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Abstract—In this paper, we consider coordinated control of
feeder vehicles in the first leg of a multi-modal transport system.
In particular, we consider a one-shot problem wherein the
passengers must be transported to a common destination before
a fixed deadline. We pose the problem as the maximization
of the service provider’s profits through optimal pricing and
feeder allocations given the knowledge of demand and supply
distributions. Though the original problem is non-linear, with
optimal pricing scheme we reduce it to a linear program.
We then move on to developing an off-line route elimination
algorithm that reduces the problem size in terms of computation
memory and time. Further, we provide a simplified way to
compute the maximum possible profits as a function of total
supply for a given demand distribution. We test the framework
with simulations on a 20 node graph under a fixed-demand
profile.

I. INTRODUCTION

Real-time, demand and supply aware, coordination of a
fleet of vehicles has the potential to improve the efficiency
of multi-modal transportation systems, such as public trans-
portation, freight transportation networks and supply chains.
For example, a coordinated fleet could effectively address the
challenges faced by a traditional public transportation such as
sparse coverage, lack of first or last-mile connectivity, lack of
convenience and longer travel times. In this paper, we address
the problem of “first-mile” coordination of feeder vehicles of
a multi-modal transportation system. In particular, we focus
on one-shot coordination where a one-time single destination
demand arises and needs to be transported in a fixed time
window. Multi-modal freight transportation networks [1],
peak-hour single destination para-transit [2], [3], overnight
delivery chain systems [4] and special event management
with large foot-fall rely heavily on large-scale pick-ups and
single destination drop-off within a fixed time window.

Literature review: The vehicle routing problem [5]-[8]
considers pick up and delivery of entities using one or more
vehicles whose routes start and end at a depot. It is in
general a mixed-integer problem and can be thought of as an
extension of the Travelling Salesman Problem. Ride sharing
[9]-[11] and dial-a-ride problems [12]-[14] try to match
itineraries and thereby design a shared taxi pooling service in
a deterministic or stochastic environment given a known or
stochastic demand. A special case is the peak-hour single-
destination para-transit service, which [3] models heuristi-
cally. Taxi-dispatch models [15], [16] match demand and
supply with a spatio-temporal metric and optimally allocate
taxis based on geographical location of taxis and customer
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requests. [17] studies economical aspects of a multi-hop ride
sharing scheme for peer-to-peer travel. Another similar class
of problems is that of demand anticipative mobility [18]—
[22], in which routing and rebalancing vehicle flows seek
to match demand and supply. These papers consider fixed
demand rates at each station for other stations and then
design steady state load-balancing and routing flow rates that
seek to maximize passenger throughput without increasing
network congestion.

Contributions: In this paper we consider the problem of
designing a one-shot coordinated feeding for the first leg
of a multi-modal transport system. We pose the problem in
a macroscopic setting by modeling a region of interest as a
graph and modeling vehicles and passengers through flows of
vehicles, and volumes of demand and supply. The aim for the
feeder vehicles is to drop-off passengers at a node designated
as the destination in the graph, before a fixed time, from
where the onward journey can commence. We pose a non-
linear problem for maximizing the earned profits that can be
reduced to a linear program by modelling prices based on
the value of time [23], [24]. Also we show that given the
network, the properties of routes can be exploited to reduce
the number of routes and thereby the number of optimization
variables itself. With further analysis, we give a simplified
method for computing the maximum possible profits as a
function of total supply for a fixed demand distribution. As
we are interested in a one-shot or single-event problem, we
pose it as a fixed horizon control problem. Such a setup
is applicable to scenarios where the separation between the
events is much longer compared to the first leg transit times.

Our problem differs from vehicle routing problems as it
doesn’t utilize a depot and origin of a feeder flow could
be any node where supply is available. Ride sharing and
taxi dispatch do not address fixed horizon planning necessary
for the one-shot scheme we propose. Demand anticipative
mobility problem in [18]-[22] is concerned with designing
steady state flows. The taxi para-transit in [3] though similar
in nature has a heuristic approach with numerical simulations
and formulations with no fixed time window.

Notation: We let 7Z denote the set of integers. We use
the notation [a,b]z and (a,b)z to denote [a,b]NZ and
(a,b) NZ, respectively. We use similar notation for half-
open/half-closed intervals.

