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Abstract— This paper analyzes the evolution of inter-event
times for a planar linear system under a general class of
scale-invariant event triggering rules. For scale-invariant event
triggering rules, the inter-event time is a function of only the
“angle” of the state at an event. We analyze the properties of
this inter-event time function such as periodicity and continuity.
In particular, the inter-event time function is continuous except
for finitely many “angles” and we provide sufficient conditions
under which the inter-event time function is continuous. Then,
we analyze the evolution of the ‘“‘angle” of the state from one
event to the next and reduce the problem of studying the
evolution of the inter-event times to that of studying the ‘“‘angle”
map and its fixed points. For a specific triggering rule, we
provide necessary conditions for the convergence of inter-event
time to a steady state value. We illustrate the proposed results
through numerical simulations.

I. INTRODUCTION

Event-triggered control has been an active area of research
in the last decade. Its main advantage is efficient aperiodic
state dependent sampling of the control while simultaneously
achieving control objectives. One of the factors which plays
an important role in balancing control objectives with effi-
cient use of resources in networked control systems is the
inter-event time. In this paper, we carry out a systematic
analysis of the inter-event times for planar linear systems
under a general class of event triggering rules.

Literature review: A lot of work has been done in the
area of event triggered control so far and a comprehensive
overview of it is not possible here. We refer the reader to
references [1]-[4] for a quick introduction to the topic and
survey of the literature. Most of the papers in event-triggered
control literature ensure the absence of Zeno behavior by
providing a positive lower bound on the inter-event times.
Typically, the analysis of the inter-event times stops there and
the efficiency of an event-triggered controller is demonstrated
through simulations. Self-triggered control [5] and periodic
event triggered control [6] guarantee a minimum positive
inter-event times by design. Even in these settings, a detailed
analysis of the inter-event times as a function of the state or
time is typically missing.

However, there are papers that analyze the average sam-
pling rate [7], [8] or necessary and sufficient data rates to
meet the control objective with event-triggered control [9]—
[12]. On the other hand, [13], [14] design event triggering
rules that ensure better performance than periodic control
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for a given average sampling rate, while [15] designs event-
triggering under interval constraints on event times. A recent
work that analyzes the time evolution and steady state of
inter-event times is [16]. This paper talks about three differ-
ent cases depending on the nature of the eigenvalues of the
closed loop system matrix. In particular, it says that the inter-
event times either converge to some neighborhood of a given
constant or lie in some neighborhood of a given constant for
all positive times or oscillates in a near periodic manner.
However, there is no quantification of the neighborhoods in
any of the cases. Reference [17] seeks to study isochronous
manifolds - set of points in the state space with a given
inter-event time. However, the aim of [17] is to design
self-triggering rules rather than to analyze inter-event times
resulting from a given triggering rule. Hence the triggering
rule is suitably modified to aid the analysis.

Contribution: The main contribution of this paper is a
framework for analyzing the inter-event times of planar linear
systems under a general class of event-triggering rules that
are scale-invariant. We first analyze inter-event time as a
function of the state at a triggering instant. In particular,
for scale-invariant event-triggering rules, the inter-event time
is determined completely by the “angle” of the state at the
last event-triggering instant. We provide sufficient conditions
that ensure the continuity of this inter-event time function.
We then present a framework to analyze the evolution of the
inter-event times by studying the evolution of the “angle” of
the state. In this framework, studying steady state behavior
of the inter-event times is equivalent to studying the fixed
points and their stability of the nonlinear map that gives the
evolution of the “angle” of the state from one event to the
next. We present necessary conditions for the existence of a
fixed point for the “angle” map for a specific event triggering
rule. With this analysis, we can precisely determine the value
of the steady state inter-event time if it exists. This is in
contrast to [16], which shows only the existence of some
bounds on the steady state inter-event times.

Organization: Section II formally states the objective of
this paper. Section III and Section IV analyze the properties
of the inter-event time as a function of the state and the evo-
lution of inter-event time, respectively. Section V illustrates
the results using numerical examples. Finally, we provide
some concluding remarks in Section VI.

