , h̄pf (T (t), hpf(t), ε(t)) , (31a)

L̃2(t) , h̄ch (T (t), hpf(t), ε(t), ψ
τl(t)) , (31b)

L3(t, ε) , n log2

(
eµ̄(τl(t)−t)ε

εr(t)

)
− σ1D̂s(t, τl(t)), (31c)

where σ1 ∈ (0, 1) is a design parameter and

T (t) ,

{
TM (ψτl(t)), if ψτl(t) ≥ 1

2
R(t) , if ψτl(t) = 0.

Theorem 5.4: (Event-triggered control in the presence of
blackouts). Suppose t 7→ R(t) and t 7→ p̄(t) are piecewise
constant functions as in (17). Let {(θjk , θjk+1]}k∈Z>0 be a
sequence of channel blackout slots. Assume that p̄(t0) > 0
and that the piecewise constant function p̄ is uniformly upper
bounded by pmax ∈ Z>0. Also, assume

R(t) ≥ (p+ 2)

TM (p)
, ∀p ∈ {1, . . . , pmax}, ∀t. (32)

Consider the system (1) under the feedback law u = Kx̂,
with t 7→ x̂(t) evolving according to (4) and the sequence
{tk}k∈Z≥0

determined recursively by

tk+1 = min
{
t ≥ r̃k : ψτl(t) ≥ 1 ∧(
max{L̃1(t), L̃1(t+), L̃2(t), L̃2(t+)} ≥ 1 ∨

max{L̃3(t), L̃3(t+)} ≥ 0
)}
, (33)

where L̃3(t) , L3(t, ε(t)). Let {rk}k∈Z≥0
be given as r̃0 =

r0 = t0 and rk ≤ tk+∆k for k ∈ Z>0. Let the update times
{r̃k}k∈Z≥0

be given as r̃0 = r0 and for k ∈ Z>0

r̃k = min{t ≥ rk : ψτl(t) ≥ 1 ∨ p̄(t) = 0}. (34)

Assume the encoding scheme is such that (6) is satisfied for
all t ≥ t0. Further assume that (8) holds and that L̃1(t0) ≤
1, L̃2(t0) ≤ 1, L3(t0, ε(t0)) ≤ 0 and, for each k ∈ Z>0,
assume L3(θjk+1, 1) ≤ 0. Let pk be given by

pk,min{p ∈ Z>0 : h̄ch (TM (p), hpf(tk), ε(tk), p) ≤ 1}.

Then, the following hold:
(i) p1 ≤ ψτl(t1). Further for each k ∈ Z>0, if pk ∈

Z>0 ∩[pk, ψ
τl(tk)], then pk+1 ≤ ψτl(tk+1).

(ii) the inter-transmission times {tk+1−tk}k∈Z>0
and inter-

update times {r̃k+1− r̃k}k∈Z>0
have a uniform positive

lower bound,
(iii) the origin is exponentially stable for the closed-loop

system, with V (x(t)) ≤ Vd(t0)e−β(t−t0) for t ≥ t0.

Claim (i) in the result may be interpreted as the satisfaction
of the constraints imposed by the channel. The use of ψτl
in (33) and (34) also ensures that the data capacity is not
lowered at any time in the future due to past transmissions.
Figure 1 shows an implementation of the design in Theo-
rem 5.4 on the system (1) with

A =

[
2 0
1 1

]
, B =

[
1
0

]
, K =

[
−6 −6

]
.
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Fig. 1. Execution of the design in Theorem 5.4. On each transmission, the maximum possible number of bits are transmitted. The average inter-transmission
interval is 1.84 and the minimum is 0.0017. (a) shows the transmission times, the number of bits transmitted on each transmission and the time-varying
function np̄ (dashed line). The three intervals, (5.77, 7.77], (12.86, 14.86] and (18.27, 20.27], with p̄ = 0 are the blackouts. (b) shows the time-varying
function R. (c) shows the evolution of V and Vd and (d) shows the total number of bits transmitted.

VI. CONCLUSIONS

We have addressed the problem of event-triggered control
of linear time-invariant systems under time-varying rate-
limited communication channels. The class of channels we
consider includes intermittent occurrence of channel black-
outs. We have designed an event-triggered control scheme
that, using prior knowledge of the channel, guarantees the
exponential stabilization of the system at a desired con-
vergence rate, even in the presence of intermittent channel
blackouts. Key enablers of our design are the definition and
analysis of the data capacity, which measures the maximum
number of bits that can be communicated over a given time
interval through one or more transmissions. We have also
provided an efficient real-time algorithm to lower bound the
data capacity for a time-slotted model of channel evolution.
Future work will explore the reduction of the conservatism
of the proposed design, scenarios with bounded disturbances,
a stochastic model of channel evolution, and the trade-offs
between the available information pattern at the encoder and
the ability to perform event-triggered control.
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