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Abstract— In this work, we consider event-based implementa-
tion of control laws designed for local stabilization of nonlinear
systems with center-manifolds. The systems being considered
possess linearised models with uncontrollable modes on the
imaginary axis. The controller chosen decides both the structure
of the center-manifold and its stability. Although the control
of systems with center-manifolds is well studied, event-based
control of such systems is yet to be probed. This involves
the exploration of input-to-state stability (ISS) properties of
such systems, with respect to measurement errors. Considering
the most general structure for the controller, we prove that
a controller that locally asymptotically stabilizes the dynamics
on the center-manifold, also renders the overall system locally
input-to-state stable (LISS) and find the comparison functions
involved in the Lyapunov characterization of ISS. This general
characterization required a nonlinear change of variables,
involving the center-manifold, which can only be approximately
determined in most cases. Because of this, it is found to be
unsuitable for designing event-triggered controllers. We then
explore an approach that does not resort to this change of
variables and present our findings. We discuss the possibility
of a simpler relative thresholding mechanism and present
simulation results for an illustrative example.

Index Terms— Nonlinear systems, Lyapunov stability, Event-
based control, Input-to-state stability, Center manifold theory.

I. INTRODUCTION

In the feedback control of dynamical systems, resources

such as computation, sampling and wireless communication

are employed. Given a control task and performance require-

ments, achieving this task using minimum amount of re-

sources is of practical significance and is especially important

in large-scale multi-agent and networked control systems.

The attention being paid by the control systems community

towards implementation aspects of control is evident from the

various formulations that have emerged over the years. For

instance, minimum attention control, event-triggered control,

maximum hands-off control etc. In minimum attention con-

trol [1], the number of switchings in control are minimized.

In event-triggered control and communication [2], control

is updated or the states are broadcasted only when certain

events occur in a system. In maximum hands-off control
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[3], control signals are obtained that have the shortest non-

zero support per unit time. Although the formulations and

the objectives may seem different, the larger motivation of

judicious use of resources remains the same.

The recent renewed interest in the area of event-triggered

control is due to the work that appeared in [2]. Since then, the

community has explored plants that are linear and nonlinear,

both in discrete and continuous time, in deterministic and

stochastic and centralized and distributed settings [4], [5].

It has been demonstrated through implementations that, on

an average the resources are better utilized in event-triggered

implementations, than in time-triggered implementations [6].

Although such wide variety of settings have been explored,

the case of event-based control of systems with center mani-

folds has not been looked at so far. Results relating to linear

systems cannot be used directly, as there is no provision

to accommodate the dynamics of the center manifold in the

triggering conditions. This case came into the authors’ notice

in the study of the Mobile Inverted Pendulum (MIP) robot

[7], whose linearised model has an uncontrollable mode

on the imaginary axis, necessitating the center-manifold

analysis.

The work in [8] first addressed the control of nonlinear

systems, whose linear models possess uncontrollable modes

on the imaginary axis. Three particular structures were

considered and sufficient conditions for stabilizability of the

center-manifold dynamics were derived. A linear controller

that stabilizes the controllable subsystem need not stabilize

the dynamics on the center-manifold. Along with this linear

controller, for a single-input system, a pseudo-control was

used in the work of [9], [10] and is chosen to stabilize the

dynamics on the center-manifold.

Systems which are input-to-state stable lend themselves

easily to event-based implementations. This motivated us

to begin our work by investigating input-to-state stability

of systems with center-manifolds. Although the control of

systems with center-manifolds is well-studied, to the best of

our knowledge, the study of such systems in the presence

of disturbances and measurement errors has not been inves-

tigated so far. In event-triggered control, the error between

the last measured state and the current state appears both in

the controlled subsystem and the center-manifold dynamics.

Although theoretical results for general nonlinear systems

suggest that locally asymptotically stable systems are also

locally input-to-state stable [11], a constructive Lyapunov

characterization and its consequences with respect to event-

triggered control, for nonlinear systems with center mani-

folds, are missing in literature.



