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Abstract— In this paper, we discuss the evolution of mode
shares over time in a stylised single origin-destination setting
with fixed demand and linear non-separable latency functions.
One of the modes is assumed to resemble a ride-hailing service
whose operator can control its supply over time. The operator
is assumed to be interested in reducing costs while trying to
achieve a target market share and the problem is formulated as
a finite-horizon continuous optimal control problem. We derive
the conditions on supply that ensure a unique stochastic user
equilibrium and present a necessary condition that achieves
the operator’s targets. The framework is demonstrated using
simulation.

I. INTRODUCTION

In recent times, ride-hailing and sharing services such as
Lyft, Ola, and Uber, have dominated the shared mobility
space with their disruptive pricing and significantly altered
the mode choices of travellers. Such phenomena, though
common to many competitive markets, have not been been
fully understood. In this paper, we explore how user prefer-
ences in a transportation network change over time due to
the actions of a ride-hailing operator. We present an abstract
single origin-destination (OD) transportation model in which
the demand captured by each mode can be viewed as a flow
on multiple physical links between the OD pair. Mode 1 is
assumed to represent a ride-hailing service whose operator
controls the supply for a fixed time horizon and seeks a
guaranteed mode-share level in the long run. We formulate
the problem as a finite-horizon optimal control framework
with logit dynamics to capture mode shifts due to change in
the supply of the ride-hailing services.

Literature Review: The stochastic user equilibrium
(SUE) [1] is an alternative to deterministic Wardrop equi-
librium and assumes that the travellers’ perceived utilities
for selecting routes are random variables. This framework
has been widely used along with different choice dynamics
such as the logit, cross nested logit, C-logit, path size logit,
and multinomial probit [2]–[4]. The focus in these models
has been to account for correlations in alternatives and to
find tractable solutions to the SUE problem.

Another line of research in traffic assignment involves the
study of the evolution of traveller choices under route switch-
ing mechanisms [5]–[8]. These day-to-day traffic models un-
derstand the evolution of user choices and analyse the condi-
tions in which the rest points coincide with traffic equilibria.
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Several randomized dynamics with link-flow versions of the
problem have been shown to converge to the SUE solutions
using Lyapunov analysis [9], [10]. It has also been shown
in [11] that there can potentially exist multiple equilibria
with different characteristics. Hence, additional assumptions
on the delay functions that guarantee uniqueness are typically
employed. Variants of the day-to-day framework have also
been effectively used in understanding the evolution of traffic
after network disruptions [12]–[14] and congestion control
using tolls [15]–[17]. A more general discussion on the logit
dynamics can be found in [18]. We approach the problem of
interest using a single OD pair and multiple modes stylised
model, much like the bottleneck model [19], [20] used for
departure-time choice modelling, linear mono-centric models
[21] and two-mode dynamic [22] and other evolutionary
game models for the mode choice problem [23], [24].

Contributions: In this paper, we model and analyse a dy-
namic mode choice scenario, when a new operator-controlled
mode enters the market. We formulate the problem as an
optimal control problem, where the goal of the operator
is to minimize the cost of operations over a finite horizon
while trying to reach a supply level that remains fixed after
the end of the time horizon. Travellers’ mode choices are
assumed to follow logit dynamics at all time steps. The
operator is assumed to control the rate of change of supply
to achieve the following desideratum. First, the uncontrolled
dynamics, subsequent to an initial control over a finite time
duration, must converge to a SUE. Second, the operator
should be able to capture a pre-specified market share in the
limit/at equilibrium. Assuming linear latency functions, we
also consider the existence and uniqueness conditions of the
limiting behaviour of the logit dynamics and its connections
with SUE. We present a simple necessary condition for
the feasibility of the operator’s optimal control problem.
We also present a simulation setup to consider the effects
of various types of interacting modes and demonstrate the
effects of the input parameters. While most literature on day-
to-day traffic focuses on route choice behaviour, temporal
analysis of modes that travellers choose has received limited
attention, primarily because mode changes are usually less
frequent. However, in the presence of ride-hailing modes,
supply-side attributes of alternatives are subject to discernible
fluctuations which in turn influence choice probabilities and
mode shares. Our goal in this paper is to employ day-to-
day traffic models to capture these shifts and study related
problems of interest from an operator’s point of view.

