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Abstract— In this paper, we consider the problem of second
moment stabilization of scalar linear systems under Markov
packet drops. We assume that the channel state evolution is
given by a Markov chain. Corresponding to each possible value
of the channel state the packet drop probability distribution
may be different. We design an event-triggered transmission
policy that ensures that the second moment of the plant state
converges exponentially, at a desired rate, to an ultimate bound.
Our approach relies on an online assessment of the necessity of
transmission at any given time step and a transmission occurs
only if necessary. We illustrate the results through simulations.

I. INTRODUCTION

The area of Networked Control Systems (NCS) is con-
cerned with controlling systems under communication con-
straints. In such systems, it becomes necessary to design
control and communication in an integrated manner. To
address this need, the framework of event-triggered control
has gained a lot of popularity in the last decade. In this
paper, we study the problem of designing a policy for event-
triggered transmission over a Markov channel for second
moment stabilization of a plant.

Literature Review: Research work on NCS spanning
nearly the last two decades has been extensive and includes
results that give fundamental limits, control design methods
under various network effects and using various methodolo-
gies. Some important survey papers on this area include [1]–
[4], while [5] is a book on stochastic NCS. A particularly
useful theme that has emerged in the area of NCS in the
last decade is that of event-triggered control (along with
the related ideas such as self-triggered control). A good
introduction to the area is [6] and [7]–[10] provide a fairly
comprehensive survey of the current literature.

However, state-triggered control in a stochastic setting
is still relatively limited. [11]–[17] explore finite or infi-
nite horizon optimal control problems, typically with fixed
threshold-based triggering. [13]–[16] also consider packet
drops. Stochastic stability, in the sense of moment stability,
with event-triggered control has received even less attention.
The work [18] designs self-triggered sampling for second-
moment stability of state-feedback controlled stochastic dif-
ferential equations and [19] proposes a fixed threshold-
based event-triggered anytime control policy under packet
drops. It assumes that the controller has knowledge of the
transmission times, including when a packet is dropped,
and the policy guarantees second-moment stability with
exponential convergence to a finite bound asymptotically.
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The current paper builds on [20], [21], which consider the
problem of second moment stabilization of the plant state
under independent identically distributed (i.i.d.) Bernoulli
packet drops. The main difference here is that we consider a
channel with Markov packet drops. In the context of NCS, a
channel with i.i.d. Bernoulli packet drops is a very popular
choice for modeling uncertain channels. However, channels
that evolve according to a Markov chain are a generalization
and better model real communication phenomena [22]–[24].
Thus, in recent years there have been some papers that
explore estimation [25], [26] or NCS under Markov packet
drops [27]–[29] or under Markov bit rates [30]. However,
these papers are all in the context of time-triggered control.

Contributions: We consider the problem of second mo-
ment stabilization of a scalar system under process noise
and Markov packet drops. In particular, we assume that
the channel state at any time can be in one of a finite
number of states. Corresponding to each state, there is an
associated Bernoulli packet drop probability distribution. We
assume that the channel state evolves according to a Markov
chain on the finite states. Then, we design an event-triggered
transmission policy (along the lines of the two-step design
principle proposed in [21] for control over a channel with
i.i.d. Bernoulli packet drops) that achieves second moment
stability of the plant state with a desired rate of convergence.
Thus, this paper is an important generalization of [20], [21].

Notation: We let R, N and N0 denote the set of real
numbers, positive integers and non-negative integers respec-
tively. We use boldface to represent vectors and matrices.
In particular 1 is the vector of all ones, δδδi represents the
n-dimensioned vector which assumes value 1 at index i and
0 everywhere else, and In is the identity matrix of order n.
ρ(P) represents the spectral radius of the matrix P. Finally,
ET [.] is the expectation under the transmission policy T .

II. PROBLEM STATEMENT

In this section, we first set up the various elements of the
system including the plant, the sensor, the controller as well
as the Finite-State Markov Channel (FSMC). Building on
this, we present the main problem statement.