Notation: Let R, R>q, and R+ denote the set of all real,
non-negative real and positive real numbers, respectively.
R\ {0} and R?\ {0} denote the set of all non-zero real
numbers and the set of all non-zero vectors in R?, respec-
tively. Let N and Ny denote the set of all positive and non-



negative integers, respectively. For an n X n square matrix A,
let det(A), tr(A) and A, (A) denote determinant, trace and
smallest eigenvalue of A, respectively.

II. PROBLEM FORMULATION

This section describes the system dynamics, the event
triggering rules and the objective of this paper.

A. System description

Consider a continuous-time, linear time invariant planar
system,
x(t) = Ax(t) + Bu(r),

Vt € R, (1a)

where x € R? denotes the state of the plant and u € R” de-
notes the control input, while A and B are system matrices of
suitable dimensions. We consider a sampled data controller

u(t) = Kx(t), Vt€ lti,trr1), (1b)

where {1 } ren, is the sequence of event or sampling times at
which the state is sampled and the control input is updated.
We assume that the control gain K is designed such that
A :=A+ BK is Hurwitz. We can analyze the stability of the
closed loop system (1), using a quadratic candidate Lyapunov
function V (x) = x” Px, where P € R?>*? is a positive definite
matrix that satisfies the Lyapunov equation

PA.+ATP= -0,

for some symmetric positive definite matrix Q. Such a
candidate Lyapunov function can also be used to design the
triggering rule for determining the event times { }en, that
implicitly guarantee asymptotic stability of the origin of the
closed loop system, possibly even with a desired convergence
rate.

B. General class of event triggering rules
Depending on the control objective, different triggering
rules can be used that determine the event times {# }xen,-
For example, as in [1], the recursive triggering rules
tryr = minf{r > 1 : V(x(¢)) = 0} (2)
s = min{t > 1 : [le(n) —x()l| = o [x0)}, )
with o sufficiently small, in the latter rule, each ensure

asymptotic stability of the system (1). Another triggering
rule is

frar = min{z > 1 : V(x(2)) = V(x()e "W}, (@)

which ensures exponential stability of the system (1) with a

rate of convergence of the Lyapunov function V (x(¢)) more

than r for a sufficiently small » > 0 (see [9] for example).
Note that for system (1), we can write the solution x(¢) as

x(t) = G(T)x(t),

where 7:=1—1; and

Vit € [tk7tk+1)7

T
G(1):=eM" —|—/ AT )ds(A, —A).
0

We can use this structure of the solution to write the three
triggering rules (2)-(4) as
tkp1 — = min{’c >0: f(x(tk), T) = 0}, (®)]

where f(x(t),7) := xT ()M (7)x(t;) and M(7) is a time
varying symmetric matrix. In particular, for the triggering
rules (2)-(4) M(t) is equal to M;(t),M>(t) and M;3(7),
respectively, where

~dG' (1) dG(7)
i PG(7) +GT(T)P7dT

(1) :=
My (1) = (1—02)GT (1)G(1) — (GT (1) + G(1))+1 (6b)
M;(7) := G (1)PG(t) — Pe "™, (6¢)

<

1(7): (6a)

In the special case where A is invertible, we can write
G(t) =I1+A" (e~ DA,

which simplifies the expression and computation of M(7)
significantly. Thus, in order to communicate the main ideas
easily, we make the following assumption.

(A1) The matrix A is invertible.

C. Objective

The main objective of this paper is to analyze the evolution
of inter-event times along the trajectories of system (1) for
a general class of event triggering rules (5). Moreover, we
seek to provide analytical guarantees for the behavior of the
inter-event times, such as the existence and value of steady
state behavior of inter-event times.

III. INTER-EVENT TIME AS A FUNCTION OF THE STATE

For the general class of triggering rules (5), we define the
inter-event time function 7, : R?\ {0} — R-g as

T,(x) :=min{t > 0: f(x,7) =x'M(7)x=0}. (7

In this section, we analyze the properties of this inter-
event time function. In Section III-A, we present some basic
properties such as scale-invariance and periodicity, while in
Section III-B we explore the issue of continuity of the inter-
event time function.

A. Scale-invariance and periodicity of the inter-eventtime
function

The function f(x,T) possesses some basic properties,
which are transferred to the inter-event time function 7, (x).
These properties follow directly from the form of f(x,7).