The contributions of this work are the following. Mo-

tivated by applications involving the control of nonlinear

systems with center-manifolds, we study the general problem

of event-triggered implementation of control laws for such

systems. We begin by constructively proving that a controller

that locally asymptotically stabilizes the dynamics on the

center-manifold also renders the overall system locally input-

to-state stable with respect to measurement errors. Because

of a nonlinear change of variables (which can only be

approximately determined in most cases) involved in this

general characterization, the derived triggering rules cannot

be accurately checked. Proceeding without this change of

variables, we design checkable triggering rules but these only

ensure, in general, local input-to-state stability of a neigh-

bourhood of the origin. We also show that sufficient condi-

tions in literature ( [2], [5]), that rule out Zeno behaviour,

are not satisfied by the systems under consideration. We then

explore the possibility of a simpler relative triggering rule

and present an illustrative example.

II. NOTATIONS AND PRELIMINARIES

We denote by R, the set of real numbers and by R≥0

the set of non-negative real numbers. Given two vectors y

and w, we denote by (y;w) the concatenation of the two

vectors [y⊤ w⊤]⊤. || · || denotes the norm of a vector or

the induced norm of a matrix, depending on the argument.

Given A ∈ R
n×n, A ≻ 0 denotes that A is a positive definite

matrix. A continuous function α : [0, a) → [0,∞) is said to

be a class-K function if α(0) = 0 and it is strictly increasing.

Definition 2.1 (Subgradient [12]): A vector ζ ∈ R
n is a

subgradient of a function f : Rn → R, at a point x in the

domain of f , if for all vectors z in the domain of f ,

f(z) ≥ f(x) + ζ⊤(z − x).

The set of all subgradients of f at x is called the subdiffer-

ential of f at x and is denoted by ∂f(x).

Lemma 2.2 ( [12, page 181]): Let P be a symmetric pos-

itive definite matrix and P = M⊤DM be its eigen-

decomposition. The subdifferential of the function f : Rn →
R≥0 with f =

√
x⊤Px at x = 0 is ∂f(0) = {g ∈ R

n :
||g⊤MD− 1

2 || ≤ 1}.

Definition 2.3 (Local input-to-state stability [13]): The

system

ẋ = f(x, d), x ∈ R
n and d ∈ R

m

with f being locally Lipschitz and f(0, 0) = 0, is said to

be locally input-to-state stable in the domain Dx ⊂ R
n with

respect to input d in the domain Dd ⊂ R
m, if there exists a

Lipschitz continuous function V : Dx → R≥0 and class-K
functions α1, α2, α3 and β such that

α1(||x||) ≤ V (x) ≤ α2(||x||)

and

ζ⊤f(x, d) ≤ −α3(||x||) + β(||d||)

hold for all x ∈ Dx, d ∈ Dd and ζ ∈ ∂V (x). The function V

satisfying the above conditions is called an LISS Lyapunov

function.

Compared to input-to-state stability in its global form, the

local property is far more relevant and useful in the local

analysis of nonlinear systems.

III. PROBLEM FORMULATION

Consider the nonlinear dynamical system

ẋ = f(x, u), x ∈ R
n and u ∈ R

m (1)

with f(0, 0) = 0. The Taylor series expansion about x = 0
and u = 0 yields

ẋ = Ax +Bu+ f̃(x, u) (2)

with f̃(x, u) having the following properties

f̃(0, 0) = 0,
∂f̃

∂x
(0, 0) = 0 and

∂f̃

∂u
(0, 0) = 0. (3)

We are interested in the study of systems (2), which through

a linear transformation x = T (y; z) are transformed into the

following form

ẏ = A1y + g̃1(y, z, u)

ż = A2z +B2u+ g̃2(y, z, u)
(4)

where A1 ∈ R
k×k, A2 ∈ R

(n−k)×(n−k), the real parts of

the eigenvalues of A1 are zero and the pair (A2, B2) is

controllable. The control u cannot influence the eigenvalues

of the matrix A1, even though the eigenvalues of A2 can be

arbitrarily placed.

It is easy to see that g̃1(y, z, u) and g̃2(y, z, u) satisfy

g̃i(0, 0, 0) = 0,
∂g̃i

∂y
(0, 0, 0) = 0,

∂g̃i

∂z
(0, 0, 0) = 0,

∂g̃i

∂u
(0, 0, 0) = 0 for i = 1, 2.