Note on proofs: Due to space limitations, we have skipped
the proofs of the results. These proofs would appear in a
more comprehensive journal version.

II. PROBLEM SETUP

In this section, we setup the various elements of the
coordinated feeder service problem. We start with a graph



model of the area that we want to design the feeder service
for. Then, we describe the decision variables and constraints
and conclude the section by posing the profit maximization
problem from the service provider’s point of view.

A. Graph Model

Let us assume that we are given an abstract macroscopic
graph model G := (V, E) of an area for which we want to
design the feeder service. Let D be the common destination
of the feeders. Each node [ € V has a certain volume
of demand for D, d;, and a volume of supply of feeding
vehicles S;. We assume the demand at D is zero, that is
dp = 0. To each edge (I, k) € F, we associate edge weights
(tik, i), which represent the average commute time and
cost of traversal per unit flow on that edge and are strictly
positive. Let T' be the time on or before which the feeders,
starting at time 0, need to transport the passengers to D,
which makes this is a one-shot problem.

Remark I1.1. (Graph parameters and knowledge of them).
We assume that T is small enough for there to be no
substantial change in background traffic conditions. As a
result, we assume that the various parameters associated
with the nodes and edges of the graph are fixed and known
to the designer. Also, it may seem fair to assume that the
supply is fully matched to demand. However, an accurate
demand distribution may not be available in time and when
the actual demand is revealed, the supply may not match it.

We define a route r as a walk in G. Given a route 7, V,
is the sequence of nodes along the route, with V,.(¢) being
the i™ node on the route r. Thus,

Vii[Lngz =V, (Ve(5),Ve(j +1)) € E, (D

where n, is the number of nodes (possibly repeating) on the
route . We denote the origin of the route r by o, := V,.(1).
The destination of the route r is V;.(n,). In particular, we
are interested in those routes, whose destination is D, that
is, V,.(n,) = D. Similarly, E, is the sequence of the edges
that the route r takes to reach its destination, that is,

(Ve(3),Ve(3 +1)). ()

We define the set of feasible routes R as the set of all routes
that terminate at the common destination node D and on
which the total travel time is less than 7. Thus,

Ri={r|()-@), > tu<T, Vi(n,)=D}
(L,k)EE,

E.:[l,n.— 1]z = E, E.(j)=

If no route » € R is such that o, = [, then in fact there is
no route © € R that passes through /. Thus, we can exclude
such nodes from the graph G without any consequence on
the optimization problem we pose in the sequel.

A route can make multiple visits to D. Therefore, we
define a leg as the journey between two consecutive drop-
off’s at D or a journey from o, to D. Hence, D can occur at-
most twice in a leg. The leg i of  is denoted as r* = (V/}, EY)
in a similar fashion as for r. For a route r, we call leg 1 as
its primary leg and its remaining legs as secondary legs. We

denote 0, as the number of legs in a route r. For a route r,
we define per unit flow cost of travel along the route r as

Z plk—z Z Plk—zcm

(I,k)EE, i=1 (I,k)€ B

where c!. is the travel cost per unit flow on leg i of route r.
We assume that the feeders on a route r start at o, at the
last feasible start time, i.e., at (T — Z(l,k:)eE,, t1). Thus, for
each node [ there is a unique pickup time, ti(l), for feeders
on leg ¢ of route r at which they pick up passengers at [.

B. Decision Variables and Constraints

Next, we discuss the decision variables and the constraints
in the problem. We define f,. as feeder volume on route r,
which is the total volume of vehicles sent on route . We let
fi(l) be the allocation on node 1 in leg i of route r, which
is the volume of vehicles allocated to pick up passengers on
node [ in leg ¢ of route r. We define f,.(1) as the allocation on
a node | along route r summed over all legs. Total allocation
on node | over all routes, Iy, is

Yo=Y Y RO, (4)

rlleV, rlleV, illeV}

Note that the total volume of demand serviced at a node [
can at most be d; and hence may in general be less than
F. Hence, we define fi(l) to be the volume of passengers
serviced at a node [ on leg ¢ of route r, and F; as the total
volume of serviced passengers at node I. Thus, f,. for each
route r and f(1) and fi(l) for each route r, leg i and node
l are among the decision variables in our problem.