Notation: Let Z denote the set of integers. We use the
notation [a, b]Z to denote [a, b]∩Z. v[a:b] denotes a slice of



a vector v for indices between a and b. A[a:b,c:d] denotes a
sub-matrix of A with rows between a and b and columns
between c and d.

Organisation: We first describe the problem setup in the
Section II. We derive sufficient conditions for uniqueness
of equilibrium points in Section III. We follow up with a
discussion on existence of a feasible solution to the operator’s
optimal control problem in Section IV. Section V contains a
demonstration of the proposed model and a simulation setup
and in Section VI, we discuss the limitations and scope for
future work.

II. PROBLEM SETUP

Consider a single OD pair that is being serviced by m
modes, as shown in Figure 1. Let d be the total demand
between O and D. Let x = [x1, x2, . . . , xm]T represent the
vector of mode shares with xi representing the share of
demand choosing mode i. The set of feasible shares, Ω, can
be defined as

Ω :=

{
x |

m∑
i=1

xi = d, x ≥ 0

}
. (1)

Fig. 1: The supply of the ride-hailing mode is s. Mode shares
are assumed to evolve according to logit dynamics.

The decision maker in this paper is the service operator of
one of the modes, say mode 1. We assume that the operator
seeks to control x1, the mode-share on mode 1. To this end,
the operator dynamically chooses u, the rate of change of
supply (of vehicles) of mode 1. We denote the supply on
mode 1 at time t by s(t). Under this setting, we analyse the
day-to-day evolution of traffic between the OD pair given the
actions of the operator. Then, we also determine the optimal
supply rate trajectory so that the operator may minimize costs
and achieve a targeted demand for mode 1.

We assume that the mode shares evolve according to
the logit dynamics, with a linear generalised cost function.
Thus with uncertainty factor, θ, and reluctance factor, α, the
dynamics are defined as

ẋi = fi(x, s) = α (x̂i(x, s)− xi) , ∀i ∈ [1,m]Z (2)

x̂i(x, s) := d
exp(−θci(x, s))∑m
j=1 exp(−θcj(x, s))

(3)

ṡ(t) = u(t), (4)

where ci is the generalised cost incurred by users of mode i
and u is the rate of change of supply s on mode 1.

We next model the constraints faced by the operator. In
practice it is not possible to recruit drivers or reduce/increase
the supply in a unit time without restrictions. Hence, we
denote the maximum and minimum of u as ū and u,
respectively. Note that for s = 0, there cannot be any service
for mode 1. Therefore, we assume that it is at least equal to
a small value, ε, at all times.

u(t) ∈ [u, ū], ∀t ≥ 0 (5)
s(t) ≥ ε, ∀t ≥ 0. (6)

When entering a new market, operators tend to aggres-
sively advertise and recruit only for a fixed time window,
which we denote by T . That is, we assume that the operator
alters supply until time T and the final supply is chosen
keeping the long-run equilibrium shares in mind since they
ultimately influence their long-term profits. Operators may
choose to alter the supply at a later time after observing
changes to the market, in which case the current model can
be extended with minor modifications. With these parameters
defined, we next define the generalised cost structure and the
complete formulation.

A. Model of Linear Generalised Cost, c(x, s)

For mode 1, the actual market share and the supply are
distinguished to account for empty miles travelled due to
searching, rebalancing, and dead-heading trips. The conges-
tion costs due to mode 1 thus depend on the supply s in
addition to actual customers x1. We assume that the gener-
alized costs are linear and non-separable since shares/supply
of one mode can influence the travel time of the other. To
capture this, we use a congestion matrix of constants, K,
and define a component of the delay functions as

ĉ(x, s) := Kz(x, s)

where, z(x, s) = [s, x2, . . . , xm]T.
(7)

To these delays, we add a vector b, which can be viewed
as the out-of-pocket costs of using each mode. More details
on the generalized costs for the ride-hailing mode and other
modes are given below.

• c1(x, s): The generalised cost of mode 1 is assumed
to depend on the congestion and the prices charged by
the operator. The prices are assumed to depend on the
supply s and demand for mode 1, i.e., x1. Rides on
mode 1 will get expensive as more travelers shift to
it. Likewise, they get cheaper as the supply starts to
increase. Therefore, we assume that prices are inversely-
proportional to the supply, s and directly proportional
to the mode share, x1. Thus, c1(x, s) is defined as

c1(x, s) =
K̄11x1

s
+ ĉ1(x, s) + b1, (8)

where K̄11 is a model parameter which we call the
surge-price factor that reflects additional costs due to
supply-demand imbalances.