Remark 1. (Scale-invariance of the inter-event time func-
tion). Note from (7) that f(ax,t) = a’f(x,7) for all o € R
and x € R?. Hence, T,(ax) = 7,(x), for any x € R*\ {0} and
for any a € R\ {0}. .

Using the scale-invariance property, we can redefine the
inter-event time function for planar systems as a scalar
function 7, : R — R+,

7,(0) :==min{t > 0: £,(0,7) :=x5M(T)xg =0},  (8)

where xg 1= [cos(6) sin(G)]T. Thus, for x = oxg for all
o € R\ {0}, %(x) = 7,(6).



Remark 2. (7,(0) is a periodic function with period T).
We know that for xg = [cos(8) sin(@)]T, 7,(0) = T.(xg) =
T.(—xg) = 75(0 + 1) for all 6 € R. .

As 14(0) is a periodic function with period 7@, we can
restrict our analysis to the domain [0,7). Next, by direct
algebraic computations, we can show the following important
property of f(0,7).

Lemma 3. (For any fixed t, f,(0,7) is a sinusoidal function
with a shift in phase and mean). Let m;;(t) be the element in
row i and column j of M(t) € R**2, For any fixed T € Ry,

f5(0,7) = w+asin(29+arctan(b)), )
1 _ mu(7) —m(7)
a:= 5\/(tr(Mumz —ddet(M(z)), b= T EEEE

O

From the quadratic structure of f;(60,7) in (8) as well
as (9), we can directly make the following observation about
the number of solutions to f;(6,7) =0 for any fixed 7. We
can also use (9) to write a closed form expression for the
solutions.

Corollary 4. (Number of solutions 0 to f(0,7) =0 for
a fixed t). For any fixed T € R-o, if M(7) is positive or
negative definite, then f;(0,7) =0 has no solutions; if M(7)
is singular then f(0,7) =0 has a single solution 6 € [0,T)
or f5(0,7) =0 for all 6 € [0,7); if M(T) has one positive
and one negative eigenvalue then f(0,7) =0 has exactly
two solutions 0 € [0, ). O

We can also immediately provide a necessary and suffi-
cient condition for an event-triggering rule to reduce to a
periodic triggering rule that is independent of the state.

Corollary 5. (Necessary and sufficient condition for the
triggering rule (5) to reduce to periodic triggering). 1,(0) =
71,V0 € [0, ) if and only if det(M(t)) > 0 for all T € (0,71),
7 = min{t > 0 : det(M (7)) = 0} and M(7,) =0, the zero
matrix. O

B. Continuity of the inter-event time function

Next, we explore if the inter-event time 7,(6) function is
continuous. The class of triggering rules (5) with an arbitrary
function M(7) is too broad. Thus, we make the following
assumption about M(7).

(A2) Every element of the matrix M(.) is a real analytic
function of 7 and there exists a T, such that M(7) is
negative definite for (0,7,), where

T :=min{7 > 0: det(M(7)) = 0}.

Note that each M;(.) in (6), corresponding to the three
triggering rules (2)-(4), satisfies Assumption (A2). This is
because in M (.) and M;(.) the only dependence on T comes
from the matrix exponential e**. The matrix function Mj3(.)
additionally combines linearly another exponential function.
Thus, each element of M;(.) is a linear combination of

products of exponential functions, polynomials (in case A is
not diagonalizable) and sinusoidal functions (in case A has
complex eigenvalues). Further, each of the matrices M;(0)
and M>(0) is negative definite while M3(0) = 0, though
M3(0) is negative definite for suitable P and r. Thus, we
can say that each M;(.) in (6) satisfy Assumption (A2).

Now, let Tuin and Tpax denote the global minimum and
the global maximum of 7,4(6), respectively, that is,

min += i s 0 5 10
= i, 09 )
max - — s 0). 11
T e‘é}gﬁ)” ) (11)

For a matrix M(.) that satisfies Assumption (A2), clearly
Tmin > 0 as det(M(7)) > 0 in the interval (0,7,), and
according to Corollary 4, f;(0,7) =0 has no solution in
the interval (0,7,) and has a unique solution at T = T,,.
Therefore we can say that Tpin = T,,. In general, Ty, may
not exist, that is T,.x = . In this case, it means that there
exists a xg € R?\ {0} such that if x(#;) = xo then ;| = oo.
In other words, this means that the solution to (1) with the
initial condition xy and a constant control input converges
to zero asymptotically. However, such an xy cannot exist if
A has positive real parts for both its eigenvalues and if the
triggering rule (5) ensures x = 0 is asymptotically stable. In
such a case, Tmax 1S a finite quantity.