We now discuss the constraints in the problem, starting
with allocation and supply constraints.

S D <fr Vi€l WreR  (5)
levy
S f<8, Yiev (5b)
rlop=l

The constraint (5a) is the allocation constraint, which en-
sures that the sum of all allocations in a leg ¢ on a route 7
is at-most the route allocation f,., while (5b) is the supply
constraint that ensures that the sum of feeder volumes on
all routes originating from node [, is at-most the supply
S;. Note that the flow conservation constraint is taken care-
of as volumes on each route are defined separately. Hence
we do not need to consider it explicitly. The constraints on
passenger service variables are the following.

Fy=Y" fi(1) = min{F(1), d;},

7,1

(6a)

VIeV  (6b)

C. Revenue, Cost and Profit Maximization

We next present the revenue and cost models. We define
pL(l) as the price per unit of service at a node [, on leg i
of route 7. Each of these prices is an optimization variable
constrained by pt(l) > 0 and pi (1) < p(l). Here, pi(l) is
the maximum viable price, which is the maximum price that



customers at node [ are willing to pay to be serviced by leg
¢ of route r. This maximum price depends on the alternate
means of transportation available to customers at node [. We
elaborate about pricing in the subsequent section.

The revenues at node [ on leg i of route 7 are pi (1) fi(1).
We define the fotal route expense as C, := f,.c., which
can be interpreted as the fuel cost for the flow f,. on route
r. Besides route costs, the service provider incurs service
costs of Fj units, i.e. a unit cost per unit allocation on a
node [, which can be understood as the cost of providing the
service, commission/wages of the drivers, vehicle costs etc.
Thus, rotal costs are 3. cg Cr + >y Fi.

With pi.(1), f, fi(l), fi(1) as decision variables we define
the service provider’s optimization problem as

0
max /= 33 S 0D - Y 6 - YR
leV reR i=1 reR lev
st (5),6), fr, fr(D), fi(1) =0, pp(I) € [0,p,(D)]
VreR, Viell, bz, YIEV,.

(7
Thus, J is the profit made by the service provider for serving
the given demand in the localities defined by nodes under a
given supply distribution. This being a non-linear problem
with no restrictions on routing, it may be a computationally
challenging task. Thus, in this paper, we broadly address
three problems. The first problem is to obtain the optimal
pricing, with which we reduce the problem to a linear pro-
gram. The second problem we consider is that of providing
an offline algorithm that would reduce the problem size. The
third problem deals with an efficient way to compute the
maximum profits for a given demand distribution among all
supply distributions of a given total supply.

III. OPTIMAL PRICING AND ALLOCATIONS

In this section, we first explore the issue of maximum
viable price and then make some observations regarding the
optimal pricing and allocations. Based on these observations,
we simplify the optimization problem (7).

A. Maximum Viable Price and Optimal Price

The revenue from a node ! on leg i of route r is a function
of the price pi(l) that we charge a unit passenger for using
the feeder service. The passenger has a choice to avail the
service or to avoid it. In a competitive market, it is useful to
identify p(l), the maximum viable price. For a price pi (1)
to be viable, the resulting cost to a customer at node [ must
be lower than the best cost among the remaining means of
transportation available to her. We model the cost of travel by
a means of transportation as a combination of its monetary
price and the value of travel time.

Suppose that for the best alternative means of transporta-
tion, the customers at a node ! pay (; units of money and
it takes 7; units of time to commute to D. Let a be the
value of time for the entire population in region GG. Then the
generalised travel cost by the best means of transportation
from a node [ to D is g, = amn + (;. Now for a leg i of
route 7 passing through node ! with pick-up time t:(l) a

passenger travels effectively for T — ti(l) as the passenger
has to wait at D before proceeding with the next mode of
transport. Using this and the price pt(l), we can compute
the generalised cost for node [/ along leg i of r, which for
viability should be less than g;, that is,

pr(l) + (T = 1,(1)) < om + G-
Hence, the maximum viable price is

pr(l) = —a(T = t,(1) = m) + G-
Remark IIL.1. (Optimal price is the maximum viable price).
For any fixed f}(l) the total profit J is a strictly increasing
Sunction of pt(l). If the price p.(l) < p.L(l), then it has

no effect on any other constraints or on other optimization
variables. Therefore, the optimal price p.(l) = p.(1). .