A. System Overview

Consider a scalar, linear time-invariant system, given by

xk+1 = axk + uk + vk, xk, uk, vk, a ∈ R (1)

for all k ∈ N0. Here, xk, uk and vk are the plant state,
external control effort applied by the actuator, and the process
noise at timestep k, respectively. We assume that {vk} is
independent identically distributed process with zero mean
and a finite variance M for all time k ∈ N0. The parameter a



is the inherent plant gain, and further we assume that |a| > 1
so that control is necessary.

The sensor is not collocated with the controller, but rather
communicates with it over an unreliable communication
channel. At each timestep k, the sensor measures the plant
state xk. The sensor decides whether to transmit or not on
each time step k based on the control objective, the nature
of the unreliable communication channel, and past history.
Thus, we define the transmission process {tk}k∈N0

as

tk :=

{
1, if sensor transmits on time k
0, if sensor does not transmit on time k.

(2)

The algorithm which computes this decision is called a
transmission policy, denoted by T . The channel is unreliable
and hence we define the reception process {rk}k∈N0

as

rk :=


1, if tk = 1 and successful transmission
0, if tk = 1 and unsuccessful transmission
0, if tk = 0

(3)

After a successful reception, the controller acknowledges
the reception (we assume a perfect feedback channel for
the acknowledgment). Thus the sensor knows rk−1 while
computing tk for timestep k. We further define the latest
reception time before k and latest reception time up to k as

Rk := max{i < k : ri = 1}, R+
k := max{i ≤ k : ri = 1}.

Note that Rk = R+
k for any given k if rk = 0. We also denote

the sequence of all successful reception times as follows

S0 = 0, Sj+1 := min{k > Sj : rk = 1}.

We let x̂+
k be the controller state at timestep k. Based

on this, the controller produces a control action uk = Lx̂+
k

where L ∈ R. If rk = 1, then the controller knows xk
exactly, and hence on such k we let x̂+

k = xk. When
rk = 0, the controller uses an estimate of the plant state,
x̂k, to generate the control effort. Thus, x̂+

k = x̂k when
rk = 0. This estimate of the plant state is calculated as
x̂k = āx̂+

k−1, where ā = a + L. Note that at time k, since
sensor knows the reception process until time k − 1, it can
compute x̂+

k−1 and x̂k independently. Thus, we also call x̂k
as the sensor’s estimate at time k. Corresponding to these, we
define the sensor’s estimation error and the controller state
error respectively as zk := xk − x̂k, and z+

k := xk − x̂+
k .

Thus, the overall system evolution is

xk+1 = axk + Lx̂+
k + vk = āxk − Lz+

k + vk (4a)

x̂k+1 = āx̂+
k (4b)

where ā = a+ L, z+
k = xk − x̂+

k , and

x̂+
k =

{
x̂k, if rk = 0

xk, if rk = 1.
(4c)

With the above setup, we can define two sets of informa-
tion available to the sensor. At time k, before the sensor has
decided tk, the information available to it can be denoted as

Ik := {k, xk, zk, Rk, xRk
},

while after the transmit-acknowledge process is complete,
the sensor has access to the following information

I+
k := {k, xk, z+

k , R
+
k , xR+

k
}.

Recall that the sensor receives a perfect acknowledgement
when rk = 1. Thus, we can assume that the sensor also
knows I+

k , though after the transmission on time k or after
the decision by the sensor not to transmit. Intuitively, Ik is
the information used by the sensor to decide tk, whereas
I+
k allows the sensor to monitor the system performance.

Furthermore, note that Ik = I+
k whenever rk = 0.