Now, we are ready to discuss continuity of the inter-event
time function 7,(0). As is evident, det(M(7)) plays a very
significant role in the existence and the number of solutions
0 to f(6,7) =0 for any fixed T € R.y. We can show that
det(M(7)) has finitely many zeros in any bounded interval
and as a consequence of Corollary 4 we can also show
that the level set f;(6,7) =0 has finitely many connected
branches, each of which is a smooth curve in (6,7) space.

Lemma 6. (The level set fs(0,7) =0 has finitely many con-
nected branches, which are continuous). Suppose that M(.)
in (8) satisfies Assumption (A2) and Tmax < 0. Then, the level
set f5(0,7) =0 has finitely many connected branches in the
set {(0,7) €[0,7) X [0, Tmax) }- Each branch is an arbitrarily
smooth curve in (0,T) space and can be parameterized by
T in a closed interval. O

As a result of Lemma 6, we can apply the implicit function
theorem on f;(6,7) =0 at all (6,7,(0)) € [0,7) X [0, Tmax],
except at finitely many points. This guarantees that 7,(0) is
continuously differentiable except at finitely many points in
[0, 7). We state this claim formally in the following result.

Theorem 7. (Inter-event time function is continuously differ-
entiable except for finitely many 0). Suppose that M(.) in (8)
satisfies Assumption (A2) and Tmax < oo. Then, the inter-
event time function T4(0) defined as in (8) is continuously
differentiable on [0,T) except at finitely many 6. O

Based on Theorem 7, we can provide a sufficient condition
for the function 7,(0) to be continuously differentiable.

Corollary 8. (Corollary to Theorem 7). If %ﬁ’f) £ 0 for
all (0,7) € R xR such that f;(0,7) =0, then the inter-event



time function T, : R — R+ defined as in (8) is continuously
differentiable. O

Note that Theorem 7 and Corollary 8 hold for any M(.)
that satisfies Assumption (A2). For specific matrix functions
M(.), such as M;(.) in (6), it may be possible to make far
stronger claims. We leave such analysis on specific triggering
rules to future work. It suffices to say here that we have
observed that the triggering rules with M;(.) in (6) usually
result in 7,(0) that is continuous, or in certain cases, one that
is discontinuous at only a couple of 8 € [0,7). We present
the following important property in the special case where
7,(0) is a continuous function.

Proposition 9. If the inter-event time function T,(0) is a
continuous function, then every local extremum of 1,(0) is a
global extremum. O

IV. EVOLUTION OF THE ANGLE AND INTER-EVENT TIME

In this section, we discuss how the analysis of inter-
event time function helps us to determine the evolution
(such as the steady state behavior) of the inter-event time
along trajectories of the system (1) under the event-triggering
rule (5). In particular, our analysis relies upon the inter-
event time function 7,(x) or 7,(0) and on the analysis of the
evolution of the angle 6;, which denotes the angle between
the system state x(#;) and the positive x; axis.

Note that the evolution of the state of the system (1) under
the event-triggering rule (5) from one triggering instant to the
next may be concisely expressed as

x(tk1) = G(75(60) )x(1e),
arg(x) = {arctan(fﬁ),

T+ arctan(2),

6y = arg(x(t)),
if x>0

otherwise.

Thus, we can say that

Bu = 0(60)i= e (G(5.00) S| ).

As a result, it suffices to study the inter-event time function
and the angle map ¢(0) to understand the time evolution of
the inter-event times for an arbitrary initial condition x(zp).
For example, the fixed points of the angle map ¢(.), that
is, points 6 such that ¢(0) = 0 play a crucial role in the
evolution of the inter-event times. Based on this idea, we
present a procedure for analyzing the evolution of the inter-
event time behavior for the system (1) under a general event-
triggering rule (5).