B. Optimal Allocations

From the structure of the optimization problem (7) and
as a consequence of Remark III.1, we can say that in any
optimal solution, the allocations fi(l) and passengers served
fi(l) would be the same.

Lemma II1.2. (Equivalence of optimal allocations and opti-
mal volume of passengers served). In the model (7), for any
optimal solution the allocations and passengers served are
the same, that is f.(1) = fi(l) and hence F; = F; < d.

Given Lemma II1.2, we use the terms allocation at a node
and service at a node interchangeably. In addition, taking
Remark III.1 into consideration, the original optimization
problem (7) reduces to the following.

O
max Ji=3 > > AOHD =D G N

leVreR i=1 reR
st. (5), Fy <dy, fr, fi(1)>0, VreR, Vi, VI €V,

where B:(1) is the allocation profitability, and defined as
Br(l) = pi(l) — 1. ©)

IV. PROPERTIES OF OPTIMAL SOLUTIONS AND
OFF-LINE ROUTE ELIMINATION

In this section, We discuss some important properties
of the optimal solutions of the problem (8), which hold
irrespective of the demand and supply distributions. With
these properties we then go on to reduce the size of the
problem by identifying and eliminating routes in R that will
never be used in an optimal solution.

A. Properties of Optimal Solutions

We start by describing the cases where the constraint (5a)
must be active. The following result states that the feeders
on a route are allocated fully on each secondary leg.

Lemma IV.1. (No redundant feeders in optimal solutions).
In any optimal solution, the total allocation on a secondary
leg of a route r is equal to the feeder volume on that route,
fr- That is, in any optimal solution,

ST ) =fr, Vie[26,]z, YreR.

lev;

(10)



Next, we present necessary conditions for a route to have
non-zero allocations in an optimal solution. These conditions
follow from the K.K.T. conditions along with Lemma IV.1.

Proposition IV.2. (Necessary conditions for a route to be

used in any optimal solution). In any optimal solution, if

fr >0 for r € R then the following must necessarily hold.

(a) fi(l) > 0 for some i € [1,0,]z and | € V;'. Further, for
such (r,i,1), we must have 3(1) > 0.

(b) The route r as a whole cannot make a loss, that is,

0

SN AWBID) = fre

i=1 eV}

(c) Fori € [2,0.]z, fi(l) > 0 only if Bi(l) > ci. Further,
for each i € [2,0,]z, there must exist an | € V! such
that 3i(1) > ct.

(d) If v is a simple route (0, = 1), then f}(I) > 0 implies
BY(1) > c,. Further, there must exist atleast one | € V,
such that BX(1) > c,.

Proposition IV.2 says that in any optimal solution a route
is utilized only if a profitable allocation can be made on the
route. Further, in any optimal solution, a route is utilized only
if there exists some node in each secondary leg or in the only
leg of a simple route on which an allocation can fully offset
the leg cost. Thus, Lemma I'V.1 and Proposition IV.2 together
can be used to eliminate routes and optimization variables
that would never be utilized in any optimal solution. We
detail such an algorithm in the next subsection.

B. Offline Route Elimination

Here we give Algorithm 1, which can be used to elimi-
nate routes and optimization variables that would never be
utilized in an optimal solution. The algorithm sweeps through
each route in R and checks if it satisfies the necessary
conditions on an optimal solution given in Lemma IV.1 and
Proposition IV.2. If a route satisfies the necessary conditions
then it is added to the reduced route set R. Since the
necessary conditions in Lemma IV.1 and Proposition IV.2
hold independent of the demand and supply distributions,
the reduced route set R can be found offline.

Algorithm 1 : Offline route pruning algorithm

Input: R
: R=¢
2: for r € R do

if% >

3: By.(1) — ¢ > 0 then
=1 1eV}|Bi(1)=>0

4: if 0, >1and 31 € V}|Bi(l) > ¢l Vi€ (1,0,]z then
5: R« RU{r}

6: elseif 31 € V1 |BL(l) > ¢l then

7: R« RU{r}

8: end if

9: end if

10: end for
Output: R

Here we explain the important steps of Alogrithm 1.
In any optimal solution, a route r must satisfy Step 3

for (5a) and Proposition IV.2(b) to hold. Steps 4 and 5 are a
direct application of Proposition IV.2(c) while Steps 6 and 7
enforce Proposition 1V.2(d).