B. Communication Channel
We model the unreliable communication channel as a

Finite-State Markov Channel (FSMC). We assume that at
time k, the state of the communication channel, γk can take
values out of a set of n states given by L := {l1, l2, · · · , ln}.
We assume that the evolution of γk is Markov. Thus,

Pr[γk+1 = li|γk = lj ] = pij

Thus, if the probability distribution of the channel state at
time k is pk, then we have

pk+1 = Ppk, (5)

where P = {pij} is the transition kernel for the channel
state change between timesteps k and k + 1. We assume
that the transition kernel is invariant across time, which
is a good first-order approximation for flat-fading wireless
channels [31]. With each state of the FSMC, we associate a
Bernoulli packet drop model for the channel. In particular,
if the channel is in state j, then the probability of successful
communication of a packet over the channel is dj , and the
probability dropping the packet is ej := 1− dj . Thus,

d := [d1, d2, · · · , dn]T (6a)

e := 1− d = [e1, e2, · · · , en]T . (6b)

Further, we assume that before the sensor decides tk, it
knows γk−1 the state of the channel at timestep k − 1.
Practically, identification of FSMC state at the receiver
(controller) can be achieved using techniques such as symbol
training (also referred to in literature as pilot training) to
keep an updated estimate of the state of the channel at
every timestep. A practical algorithm for symbol training
in flat-fading wireless channels is provided in [32]. Further
characterization of state-recognition principles in FSMC’s
is provided in [31]. Thus, we assume that the controller
communicates the identified FSMC state back to the sensor
through a low bandwidth reliable feedback channel.

C. Control Objective
We formulate the policy T , for deciding the sequence of

transmission times {tk}k∈N0
, based on the control objective

that we want to achieve for the system. Since the system is
stochastic in nature, we let the control objective to be the
exponential convergence of the second-moment of the plant
state to an ultimate bound. That is, we require that

ET [x2
k|I+

0 ] ≤ max{c2kx2
0, B}, ∀ k ∈ N0. (7)



Here, T is the transmission policy that determines {tk},
c2 < 1 is the desired exponential convergence rate and B
is the ultimate bound of the second moment. Thus, the right
hand side of (7) defines an envelope within which the second
moment of the plant state must evolve. However, this control
objective is a specification on the entire trajectory of the
system from time k = 0. Instead, we borrow Lemma 3.1
from [20], which defines a stronger control objective on
the system in an online fashion, rather than for the entire
trajectory in an “open-loop” manner.

Lemma 1: (Alternate Control Objective [20]). For a trans-
mission policy T , consider the control objective

ET
[
hk|I+

Rk

]
≤ 0, ∀k ∈ N, (8)

where hk is the performance function and we define it as

hk := x2
k −max{c2(k−Rk)x2

Rk
, B}.

If a transmission policy satisfies the online objective (8) then
it also satisfies the objective (7). �

The main idea behind Lemma 1 is that if a transmission
policy meets (8) between each successive reception times
Sj ≤ k ≤ Sj+1, then it also satisfies (7). Thus, throughout
the rest of the paper, we focus on the online objective (8).
Next, we highlight the main idea behind our design strategy.

III. THE TWO-STEP TRANSMISSION POLICY DESIGN

Designing an event-triggered transmission policy even for
the online objective (8) is challenging. This is because the
random packet drops make the evaluation of the necessity
of a transmission on a timestep coupled with the future state
evolution as well as the future actions. Therefore, we adopt a
two-stage approach. In the first stage, we consider a nominal
policy that does not transmit for D timesteps from the current
time k, and transmits at every timestep thereafter. If the
nominal policy can maintain the control objective at time
k, then we know that there exists some policy which will
maintain the control objective even if tk = 0. This forms the
main idea for the design of our event-triggered transmission
policy. In the event-triggered transmission policy, the sensor
evaluates the necessity of transmitting on the current time k
based on the nominal transmission policy as described above.
If under the nominal policy, the control objective can be met
then there is no actual transmission (because a transmission
is not necessary). If on the other hand, the control objective
is not met under the nominal policy starting at the current
time, then the sensor actually transmits. The sensor executes
this two stage process on each timestep. Thus, we use a
time-based nominal policy as a building block to obtain
the composite event-triggered policy. [20] contains a more
elaborate discussion of this design idea and the motivation
for it. Next, we give the specifics of the nominal policy, and
subsequently the event-triggered transmission policy.