• cj(x, s), j 6= 1: We assume that the generalised cost is
the combination of the congestion cost and the price

cj(x, s) = ĉj(x, s) + bj . (9)



Thus, the linear generalised-cost vector, c(x, s), can be
summarised as follows:

c(x, s) = K̄(s)x + b̄(s) (10a)
where, K̄(s) := [K̄1(s) K2 . . .Km] (10b)

K̄1(s) = [K̄11/s, 0 . . . 0]T (10c)
b̄(s) := sK1 + b. (10d)

Here, Ki represents the ith column of congestion matrix,
K. Note that the linear structure used in this sub-section
simplifies the problem while capturing many aspects of
a multi-modal transportation system. Other cost structures,
though richer in features, may not be useful in deriving
analytical guarantees similar to those proposed in this paper.

B. The Objective Function

With the controls and dynamics defined above, the oper-
ator desires to achieve a “long-term occupancy” for mode 1
of at least d1. Mathematically, assuming that the equilibrium
point of the dynamical system is x∗, we want

x∗1 = lim
t→∞

x1(t) ≥ d1 (11)

To this end, the operator changes the supply in a time window
[0, T ] and minimizes the cost of operations in this period.

Specifically, we assume that to change the supply at a rate
u, the operator spends γu2 amount of cost per unit time. This
cost is assumed to be incurred for both adding and removing
supply and it penalizes drastic changes in the supply of mode
1. Further, we assume an operating cost of R amount per unit
time that is required to operate and maintain a unit supply.
Thus, the operator spends Rs(t) units of money per unit time
to maintain a supply of s(t). In summary, the operation costs
for the transient period can be written as

J(u, s) = γ

∫ T

0

u(t)2dt+R

∫ T

0

s(t)dt. (12)

The operator cost minimization problem is thus defined as

min
u,s

J(u, s)

Subject to: (2), (4), (5), (6), (10), (11).
(13)

In practice, an operator may model the problem using
other definitions of J(u, s) without affecting the analytical
results in Sections III and IV as long as the linear generalised
cost structure in (8) and (9) is assumed. Analytical solutions
of the cost minimisation problem are out of reach due
to the use of logit equations for modal split. After time
period T , the system is assumed to continue to follow
logit dynamics with a constant supply of s(T ). With this
setup, we analyse the conditions on the control variables that
ensure the existence and uniqueness of the equilibrium point.
Moreover, we present necessary conditions for the optimal
control problem (13) to be feasible.

III. CONDITIONS ON SUPPLY FOR UNIQUENESS OF SUE

Recall that according to (11), the operator seeks to achieve
a certain long-term (asymptotic) occupancy of mode 1. In
general, there could be multiple equilibrium points or even

limit cycles for the logit dynamics. Hence, we choose a
supply that results in a unique SUE, which we hope would be
asymptotically stable with the entire simplex (1) in its region
of attraction. Thus, we first establish the conditions on the
supply, s, that are necessary and sufficient for uniqueness of
the SUE of the logit dynamics.

A. Cost Monotonicity Condition for Uniqueness of SUE

In general, the uniqueness of an equilibrium point is
guaranteed by the strict monotonicity property of the cost
function. Zhou et al. in [3] show that for asymmetric cost
functions like c(x, s) in (10a), it is necessary and sufficient
that for a given equilibrium point, x∗(s), to be a SUE the
variational inequality (VI) defined below is satisfied.

VI(η,Ω) : η(x∗(s), s)T(x− x∗(s)) ≥ 0, ∀x ∈ Ω

η(x, s) :=
(
c(x, s) + θ−1(1 + ln(x))

)
.

(14)

We assume that the costs satisfy the following fixed-supply
monotonicity property.

(c(x1, s)− c(x2, s))
T(x1 − x2) ≥ 0, x1,x2 ∈ Ω. (15)

Since, we assume a linear cost function, one can show
that fixed-supply monotonicity is sufficient for a unique
equilibrium under a fixed-supply. Further, this monotonicity
property is guaranteed by the positive semi-definiteness of
K̄(s).