Lemma IV.1 and Proposition IV.2 guarantee that for any
given demand and supply distributions, all optimal solutions
use only the routes in the reduced route set R from Algo-
rithm 1. We formally state this fact in the following result.

Theorem IV.3. (Optimal solutions use only the routes from
the reduced route set). For the optimization problem (8), for
any given demand and supply distributions, every optimal
solution is guaranteed to have f, = 0 and consequently
fi(l) =0 over all legs i of 7, V7 ¢ R .

As a consequence of this result we can replace R with
R in the optimization problem (8) without affecting any
optimal solutions or their values. The modified problem
still remains a linear program. Thus, Algorithm 1 helps in
reducing the number of optimization variables and thus saves
on computational resources and memory.

V. MAXIMUM PROFITS AS A FUNCTION OF TOTAL
SUPPLY

In this section we analyse the problem of finding the
maximum possible profits, for a fixed demand distribution,
among all supply distributions with a given total supply.
Based on this analysis, one can compute the maximum
possible profits as a function of the total supply. Such bounds
are helpful for studying economic viability, planning and
resource allocation and possibly for load balancing.

The specific problem we are interested in solving is

Or
S TR DB LD Pl

leVreR i=1 reR
s.t. (5)7 Fl < dlv f’l“; f’b(l)’ Sl > 07 Vr € Ra VZ, Vi e ‘/7

and ZSl:s. (11)

lev

Thus, compared to (8), here S; is also as an optimization

variable with the constraint that the total supply is equal to

s. In addition, we make the following assumptions.

(A1) The demand distribution {(/,d;) : I € V'} is fixed.

(A2) For each node [ in the graph 3 » € R s.t. 0o, = [ and
Br(l) = ez > 0.

There is no loss of generality due to (A2). This fact is made

clear in the following proposition, which presents some other

observations about all optimal solutions of problem (11).

Proposition V.1. (Properties of optimal supply distributions
and allocations). Every optimal solution to the problem (11)
satisfies the following:
(a) If a node | does not satisfy (A2) then fi(l) =0 for all
r € R and all legs © of r.

(b) For each v € R, f1(1) =0, VI # o, and f}(o.) = [
(c) Ifs<Y dithen >  fr=25,VIeV.

lev rlop=l
(d) If s < _dj then Sy < dy, VI € V.

lev



The implication of Proposition V.1(a) is that eliminating
nodes [ that do not satisfy the condition in (A2) does not
change the overall solution or the maximum profits. Thus,
there is no loss of generality in making the assumption,
while it only simplifies some notation. As a consequence of
Proposition V.1(b), we can say that in any optimal solution

S HW) =fr, Vie[l,6:]z, VreR.

levy

(12)

Thus, we can reduce (11) to an optimization problem over
decision variables fi(l), the allocations and S, the supply
at a node. This elimination of the variables f, leads to a
significant reduction in the number of optimization variables.
Moreover, we can express the objective as

0.
o max T=3 > > (B0 - fi).  (13)

leVireR 1=1

Now, we split further analysis into two cases, one with
insufficient supply and the other with sufficient supply. In
the latter case, we give the exact maximum profits among
all supply distributions for the given demand distribution.

1) Maximum Profits with Insufficient Supplies: Using
Proposition (V.1) and (12), we can solve (11) with strict
equality in the constraints of (5a) and (5b). Thus, this is a
much simpler problem to solve for a sequence of values of
s than the original.