(5)

A. Choice of a controller

Given a set of desired pole locations for the z-subsystem,

for a single-input system, there is a unique linear state-

feedback controller that achieves this pole-placement. For

a multi-input system, it is well known that such a state-

feedback controller is not unique. Along with eigenvalues,

some desired eigenvectors can also be assigned. Although

the origin of the z-subsystem (4) is locally asymptotically

stabilized using u = Kz, the stability of the origin of the

overall system cannot be inferred from the indirect method of

Lyapunov, through linearisation. The center-manifold and the

dynamics on the center-manifold determine the stability of

the overall system and these are determined by the controller

chosen. When the system cannot be stabilized by just u =
Kz, feedback of the form u = K11z + K12y must be

employed. The matrix K12 is chosen such that the dynamics

on the center-manifold is stabilized. If this is inadequate,

a pseudo-control u = K(y; z) = K11z + K12y + κ(y),
κ : R

k → R
m can be introduced as in [9], [14]. In the

rest of the paper, we use this controller structure, as this is

the most general form used in the stabilization of systems



with center-manifolds. Denoting A2 + B2K11 by AK , we

arrive at

ẏ = A1y + g̃1(y, z,K(y; z))

ż = AKz +B2K12y +B2κ(y) + g̃2(y, z,K(y; z)).
(6)

B. Center Manifold Theory

At this juncture, we recall some important definitions and

results from center manifold theory.

Definition 3.1 (Invariant Manifold [15]): For the closed-

loop system (6), a k-dimensional manifold φ(y, z) = 0, φ :
R

n → R
(n−k) being sufficiently smooth, is said to be locally

invariant if φ(y(t), z(t)) = 0, ∀ t ∈ [0, tf), for some tf > 0,

whenever φ(y(0), z(0)) = 0.

For the next few results from center-manifold theory to

hold, the cross-coupling linear term B2K12y, between the y

and z subsystems must be eliminated. This is done using the

change of variables v = z−Ey, E ∈ R
(n−k)×k. As the sum

of any eigenvalue of A1 and any eigenvalue of AK is non-

zero, we use from [10], the result AKE−EA1+B2K12 = 0
and the notations

g1(y, v + Ey,K(y; v+Ey))

= g̃1(y, v + Ey,K(y; v + Ey))

and g2(y, v + Ey,K(y; v + Ey)) =

B2κ(y) + g̃2(y, v + Ey,K(y; v + Ey))

− Eg̃1(y, v + Ey,K(y; v + Ey))

to arrive at

ẏ = A1y + g1(y, v + Ey,K(y; v + Ey))

v̇ = AKv + g2(y, v + Ey,K(y; v + Ey)).
(7)

Again, it can easily be checked that g1 and g2 satisfy

conditions (5).

Definition 3.2 (Center Manifold [15]): For the dynamical

system (7), a manifold v = η(y) is called a center manifold,

if

η(0) = 0,
∂η

∂y
(0) = 0

and v(0) = η(y(0)) implies v(t) = η(y(t)), ∀ t ∈ [0, tf ).
The center-manifold is an invariant manifold for system

(7).

Theorem 3.3 (Exitence of a center manifold [15]): If

g1(y, v) and g2(y, v) are twice continuously differentiable

and satisfy conditions in (5), with all eigenvalues of A1

having zero real parts and all eigenvalues of AK having

negative real parts, then there exists a constant δ > 0 and

a continuously differentiable function h(y), defined for all

||y|| ≤ δ, such that v = h(y) is a center manifold for system

(7).

System (7) satisfies the hypothesis of Theorem 3.3 for the

existence of a k-dimensional center-manifold v = h(y) and

the corresponding dynamics on the center manifold is

ẏ = A1y + g1(y, h(y) + Ey,K(y;h(y) + Ey)). (8)

We next recall a theorem, known popularly as the Reduction

Theorem.

Theorem 3.4 (Reduction Theorem [15]): Under the as-

sumptions of Theorem 3.3, if the origin y = 0 of the reduced

system (8), is locally asymptotically stable (unstable), then

the origin of the full system (7) is locally asymptotically

stable (unstable).