Remark 10. (Procedure for analyzing the evolution of inter-
event times for a general triggering rule (5)). Consider the
system (1) under the triggering rule (5) for a general M(.)
satisfying Assumption (A2). We can compute the functions
7,(0) and ¢(0) for 8 € [0, 7). For each fixed point 0 of the
map ¢(.) the inter-event times ty11 —ty = T4(0) for all k € Ny
and for all initial conditions x(ty) = o [cos(6) sin(O)]T,
for all a € R\ {0}. One can identify the stable fixed points
of the angle map ¢(.) and their region of attraction to
determine the steady state behavior of T,(x(t)) for x(ty) with

arg(x(tp)) in the region of attraction of a stable fixed point.
One may also identify periodic points and their stability
numerically or by analysis if possible. If the map ¢(.) does
not have any fixed points then we can guarantee that there
is no steady state behavior of the inter-event times for any
initial condition. The functions t5(.) and ¢(.) together can
also potentially tell us about the transient behavior of the
inter-event times. Finally, the stable fixed points of the ¢(.)
map determine lines in R? along which the state trajectories
asymptotically converge to the origin. .

While the ideas and procedure in Remark 10 are applicable
to the triggering rule (5) for a general M(.), it is difficult to
say anything more specific in general. Thus, in the following,
we analyze a specific event-triggering rule, namely (3) or
equivalently (5) with M(.) = M(.) given in (6).

A. Analysis of the fixed points of ¢(.) with M(.) = M;(.)

In this subsection, we analyze system (1) under the event-
triggering rule (3) or equivalently (5) with M(.) = M;(.)
given in (6). We present a necessary condition for the
existence of a fixed point for the angle map ¢(.) in the
following Lemma.

Lemma 11. (Necessary condition for the angle map to have
a fixed point under triggering rule (3)). Consider system (1)
under the event-triggering rule (3) or equivalently (5) with
M(.) = My(.) given in (6). Suppose that Assumption (Al)
holds and that the parameter ¢ € (0, 1) is such that the origin
of the closed loop system is globally asymptotically stable.
Then, there exists a fixed point for the angle map ¢(.) only
if det(L(7)) = 0 for some T € Rxq, where

L(t):=(1—-a)[+A ("~ DA,
and a = (1+0)~ L O

Note that det(L(t)) = 0 for some 7 € Ry is not a
sufficient condition for the existence of a fixed point for the
angle map ¢(.). This is because even if det(L(7;)) =0 for
some T; € R, that 7; may not be in the interval [Tiin, Tmax]-
Even if 7| € [Tmin, Tmax]» there may be no x # 0 in the null
space of L(7) such that 7,(arg(x)) = 1.

Remark 12. (Angle map for the triggering rule (3) has
a bounded number of fixed points). Note that det(L(t)) is
an analytic function of T. Hence, det(L(7)) has a bounded
number of zeros in the interval [Tmin, Tmax]- If there does
exist a T € [Tmin, Tmax] sSuch that det(L(7)) = 0 then either
¢(6) =0 for all 6 € [0,7) or the angle map ¢(.) has a
bounded number of fixed points. °

While Lemma 11 has allowed us to conclude that, for the
angle map ¢(.), if every 0 is not a fixed point then there are
a bounded number of fixed points, verifying if det(L(7)) has
Z€ros in [Tmin, Tmax] May not be easy. Thus, we next present
an algebraic necessary condition for the existence of fixed
points for the angle map ¢(.).

Proposition 13. (Algebraic necessary condition for the an-
gle map to have a fixed point under triggering rule (3)).



Consider system (1) under the event-triggering rule (3) or
equivalently (5) with M(.) = My(.) given in (6). Suppose
that Assumption (Al) holds and that the parameter © €
(0,1) is such that the origin of the closed loop system is
globally asymptotically stable. Further, assume that both the
eigenvalues of A have positive real parts. Let A =: JAJ ™!,
where A is the Jordan form of A. Then, there exists a fixed
point for the angle map ¢(.) only if ||R|| > 1, where
R:=J"[I-(1-a)AA;"]J. O

c
V. NUMERICAL EXAMPLES

In this section, we illustrate our results using numerical
examples. Consider the system,