Theorem III.1. (Sufficient condition on K̄(s) for a unique
SUE). Consider the logit dynamics (2) with the generalized
cost c as in (10). If K̄(s) � 0 then the logit dynamics
has a unique equilibrium, which is also the stochastic user
equilibrium (SUE).

Proof. Notice that if K̄(s) � 0 then for c as in (10),
the fixed-supply monotonicity property (15) is satisfied. The
equilibrium points and SUE of the logit dynamics (2) are
both solutions of x∗(s) = x̂(x∗(s)). Further, since x∗(s) is
an SUE if and only if x∗(s) solves the VI (14), it suffices
to show that if K̄(s) � 0, then the VI has a unique solution.

Since the generalised cost c in (10) is continuous in x,
Proposition 2 in Section 2.2 of reference [3] guarantees that
the VI has at least one solution. We prove, by contradiction,
that the VI has a unique solution. Let us assume there are
two distinct fixed points of VI (14) namely x∗1 and x∗2. Then,

η(x∗2)T(x− x∗2) ≥ 0, η(x∗1)T(x− x∗1) ≥ 0, ∀x ∈ Ω.

In particular, we have

η(x∗2)T(x∗1 − x∗2) ≥ 0, η(x∗1)T(x∗2 − x∗1) ≥ 0,

which imply

(η(x∗2)− η(x∗1))T(x∗2 − x∗1) ≤ 0.

Using (14), we can rewrite this as(
K̄(s)(x∗2 − x∗1) + θ−1 ln

(
x∗2
x∗1

))T

(x∗2 − x∗1) ≤ 0,

which implies

(x∗2 − x∗1)TK̄(s)T(x∗2 − x∗1)+



θ−1
∑

i∈[1,m]Z

ln

(
x∗2i
x∗1i

)
(x∗2i − x∗1i) ≤ 0.

The left hand side of this inequality is strictly greater than
0 as K̄(s) � 0 and ln(

x∗
2i

x∗
1i

) (x∗2i − x∗1i) > 0 when x∗2i 6= x∗1i.
This is a contradiction and the only possible way the above
relation holds is if x∗1 = x∗2. Thus, the VI(η,Ω) in (14) has
a unique solution.

In most cost models a strict monotonicity is required,
but from Theorem III.1 we observe that under linear cost
functions as defined in (8) and (9), semi-definiteness of K̄(s)
is sufficient, which implies that a “non-strict” version of
monotonicity is sufficient for uniqueness of the SUE.

B. Conditions on Supply, s, for Uniqueness of Equilibrium

With Theorem III.1, we can now find conditions on supply
s that ensure K̄(s) � 0 and thereby the uniqueness of SUE.
Consequently, we need to inspect the symmetric component
of the matrix K̄(s). Note that the matrix K̄(s) in (10b) has
the structure

K̄(s) :=

[
K̄11/s r1

0 M

]
,

where K̄11/s is a scalar, r1 ∈ Rm−1 is a row vector, 0 ∈
Rm−1 is a column vector and M ∈ R(m−1)×(m−1) is a
square matrix. Then, the symmetric part of K̄(s) is

K̃(s) :=
K̄(s) + K̄(s)T

2
=

[
K̄11/s r1/2
rT

1/2 (M + MT)/2

]
.

(16)
We assume that M is positive semi-definite, i.e., yTMy ≥
0,∀y ∈ Rm−1. Implicitly, this assumes that the cost func-
tions satisfy the monotonicity property even before the ride-
hailing mode was introduced. We can now find constraints
on the supply as follows.

Lemma III.2. Suppose K̄11 > 0, r1 6= 0, and M̄ :=
(M+MT)

2 � 0. K̄(s) � 0⇔ s ∈
(
0, (4K̄11)/(r1M̄−1r1

T)
)
.

Proof. First note that K̄(s) � 0 iff K̃(s) � 0. From the
Sylvester’s Criterion1, the symmetric matrix K̃(s) � 0 iff
all its leading principal minors are positive. As M̄ � 0, this
implies that det(K̃(s)) > 0 is necessary and sufficient for
K̃(s) � 0. Using the Schur complement of M̄ in K̃(s), we
have

det(K̃(s)) = det(M̄) det

(
K̄11

s
− 1

4
r1M̄−1r1

T
)
> 0.

As M̄ � 0 and as the Schur complement of M̄ in K̃(s) is
a 1× 1 matrix, and the result follows.