In determining the stability on the center-manifold, h(y)
is found upto an approximation by solving the partial differ-

ential equation

0 = AKh(y) + g2(y, h(y) + Ey,K(y;h(y) + Ey))−
∂h(y)

∂y
(A1y + g1(y, h(y) + Ey,K(y;h(y) + Ey))). (9)

C. Event-based control and measurement errors

Although results exist in literature that design controllers

that not only stabilize the dynamics on the center manifold

but also obtain a particular structure for the center-manifold

dynamics, event-based control of such systems is still an

unexplored area. In event-based control, between two events,

in the interval [tk, tk+1), the control is held constant to

u = K(y(tk); v(tk) + Ey(tk)), tk being the kth triggering

instant. With the measurement error ey = y(tk) − y(t)
and ev = v(tk) − v(t), the control can be written as

u = K(y+ ey; v+ ev +E(y+ ey)). The closed-loop system

with K1 = [K11 (K11E +K12)] and e = (ey; ev) is

ẏ = A1y + g1(y, v + Ey, u)

v̇ = AKv +B2K1e+ g2(y, v + Ey, u).
(10)

For further analysis, we introduce new coordinates w = v−
h(y) (the need for which is explained in Section V). Using

the notation ew = w(tk) − w(t), eh = h(y(tk)) − h(y(t)),
e = (ey; ew+eh) and the control u = K(y+ey, w+h(y)+
ew + eh + E(y + ey)), the dynamics gets transformed to

ẏ = A1y + g1(y, w + h(y) + Ey, u)

ẇ = AK(w + h(y)) +B2K1e+ g2(y, w + h(y) + Ey, u)

− ∂h(y)

∂y
(A1y + g1(y, w + h(y) + Ey, u)). (11)

Subtracting (9) from (11) and using the following notations

N1(y, w, e) = g1(y, w + h(y) + Ey,K(y + ey;w + h(y)

+ ew + eh + E(y + ey)))− g1(y, h(y) + Ey,

K(y;h(y) + Ey))

N2(y, w, e) = g2(y, w + h(y) + Ey,K(y + ey;w + h(y)

+ ew + eh + E(y + ey)))− g2(y, h(y) + Ey,

K(y;h(y) + Ey))− ∂h(y)

∂y
(A1y + g1(y, w

+ h(y), u)− (A1y + g1(y, h(y) + Ey,

K(y;h(y) + Ey))))

we obtain

ẏ = A1y + g1(y, h(y) + Ey,K(y;h(y) + Ey))

+N1(y, w, e)

ẇ = AKw +B2K1e+N2(y, w, e).

(12)



It is easy to deduce that for i = 1, 2

Ni(y, 0, 0) = 0,
∂Ni

∂w
(0, 0, 0) = 0 and

∂Ni

∂e
(0, 0, 0) = 0.

(13)

With Ni satisfying these conditions, it can be shown that

there exist δyw > 0 and δe > 0 such that, whenever

||(y;w)|| ≤ δyw and ||e|| ≤ δe (14)

we have for i = 1, 2,

||Ni|| ≤ ki||(w; e)|| ≤ ki(||w|| + ||e||).
The constants ki can be made arbitrarily small by decreasing

δyw and δe. Note that the stability properties of system (12)

are the same as that of the system (1) because of the smooth

change of coordinates relating the two systems.

For the development of event-triggered implementation,

we first choose a controller (as discussed in subsection III-

A) that locally asymptotically stabilizes the overall system.

It is known that a controller that locally asymptotically

stabilizes the closed-loop system also renders the overall

system LISS [11]. However, for designing event-triggered

control, the class-K functions α3 and β (Definition 2.3) have

to be determined and the following section presents these

functions for systems with center-manifolds.

IV. LOCAL INPUT-TO-STATE STABILITY OF

SYSTEMS WITH CENTER-MANIFOLDS

In this section, we show that a controller that lo-

cally asymptotically stabilizes the dynamics on the center-

manifold also yields LISS of the overall system. We also

find the class-K function α3 and β involved in the LISS

characterization (Definition 2.3).

Proposition 4.1: Under the assumption that the functions

g1 and g2 of system (7) satisfy conditions (5), if the origin

y = 0 of the center-manifold dynamics (8) is locally

asymptotically stable, then the overall system (12) is locally

input-to-state stable with respect to the error e.