A. The Nominal Policy, T Dk
We define the nominal policy starting from time k with

parameter D, denoted by T Dk , as

T Dk : ti =

{
0, i ∈ {k, k + 1, · · · , k +D − 1}
1, i ≥ k +D.

(9)

We associate with the nominal policy T Dk the look-ahead
criterion, which is the conditional expectation (under the pol-
icy T Dk ) of the performance function at the next successful
reception timestep. Thus, the look-ahead criterion is

GDk := ET D
k

[
hSj+1

|Ik, Sj = Rk
]
. (10)

From the structure of the nominal policy, we get

GDk =
∞∑

w=D

ET D
k

[
hSj+1

|Ik, Sj = Rk, Sj+1 = k + w
]

ΦD(w,pk),

(11)

where recall that pk is the state probability distribution of
the channel state at timestep k and ΦD(w,p) is defined as

ΦD(w,p) := Pr[Sj+1 = k + w|T = T Dk ,pk = p, Sj = Rk],

which is the probability that the first successful reception
after time k occurs on timestep k + w, given the channel
state distribution at timestep k is p and the transmission
policy is the nominal policy T Dk . Also, note that according
to the channel evolution described in (5), pk is given by

pk = Pδδδγk−1
(12)

where γk−1 is the channel state at time k − 1, which the
sensor knows at time k before deciding tk. Note that δδδi is a
probability distribution. The closed form of ΦD(w,p) is

ΦD(w,p) = 1TD(PE)(w−D)PDp (13)

where D := diag(d) and E := diag(e). The explanation
for (13) is as follows: left multiplying the channel state
distribution p with PD gives us the channel state distribution
at timestep k + D at the end of the idle time in the policy
T Dk , during which the sensor does not transmit. Multiplying
this distribution by (PE)w−D gives us a vector whose jth

element is the probability that at timestep k+w, the channel
state is lj given that the sensor transmits at each timestep
from k + D to k + w but reception is unsuccessful every
time up to k + w − 1. Pre-multiplying this vector with D
gives a vector where the jth element denotes the probability
that the transmission over the channel was finally successful
at the (k+w)th timestep. Left multiplying this vector by 1T

sums the probabilities over all the channel states.

B. The Event-Triggered Policy, TE
From the previous section, we see that the sign of the

look-ahead criterion indicates whether or not the online
objective (8) would be violated if, starting from the current
time, the sensor does not transmit for the next D timesteps.
This gives us a simple criteria to decide whether or not to
transmit at timestep k. If GDk is negative, then the sensor
does not transmit - because there is (“on average”) a leeway
of D timesteps for course correction. If GDk is positive, then
the sensor does not have the aforementioned leeway, and
therefore, it transmits at k to avoid violation of (8). Thus,
the event-triggered policy is represented as

TE := tk =

{
0, if k ∈ {Sj + 1, · · · , Tj − 1},
1, if k ∈ {Tj , · · · , Sj+1},

(14)



where
Tj := min{k > Sj : GDk ≥ 0}. (15)

IV. IMPLEMENTATION AND CONVERGENCE ANALYSIS OF
THE EVENT-TRIGGERED POLICY

A. Evaluation of the Lookahead Function, GDk
Even though (11) gives us the definition of GDk , we still

need a closed form expression of GDk in order to compute it
efficiently onboard the sensor at every time. The first step
to finding a closed form for GDk would be to tackle the
expectation term in the summation of (11). To this end,
we borrow the following result from Lemma 4.1 of [20].