2) Maximum Profits with Sufficient Supply: We now study
the case when overall supply is greater than overall demand.
In the following theorem we give some properties of the
optimal solution, including the optimal value. In the theorem,
we use R (1), the set of simple routes originating at [ and with
the maximum rate of profits for a pickup at [, that is

R() = {BL(1) - c.

argmax
reR|o,.=l, 6,=1

Theorem V.2. If s > >, d;, then any optimal solution
to (11) satisfies
(a) S;>d,VieV
(b) Fr= > f'(1)=di st fr=f}or) >0and b, =1
rlo,=l
(c) If r ¢ R(oy) then f. = 0. And the maximum possible
profits over all supply distributions is

Jmaz = Zdl {5%(” - Ci}

lev

max

i (14)
reR|o,=l, 6,=1

This theorem gives the maximum possible profits, over
all supply distributions, for a given demand distribution. It
is only a function of the demand distribution and the graph
parameters. All the optimal solutions with sufficient supply
only use simple routes.

VI. SIMULATION RESULTS

Since (8) is a linear program, we utilize disciplined
convex optimization [25] based CVXpy [26] for simulations.
We performed simulations on the 20 node graph given in
Figure 1. The destination is node 19 and the time to reach
the destination is T = 20.

Fig. 1: Simulation graph: The numbers in the circle repre-
sents node index [, the edge weights tuple (a,b) represent
(pik, tir) and Destination, D = 19 is marked in square

To ensure 7; and (; are comparable to the network we
assume that the best alternative transport available in the
region costs bc, for a route 7 € R. Then calculating the
generalised cost for a route p, g, = at, + ¢, we let the best
available routes to passengers at node [ as r(l)* with

r(l)* € argmin{at, + be, }
reR(1) (15)
m ="t G =bcru--
Next, Figure 2 demonstrates a simulation of the various
aspects of the problem with value of time assumed as o =
0.5 units, and the value of b in (15) assumed as 2.5. The
number of feasible routes in R is 8732 as per definition
(3) and the number of routes in R is 3075 based on the
application of Algorithm 1. The number of optimization
variables with R is 48495 but with R it is 17187 which is
approximately a third of the ones in the original problem.
For finding the max profits with insufficient supply, the
formulation in (13) has 14132 number of variables.

We then set a fixed demand profile where d;, | € V' \
{D}, was drawn randomly and independently from a uniform
distribution over [0, 150]z. The total demand was ), d; =
1910. We generate the optimal profits as a function of total
supply using the objective in (13) and constraints described
in Section V-.1 with total supply s chosen with a spacing
of 10 in [0,1905]z. Beyond s = 1905 we utilise (11) to
validate Theorem V.2, which produces a maxima of §1730.0
based on (14) which is within numerical error of the maxima
value calculated by CVXpy. The scatter points in Figure (2a)
each represent a simulation with a different randomly chosen
supply distribution with .S;, [ € V drawn from a independent
uniform distribution in [0, 150]. The case where supply is
concentrated at the destination only is marked by a green line
in Figure (2a). Though, it is found to do the worst amongst
all simulations but is not proven to be a strict lower bound.

Figure (2b) presents the number of routes used and the
total vacancies allocated with respect to total supply s for an
optimal solution to (13) and constraints listed in Sections V-
.1, and V-.2. There can in general be multiple solutions with
different properties. It can be noted that beyond a certain total
supply the optimal solutions using simple routes increases
and the number of routes used for generating upper-bound
drops down to 19 simple routes belonging to R(l), V I €
V' \ {D} in correspondence to Theorem V.2.
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Fig. 2: Simulation Results: (a): Simulations Results: Maxi-
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VII. CONCLUSIONS

In this paper we propose a one-shot optimization problem
for single-event single-destination fixed time horizon feeding
for coordinating first-mile pick-ups and destination drop-
offs in multi-modal transportation. We pose the problem as
one of maximization of profits and thus is from the service
provider’s point of view. We analyze the pricing aspect which
is useful for viability studies. Then, based on the necessary
properties of the optimal solutions, we provide an off-line
algorithm that does not depend on the knowledge of the
demand or supply distributions and reduces the problem size
significantly. We also provide a computational method for
obtaining the maximum possible profits for a given demand
distribution as a function of the total supply. We validate our
analysis through simulations in multiple scenarios with fixed
demand for a one-shot coordination.

As this is a one-shot deterministic demand matching prob-
lem, therefore an extension of this problem is redistribution
of supply with some demand anticipative scheme. Sensitivity
and robustness analysis of the performance of such a feeding
scheme can be tested against various degrees of mismatch
of anticipative data and actual demand data which may be
useful in planning and viability of the existing scheme.
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