Proof: By the converse Lyapunov theorem, local

asymptotic stability of the equilibrium point of the center

manifold dynamics (8) implies the existence of a continu-

ously differentiable Lyapunov function V1 : Rk → R≥0 and

class-K functions α4, α5 such that

V̇1 =
∂V1

∂y
(A1y + g1(y, h(y) + Ey,K(y;h(y) + Ey)))

≤ −α4(||y||) and
∣

∣

∣

∣

∣

∣

∣

∣

∂V1

∂y

∣

∣

∣

∣

∣

∣

∣

∣

≤ α5(||y||) ≤ k

for some k > 0, in a neighbourhood of the origin. Also, since

the matrix AK is Hurwitz, for every Q ≻ 0 there exists a

P ≻ 0 such that A⊤
KP + PAK = −Q. Consider the LISS

Lyapunov function candidate V : Rn → R≥0

V (y, w) = V1(y) +
√
w⊤Pw. (15)

The function V is differentiable everywhere except on the

set Nd = {(y, w) ∈ R
n : w = 0}. On the set Rn \Nd, the

subdifferential is the derivative of V . Taking the derivative

of V along the trajectories of system (12) on the set Rn \Nd

V̇ =
∂V1

∂y
ẏ +

1

2
√
w⊤Pw

(

ẇ⊤Pw + w⊤Pẇ
)

=
∂V1

∂y
(A1y + g1(y, h(y) + Ey,K(y;h(y) + Ey)

+N1(y, w, e)) +
1

2
√
w⊤Pw

((AKw +B2K1e+N2(y,

w, e))⊤Pw + w⊤P (AKw +B2K1e+N2(y, w, e))
)

≤ −α4(||y||) + kk1(||e||+ ||w||) − w⊤Qw

2
√
w⊤Pw

+
1√

w⊤Pw
(w⊤PB2K1e+ w⊤PN2(y, w, e))

≤ −α4(||y||)−
λmin(Q)

2
√

λmax(P )
||w||+ kk1(||e||+ ||w||)

+
||PB2K1||
√

λmin(P )
||e||+ k2λmax(P )

√

λmin(P )
(||e||+ ||w||).

With sf ∈ (0, 1), we obtain

V̇ ≤ −α4(||y||)− (1− sf )
λmin(Q)

2
√

λmax(P )
||w||

+

(

kk1 + k2
λmax(P )
√

λmin(P )
− sf

λmin(Q)

2
√

λmax(P )

)

||w||

+

(

kk1 + k2
λmax(P )
√

λmin(P )
+

||PB2K1||
√

λmin(P )

)

||e||

The constants k1 and k2 can be made arbitrarily small by

choosing δyw and δe in equation (14), such that
(

kk1 + k2
λmax(P )
√

λmin(P )
− sf

λmin(Q)

2
√

λmax(P )

)

≤ 0.

Therefore

V̇ ≤ −α4(||y||)− (1 − sf )
λmin(Q)

2
√

λmax(P )
||w||

+

(

kk1 + k2
λmax(P )
√

λmin(P )
+

||PB2K1||
√

λmin(P )

)

||e||.

Notice that the function αD(||(y;w)||) = α4(||y||) + (1 −
sf )

λmin(Q)

2
√

λmax(P )
||w|| is a class-K function of ||(y;w)|| and the

function βG(||e||) =

(

kk1 + k2
λmax(P )√
λmin(P )

+ ||PB2K1||√
λmin(P )

)

||e|| is a class-K function of ||e||. Using Lemma 2.2,

∂V (0) = {(0; g) ∈ R
n : g ∈ R

n−k and ||D− 1

2Mg|| ≤ 1}.

The inner product ζ⊤(ẏ; ẇ) evaluated at the origin is

ζ⊤(0;BK1e+N2(0, 0, e))

= ζ⊤M⊤D− 1

2D
1

2M(0;BK1e+N2(0, 0, e))

≤ ||D− 1

2MP (BK1e+N2(0, 0, e))||

≤
(

||PBK1||
√

λmin(P )
+ k2

λmax(P )
√

λmin(P )

)

||e|| ≤ βG(||e||)



holds for all ζ ∈ ∂V (0). From Definition 2.3, V is a local

ISS Lyapunov function for system (12). Therefore the origin

of system (12) is locally input-to-stable with respect to the

error e, when ||(y;w)|| ≤ δyw and ||e|| ≤ δe.

This proposition generalizes the Reduction Theorem (The-

orem 3.4), as in the absence of disturbance e, local asymp-

totic stability of the overall system is recovered.

V. EVENT-TRIGGERED CONTROL

In the previous section, we showed LISS of system (12).