Lemma 2: The closed form of the term ET D
k

[hk+w|Ik]
for a nominal policy with parameter D is given as

ET D
k

[
hSj+1

|Ik, Sj = Rk, Sj+1 = k + w
]

=

ā2wx2
k + 2āw(aw − āw)xkzk + (a2w − 2awāw + ā2w)z2

k+

M̄(a2w − 1)−max{c2wc2(k−Rk)x2
Rk
, B}, (16)

where M̄ := M
a2−1 . �

As is evident from (11) and (16), we need to prove the
existence of the summation of the form

χD(b,p) :=

∞∑
w=D

bwΦD(w,p), (17)

which we obtain using the following lemma.
Lemma 3: Assume P is a left-stochastic matrix, E =

diag(e) where e ∈ [0, 1]n and b > 0. Then ρ(bPE) ≤ bē,
where ē := {max(ei), i ∈ {1, . . . , n}|e = {ei}ni=1}.

The proof of the Lemma follows directly from Corollary
1.2, [33]. As a direct application of Lemma 3 and a result
on convergence of geometric series of matrices [34] (pp 193,
Theorem 2), we can obtain the closed form of χD(b,p).

Lemma 4: Suppose that ei ∈ [0, 1) for each i ∈
{1, . . . , n} and that b ∈ [0, 1]. Then, the series defining
χD(b,p) converges and its closed form is given as

χD(b,p) = bD1TD (In − bPE)
−1

PDp. � (18)
1) Properties of χD(b,p): In this subsection, we note a

few properties of the function χD(b,p).
Lemma 5: χD(b,p) is strictly monotonically increasing in

b for all values of b > 0.
Proof: In (17), bwΦD(w,p), for each w is nonnegative

and strictly increasing in b.
We now present a condition for the lookahead function

GDk to exist.
Lemma 6: GDk exists if a2ē < 1.

Proof: From (11), (16) and (17), we see that to find
the closed form of GDk , χD(b,p) would have to be evaluated
for b = a2, aā, ā2 and c2. Since a2 is biggest of these values
based on our standing assumptions, the range of possible
values of b is (0, a2]. Since χD(b,p) is monotonically
increasing in b for all b > 0 (Lemma 5), it is sufficient to
ensure the existence of χD(a2,p). However, from Lemma 4,
we see that χD(a2,p) would converge if a2ē < 1, thus
completing the proof.

2) Closed form of GDk : The closed form of GDk , which
can be used onboard the sensor to evaluate the value of GDk
on every timestep k ∈ N, is given as follows.

Theorem 1: Suppose a2ē ∈ [0, 1). Then GDk is well-
defined and its closed form is given as

GDk =χD(ā2,pk)x2
k + 2

[
χD(aā,pk)− χD(ā2,pk)

]
xkzk[

χD(a2,pk)− 2χD(aā,pk) + χD(ā2,pk)
]
z2
k+

M̄
[
χD(a2,pk)− χD(1,pk)

]
−
[
µk(c2)χD(c2,pk)

+Bχ̃D(1,pk)− µk(c2)χ̃D(c2,pk)
]

where M̄ := M
a2−1 , and χ̃D(b,pk) is defined as

χ̃D(b,pk) := b(D+qDk )1TD(PE)q
D
k (In − bPE)

−1
PDpk

µk(b) is given by

µk(b) := b(k−Rk)x2
Rk

and qDk is defined as

qDk := max

{
0,

⌈
log(x2

Rk
/B)

log(1/c2)

⌉
− (k −Rk)−D

}
Proof: The evaluation of terms in (11) of the

form
∑∞
w=D b

wφD(w,pk) equals χD(b,pk), which exists
and is given in (18). What remains is the evaluation of
the term

∑∞
w=D max

{
c2wc2(k−Rk)x2

Rk
, B
}

ΦD(w,pk). Let
µk(b) := bk−Rkx2

Rk
. Then, we have

∞∑
w=D

max{bwzk(b), B}ΦD(w,pk) =

µk(b)