Note that such a condition for uniqueness need not be
applied for all values of t ∈ [0, T ]. This is because x∗

depends only on s(T ) and a value of s(T ) that respects
these conditions is sufficient to ensure uniqueness of x∗.

1See Theorem 7.2.5 in [25]

IV. NECESSARY CONDITIONS ON FEASIBILITY

In this section, we derive a necessary condition for the
feasibility of the optimal control problem (13). Note that
all the constraints except (11) are easily satisfied. Thus, we
focus on the feasibility of (11). The mode shares x∗ at steady
state (if it exists) depends only on the final supply s(T ). For
a given s(T ), an equilibrium is the solution of

x∗i (s(T )) = d
exp(−θci(x∗, s(T )))

D(x∗, s(T ))
, ∀i ∈ [1,m]Z, (17)

where, D(x∗, s(T )) :=

m∑
j=1

exp(−θcj(x∗, s(T ))). (18)

Now, for the feasibility of (11) and hence of the prob-
lem (13), it is necessary that x∗1(s(T )) ≥ d1, i.e.,

d1

d
≤ x∗1

d
=

exp(−θc1(x∗, s(T )))

D(x∗, s(T ))
,

or equivalently,

ln

(
d1

d

)
≤ −θc1(x∗, s(T ))− ln(D(x∗, s(T ))). (19)

Since the arithmetic mean is always greater than or equal to
the geometric mean, we have

ln

(
D(x∗, s(T ))

m

)
≥
∑m

j=1 ln(exp(−θcj(x∗, s(T ))))

m
,

− ln (D(x∗, s(T ))) ≤
∑m

j=1 θcj(x
∗, s(T ))

m
− ln(m). (20)

Using (19) and (20),

ln

(
md1

d

)
≤ −θc1(x∗, s(T )) +

∑m
j=1 θcj(x

∗, s(T ))

m
,

c1(x∗, s(T )) ≤ −θ−1 ln

(
md1

d

)
+

∑m
j=1 cj(x

∗, s(T ))

m

≤ θ−1m

m− 1
ln

(
d

md1

)
+

∑m
j=2 cj(x

∗, s(T ))

m− 1
.

Note that the first term in this upper bound decreases with
increase in d1. Thus, with more target demand d1, one
expects the cost on mode 1 to be lesser. Since only the
elements in the first row and the first column of K̄ depend on
s(T ), we can separate the terms containing s(T ) as follows:

m∑
j=2

cj(x
∗, s(T )) = 1T (K̄(s(T ))[2:m,:]x

∗)+ 1Tb̄(s)[2:m]

= 1T
(
Mx∗[2:m] + b[2:m]

)
+ s(T )1TK1[2:m]

Let

a :=
1Tb[2:m]

m− 1
+
θ−1m ln( d

md1
)

m− 1
− b1

Substituting c1(x, s(T )) from (8) and a

K̄11x
∗
1

s(T )
+K11s(T ) +

m∑
j=2

K1jx
∗
j

≤ a+
1TMx∗[2:m] + s(T )1TK1[2:m]

m− 1

(21)



Let

g(s(T ), x∗1) :=
K̄11x

∗
1

s(T )
+ s(T )

(
K11 −

∑m
j=2Kj1

m− 1

)
(22a)

f(x∗) :=
1T
(
Mx∗[2:m]

)
m− 1

−
m∑
j=2

K1jx
∗
j + a (22b)

Then, (21) can be rewritten as

g(s(T ), x∗1) ≤ f(x∗). (23)

This is a necessary condition for x∗ to be an SUE that
satisfies (11) for a given s(T ). With this analysis, we give a
conservative but simple to calculate necessary condition for
the feasibility of (11) and hence of the problem (13) in the
following result.

Theorem IV.1. Let Ω̄ := {x|x1 ≥ d1,
∑
xi = d, xi ≥ 0}

be the set of desired mode shares. Denote the set of feasible
final supplies with S := [max{s(0) + uT, ε}, s(0) + ūT ].
Suppose that K̄11 > 0. The problem (13) is feasible only if
∃ s ∈ S such that g(s, d1) ≤ maxy∈Ω̄ f(y)

Proof. The constraints (4)-(6) imply that we must have
s(T ) ∈ S for feasibility. Suppose ∃ s(T ) ∈ S such that
x∗ ∈ Ω̄. Then, by the derivation in Section IV, we see
that (23) must be satisfied for x∗. Now, for this s = s(T )
and the resultant x∗ ∈ Ω̄, we have

g(s, d1) ≤ g(s, x∗1) ≤ f(x∗) ≤ max
y∈Ω̄

f(y),

where the first inequality is true because g(s, .) is an in-
creasing function in the second argument and the second
inequality is true because of (23).