In this section, we consider the relative triggering mechanism

for event-triggered implementation proposed in [2]. The local

ISS Lyapunov function yielded

V̇ ≤ −α(||(y;w)||) + β(||e||)

with α(||(y;w)||) = −α4(||y||) − (1 − sf )
λmin(Q)

2
√

λmax(P )
||w||

and β(||e||) =

(

kk1 + k2
λmax(P )√
λmin(P )

+ ||PB2K1||√
λmin(P )

)

||e||.
Now, using the simple triggering rule β(||e||) ≤
σα(||(y;w)||), we obtain V̇ ≤ −(1 − σ)α(||(y;w)||). For

σ ∈ (0, 1), asymptotic stability is recovered. Note that this

triggering condition is not easy to check as the coordinate

w = z−h(y), in most cases, can only be computed upto an

approximation, because h(y) is determined by solving (9).

This brings into question the utility of using the coordinate

transformation w = z − h(y).
The conditions (13) and the change of variables from z to

w = z−h(y) are crucial in the proof of Proposition 4.1 and

the following discussion brings out their utility. Proceeding

without the change of variables from (7), with

N1 = g1(y, v + Ey,K(y + ey; v + ev + E(y + ey))

− g1(y, h(y) + Ey,K(y;h(y) + Ey))

N2 = g2(y, v + Ey,K(y + ey; v + ev + E(y + ev)))

which satisfy Ni(0, 0, 0) = 0, ∂Ni

∂y
(0, 0, 0) = 0,

∂Ni

∂v
(0, 0, 0) = 0 and ∂Ni

∂e
(0, 0, 0) = 0, we can show the

existence of δyv > 0 and δe > 0 such that, whenever

||(y; v)|| ≤ δyv and ||e|| ≤ δe, we have for i = 1, 2,

||Ni|| ≤ ki||(y; v; e)|| ≤ ki(||y||+ ||v||+ ||e||). (16)

The constants ki can be made arbitrarily small by decreasing

δyv and δe. With sy ∈ (0, 1), this would result in

V̇ ≤ −(1− sy)α4(||y||)− (1 − sf )
λmin(Q)

2
√

λmax(P )
||v||

+

(

kk1 + k2
λmax(P )
√

λmin(P )
+

||PB2K1||
√

λmin(P )

)

||e||

= −α(||(y; v)||) + β(||e||) (17)

whenever
((

kk1 + k2
λmax(P )
√

λmin(P )

)

||y|| − syα4(||y||)
)

≤ 0, (18)

and k1, k2 and λ are chosen such that
(

kk1 + k2
λmax(P )
√

λmin(P )
− sf

λmin(Q)

2
√

λmax(P )

)

≤ 0.

Note that if α4(||y||) ∈ O(||y||p), p ≤ 1, then k1 and k2
can again be chosen such that (18) is true and the origin is

locally input-to-state stable. If not, then local input-to-state

stability of only a set of the form

S = {y ∈ R
k |
(

kk1 + k2
λmax(P )
√

λmin(P )

)

||y||

− syα4(||y||) ≥ 0}
(19)

can be inferred. The function α4 guaranteed by the converse

Lyapunov theorem can be any class-K function and may or

may not belong to O(||y||p), p ≤ 1. The change of variables

from v to w allows us to incorporate all class-K functions.

The conditions (13) are crucial for this incorporation and

without the change of variables, conditions of the form (13)

could not have been obtained.

From (17), we can derive an implementable event-

triggering scheme

β(||e||) ≤ σα(||(y; v)||). (20)

Unlike the triggering condition involving the variable w, this

involves y and v, which can be obtained from x (which is

actually measured), through a linear transformation.

Next, we present the following corollaries of Proposition

4.1

Corollary 5.1: Under the assumption that the functions g1
and g2 of system (7) satisfy conditions (5), if the origin y = 0
of the center manifold dynamics (8) is locally asymptotically

stable and there exists a Lyapunov function such that α4 ∈
O(||y||p), p ≤ 1, then the overall system (10) is locally

asymptotically stable under event-triggered implementation

β(||e||) ≤ σα(||(y; v)||), σ ∈ (0, 1).
This Corollary presented next is important as in many

cases, α4 turns out to be a polynomial with degree greater

than one.