∞∑
w=D

bwΦD(w,pk) +

∞∑
w=D+qDk

(B − bwµk(b))ΦD(w,pk),

where qDk is the number of timesteps from k when we first
have B > bwµk(b). We can verify that the value of qDk
for b = c2 is the same as provided in the theorem. The first
summation in the RHS is equal to µk(b)χD(b,pk). Using the
definition of χ̃D(b,p) in the theorem statement, we see that
the second summation on the right is equal to Bχ̃D(1,pk)−
µk(b)χ̃D(b,pk). This verifies the closed form of GDk as given
in the theorem statement.

B. The Performance Evaluation Function, JDk
Recall from Lemma 1 that we seek to ensure the online

objective (8) in order to ensure (7). Thus, in what follows,
we demonstrate that the event-triggered policy (14) meets the
online objective (8). To this end, we introduce performance
evaluation function, denoted by JDk , as

JDk := ET D
k

[
hSj+1

|I+
k , Sj = R+

k

]
(19)

=

∞∑
w=D

H(w, x2
k)ΦD(w,pk) (20)

where

H(w, x2
k) := ET D

k

[
hSj+1

|I+
k , Sj = R+

k , Sj+1 = k + w
]



is the open-loop performance evolution function. Applying
Lemma 2 to (20) for k = Sj , we see that

H(w, x2
Sj

) = ā2wx2
Sj

+ M̄(a2w − 1)−max{c2wx2
Sj
, B}.

It can be observed that the performance evaluation func-
tion evaluated at a successful reception time, JDSj

gives us
information about whether or not the system would breach
the control objective on the next reception time under the
nominal policy (9). Note that JDk differs from GDk only if
k = R+

k = Sj for some j. Analogous to the closed form
expression of GDk in Theorem 1, we can also obtain a closed
form expression for JDk , which we skip here due to space
constraints. Crucial to the analysis of the event-triggered
transmission policy is the behaviour of the function H(w, y)
described in the following result.

Theorem 2: (Sign Monotonicity of H(w, y) [21], Prop.
4.6). There exists a B∗ > 0 such that, if B > B∗ and
B log

(
c2

ā2

)
> M̄ log a2, then for all y ≥ 0, the function

H(., y) has the property

H(w1, y) > 0 =⇒ H(w2, y) > 0, ∀w2 ≥ w1. �
Note that B∗ can be computed numerically as described

in [21]. It should be noted here that the use of the term
monotonicity is not used for the function H(., y) per se but
rather for the behaviour of the system when evolving over a
string of timesteps with lack of communication. Insofar as
the system is considered, Theorem 2 demonstrates that faced
with the lack of successful receptions, the system will satisfy
the control goal for a finite number of steps, and then violate
it at every step thereafter. Now the only thing left for us to
prove to demonstrate that our scheme satisfies the control
goal is to show that the value of the performance evaluation
function is negative at every successful reception timestep.
The following theorem demonstrates the same.

Theorem 3: We have the following

(a) ET
[
GDk+1|Ik, tk = 0, rk = 0

]
= GD+1

k

ET
[
GDk+1|Ik, tk = 1, rk = 1

]
= JD+1

k

(b) Suppose(
χD(ā2, δδδi)− χD(c2, δδδi))

) B

c2D
+ M̄

(
χD(a2, δδδi)−

χD(1, δδδi)) < 0, ∀i ∈ {1, . . . , n} (21)

Then JDSj
< 0.

(c) If the previous proposition is true, then J θSj
≤ J θ+1

Sj

for all θ ∈ {1, . . . , D − 1} and for all j ∈ N0.
Proof: The proofs of parts (a) and (b) follow a very

similar structure as the proofs of [20], Proposition 4.4
parts (a) and (b). Thus, we skip their proofs due to space
limitations. Now we prove (c). Observe from (13) that

Φθ(w,p) = 1T (DP)(EP)(w−θ−1)EPθp
Φθ+1(w,p) = 1T (DP)(EP)(w−θ−1)Pθp.