V. SIMULATIONS

In this section, we demonstrate the proposed framework
on an example that is solved using GEKKO [26].

We consider a simulation with 5 modes of transportation,
arranged into 2 blocks. Modes 2 and 3 could represent
personal mobility modes that share road space with ride-
hailing services. On the other hand, modes 4 and 5 could
include BRT and metro which operates on a network that is
not shared by ride-hailing mode. We assume an uncertainty
factor θ = 1, reluctance factor α = 0.5, and the objective
weights γ = 1, ε = 0.001 and R = 0.1. We let ū = −u = 1.
We let the values of K and b be as follows

K =


1 0.15 0.2 0 0

1.5 2 2 0 0
2 1 3 0 0
0 0 0 3 0.5
0 0 0 0.5 3

 ,b =


0.295
0.975
0.090
0.975
0.771

 .
The value of K̄11 is varied with every simulation to test

the effects of various prices on the mode-choice equilibrium.
Figure 2a shows the evolution of the rate of change of
supply and the supply as functions of time. Figure 2b shows
the evolution of the mode shares for the optimal control
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Fig. 2: Evolution of control-inputs and mode-shares with
time, t. Here, K̄11 = 0.3, s(0) = 0.1, d1 = 12.

determined in Figure 2a. In this example, K̄11 = 0.3,
s(0) = 0.1, and the target mode share for mode 1 is d1 = 12.

In Figure 3, we show the variation of the optimal objective
with different values of K̄11. These were simulated for
different values of initial supply and a fixed initial mode
1 mode-share. We observe that with increasing surge-price
factor an operator needs to spend more to ensure that the
target mode share, d1, is reached. This is because with
increase in prices, there is a tendency to shift away from
mode 1. Thus, the operator needs to vary s(t) so that the
supply first decreases causing costs c1 to reduce and thereby
increasing later so that x∗1 ≥ d1 is satisfied asymptotically.

0.2 0.4 0.6 0.8 1 1.2

1

1.5

2

2.5

3

Fig. 3: Variation of the optimal costs with K̄11 for different
initial supplies, for a target mode-share, d1 = 12.

Next, in Figure 4, we show the optimal costs for different
target mode-share, d1. For lower values of d1, we see that
the costs are very similar. The costs incurred are due to



the phenomenon that is described earlier, i.e. the supply
initially drops and finally increases to s(T ). As expected,
as d1 increases, the operator needs to increase the supply to
meet the target. Also, as one can expect, for higher values
of d1 and K̄11, the problem (13) becomes infeasible. This is
because of the implications from Theorem IV.1.

5 7 9 11 13 15

1

2

3

4

5

Fig. 4: Variation of optimal costs for s(0) = 0.1 and
different surge-price factors K̄11. The simulations were done
for d1 ∈ [5, 15]Z in steps of 2. For higher surge-price factors
the problem does not converge for higher d1.

Solver Limitations: While simulating the problem (13)
using GEKKO, we found that IPOPT with APMonitor some-
times fails to converge to the optimal solution. Many of these
instances are due to the calculation of the exponents in the
logit dynamics. The solver also fails to converge when the
user equilibrium tends to be close to the boundary of Ω. The
results presented here converged without such issues.

VI. CONCLUSIONS

In this paper, we proposed a novel optimal control based
mode-choice model for a fixed-demand travelling between a
single OD pair. The analysis allows an operator to make an
informed decision on the rate of supply, given the parameters
of the modes, the initial supply, and the maximum rates at
which supply can be changed. Using simulations, we also
showed how the supply and prices can be used to attract
more customers. This framework can be utilised to model the
entry of a disruptive ride-sharing mode, a phenomenon that
is common in emerging markets. An immediate extension
of this work is to find sufficient conditions for feasibility
of the optimal control problem and proving the convergence
of the dynamics to SUE in the asymmetric costs scenario
chosen in this paper. Another direction of future research is
to extend this work to multi-OD case with an underlying
network. Finally, we could explore other solution techniques
that circumvent numerical issues posed by solvers.
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