Corollary 5.2: Under the assumption that the functions g1
and g2 of system (7) satisfy conditions (5), if the origin y = 0
of the center manifold dynamics (8) is locally asymptotically

stable and there exists a Lyapunov function such that α4 ∈
O(||y||p), p > 1, then the set S in (19) of the overall

system is locally asymptotically stable under event-triggered

implementation β(||e||) ≤ σα(||(y; v)||), σ ∈ (0, 1).
Note :- The comparison functions α−1 and β meet the

sufficient regularity condition of Lipschitzness over compact

sets (presented in [2], [5]) that rule out non-existence of Zeno

behaviour, only when α4 ∈ O(||y||p), p ≤ 1. When α4 ∈
O(||y||p), p > 1, the sufficient conditions are not satisfied

and no conclusion can be drawn about the existence or non-

existence of Zeno behaviour through them.

VI. EXAMPLE WITH SIMULATION

From equation (17) we can observe that a much simpler

triggering condition of the form ||e|| ≤ σ||v|| can be used,



which guarantees that V̇ < 0 outside the set S̄ = {y ∈
R

k |
(

(1 + σ)

(

kk1 +
k2λmax(P )√

λmin(P )

)

||y|| − syα4(||y||)
)

≥
0} when k1 and k2 can be chosen such that
(

(1 + σ)

(

kk1 + k2
λmax(P )√
λmin(P )

)

− sfλmin(Q)

2
√

λmax(P )

)

≤ 0.

Next, we take up an example to implement this triggering

rule. Consider the system

ẏ = 105(3y3 − yu)
[

ż1
ż2

]

=

[

0 1
−2 3

] [

z1
z2

]

+

[

0
1

]

u+

[

y2

0

]

.

This system is open-loop unstable with poles at {1, 2}. The

linear feedback controller u = [1 − 4]x is used to place the

poles at −0.5± i0.0866. The closed-loop system is

ẏ = 105(3y3 − y(z1 − 4z2))
[

ż1
ż2

]

=

[

0 1
−1 −1

] [

z1
z2

]

+

[

y2

0

]

.
(21)

The equations of the one-dimensional center-manifold are

given by z1 = h1(y) = y2 + O(y4) and z2 = h2(y) =
−y2 +O(y4). The dynamics on the center-manifold is

ẏ = −2× 105y3 +O(y5) (22)

The Lyapunov function V1(y) =
1
2y

2 can be used to show the

local asymptotic stability of (22), as V̇1 = yẏ = −2×105y4+
O(y6) < 0, close to the origin. For the z-subsystem of (21)

we can choose a Lyapunov function of the form
√
z⊤Pz,

with P ≻ 0 obtained by solving the Lyapunov equation for a

specific Q ≻ 0. Using Theorem 3.4 and Proposition 4.1, local

asymptotic stability and LISS with respect to measurement

errors respectively can be inferred.

Simulation results of continuous time and event-triggered

implementation of the control law using the triggering rule

||e|| ≤ 0.4||z|| are presented in Fig. 1. The initial condition

for the system was set to (10−5, 10−5, 10−5). It can be

observed that the trajectories of the system, in event-triggered

implementation, converge to a set. The minimum time be-

tween two consecutive triggers was found to be 0.1606

seconds. Although the triggering instants do not accumulate

for this initial condition, non-existence of Zeno-behaviour

has to be theoretically shown, for the triggering rule to be

deemed implementable.

VII. CONCLUSIONS

In this work, event-based implementation of control laws

designed for local stabilization of nonlinear systems with

center-manifolds was considered. A constructive proof show-

ing that a controller that locally asymptotically stabilizes a

system also yields local ISS is presented. Because a change-

of variables involving the center-manifold was employed, the

Lyapunov characterization of LISS obtained was not found

to be useful for event-triggered control. This prompted the

search for other ways of obtaining LISS characterizations,

which yielded checkable triggering conditions. However,

LISS of only a neighbourhood of the origin could be con-

cluded. It was shown that comparison functions in the LISS
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Fig. 1: Evolution of the states of the system in Example

(1) under under continuous time implementation and event-

triggered implementation of the control law.

characterisations do not meet the sufficient regularity con-

ditions of Lipschitzness on compact sets already established

in literature, which rule out Zeno behaviour. An alternative

simpler relative thresholding mechanism was explored and

employed for event-based control of an illustrative example.

Designing event-triggered controllers that recover asymptotic

stability of the origin and showing the non-existence of Zeno

behaviour form part of our future work.
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