Thus, we find that Φθ(θ+w,p) ≤ ēΦθ+1(θ+w,p), ∀w ≥ 1.

Now consider (20) with parameter θ and letting y = x2
Sj

J θSj
= H(θ, y)ΦD(θ,pSj

) +

∞∑
w=θ+1

H(w, y)Φθ(w,pSj
)

≤ H(θ, y)ΦD(θ,pSj ) + ē

∞∑
w=θ+1

H(w, y)Φθ+1(w,pSj )

= H(θ, y)ΦD(θ,pSj ) + ēJ θ+1
Sj

If θ ≤ D and if D satisfies (21), then by the claim of part (b)
and by Theorem 2, we find out that H(θ, x2

Sj
) is negative.

Since ē ∈ [0, 1], the result follows.
All of the aforementioned results culminate in the follow-

ing result, whose proof we skip due to space limitations as
it follows a similar structure as that of Theorem V.1 in [21].

Theorem 4: For a suitable value of B and D calculated
according to theorem 2 and theorem 3, part (2), the event
triggered policy satisfies the control objective in equation 7.

V. SIMULATION RESULTS

For the purpose of simulation, we consider the four state
wireless Markov channel proposed in [35] which includes
both Ricean (LOS) and Rayleigh (non-LOS) fading effects
in an indoor IEEE 801.11b WiFi network. We utilise the
value of the four state transition kernel mentioned in the
aforementioned paper. Correspondingly, we choose our state
error probability vector e ∈ [0, 1]4 as

e =
[
0.2244 0.3128 0.1031 0.5400

]T
(22)

For our system, we choose the following parameters

a = 1.15,M = 1, c = 0.95, ā = 0.78c,B = 12, x(0) = 20B.

We observe that B∗ = 2.0975 as defined in Theorem 2. The
method to numerically calculate B∗ is presented in [21].
Furthermore, according to Theorem 3, (b), we see that
D = 1, 2, 3 satisfy the criterion under which the event
triggered policy guarantees the achievement of the control
goal in expectation. We ran simulations of the system with
the aforementioned parameters on MATLAB, and averaged
the outcomes over 500 independent runs to create empirical
results on the system evolution, which is now presented here.
Figure 1(a) shows that the the event-triggered policy meets
the control objective by ensuring the second moment con-
verges at the desired exponential rate to the desired ultimate
bound. We define the running transmission fraction (denoted
as Fk0 ) as the ratio of expected number timesteps when the
sensor attempts to transmit under the event-triggered policy
to the total number of elapsed timesteps, that is,

Fk0 :=
1

k
ETE

[
k∑
i=0

ti

]
.

We provide the empirical values of the running transmission
fraction in Figure 1(b) for the current system. Further, with
a variation of the methods developed in [21], it is possible to
calculate an upper bound on the infinite transmission fraction
(F∞0 ), which we also indicate in Figure 1(b).



(a) (b)

Fig. 1. (a) Plot of emperical system evolution for D = 1. (b) Plot of
Running Transmission Fraction for D = 1, 2, 3 and Transmission Fraction
upper bound for D = 3.

VI. CONCLUSIONS

In this paper, we considered a scalar linear plant with pro-
cess noise, with the sensor and the controller non-collocated.
We assumed that the sensor communicates over an unreliable
channel with Markov packet drops. Under this setting, we
designed an event-triggered transmission policy to ensure
second-moment stability with a desired convergence rate
and ultimate bound. We provided a rigorous analysis of the
convergence properties and illustrated the results through
simulations. Future work in this direction will include rigor-
ous characterization of performance of the current algorithm,
analysis of the transmission fraction, design of policies that
minimize the transmission fraction, consideration of Markov
Decision Process channels, and exploration of challenges in
extending the current algorithm to the vector case.
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