.10 1 0

X = [_2 3] X+ [J u.
The system matrix A has real eigenvalues at [1,2]. The
control gain K is chosen such that A, has desired eigenvalues.
The event triggering rule (3) is used to design a sampled data

controller. With Q = I, the Lyapunov equation is solved to

determine P. The thresholding parameter ¢ is chosen such

— 0.99%min(Q)
that o = W

Case 1: The control gain K =[0 —6] so that A, has
real eigenvalues at [—1,—2]. Fig. 1 shows the simulation
results for Case 1. For this case the inter-event time function
is continuous and periodic with period #. From Fig. 1(a)
and Fig. 1(b) we can verify that det(M(7)) = 0 has exactly
two solutions and these two points are Tpin and Tmax respec-
tively. Fig. 1(c) shows that there are two points at which
det(L(t)) = 0. Fig. 1(d) verifies that the angle map ¢(.) has
exactly two fixed points, where the larger one is a stable fixed
point. Fig. 1(e) represents the phase portrait of the closed
loop system. The state trajectories are converging to a radial
line which makes an angle of 2.5 radians (approximately)
with the positive x| axis, which is exactly the point at which
the angle map ¢ (.) has the stable fixed point. From Fig. 1(f)
it is clear that the inter-event time is converging to a steady
state value.

Case 2: The control gain K =[0 —35] so that A, has
complex conjugate eigenvalues at [—1+i,—1 —i]. Fig. 2
shows the simulation results for Case 2. For this case also
the inter-event time function is continuous and periodic with
period 7. From Fig. 2(a) and Fig. 2(b) we can verify that
det(M (7)) =0 has exactly two solutions and these two points
are Tmin and Tymax respectively. Fig. 2(c) shows that det(L(7))
is always positive. Therefore the ¢ map in Fig. 2(d) has
no fixed point. Fig. 2(e) represents the phase portrait of the
closed loop system. From Fig. 2(f) it is clear that the inter-
event time is not converging to a steady state value.

Case 3: Consider another system,

o 1] o
X=|_5 x|y {|*
The system matrix A has real eigenvalues at [1,2]. The

-1 0.8

control gain K = 18 —4

so that A. has complex

0.05
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(e) Phase portrait of the closed
loop system

Fig. 1: Simulation results of case 1 when A, has real
eigenvalues at [—1,—2].

(f) Evolution of inter-event
times

conjugate eigenvalues at [—140.2i,—1 —0.2i]. Fig. 3 shows
the simulation results of this system for the event triggering
rule (3). Fig. 3(a) shows that the angle map ¢(.) has two
fixed points, where the larger one is a stable fixed point. In
Fig. 3(b) the inter-event time is converging to a steady state
value for two different initial conditions.

Case 4: Now consider the system,

e[} e[l

A has real and equal eigenvalues at [1,1]. The control gain
K =[-2 —4] so that A, has eigenvalues at [—1+2i,—1 —
2i]. Fig. 4 shows the simulation results of this system for the
triggering rule (2). Fig. 4(a) shows that the inter-event time
function 7,(0) is discontinuous around 6 = 2.3 radians.

VI. CONCLUSION

In this paper we analyzed the evolution of inter-event times
along the trajectories of planar linear systems under a general
class of event triggering rules that are scale-invariant. We an-
alyzed the properties of the inter-event time as a function of
the state at a event triggering instant, such as periodicity and
continuity. Under some mild assumptions, we concluded that
the inter-event time function is continuous except at finitely
many angles and we found sufficient conditions which ensure
continuity. We then analyzed the map that determines the
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Fig. 2: Simulation results of case 2 when A, has complex
conjugate eigenvalues at [—14i,—1 —i].
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Fig. 3: Simulation results of case 3 when A, has complex
conjugate eigenvalues at [—1+0.2i,—1 —0.2i].

evolution of the angle of the state from one event to the
next. Combining these two, we provided a framework for
analyzing the evolution of the inter-event times for planar
systems. For a specific event triggering rule, we determined
a necessary condition for the convergence of inter-event time
to a steady state value. We verified the proposed results
through numerical simulations. Future work includes analysis
of the angle map under specific triggering rules with regard
to necessary and sufficient conditions for the existence of
fixed points, their stability, region of convergence and rates of
convergence. Extensions to periodic event-triggered control
or self-triggered control are other avenues for future work.

0.8
~ 0.6
>
@04

0.2

0

(a) Inter-event time function

(b) Level set of f5(6,7) =0

Fig. 4: Simulation results of case 4 with discontinuous inter-
event time function.
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