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Abstract— In this paper, we seek a scalable method for safe
and efficient coordination of a continual stream of connected
and automated vehicles at an intersection without signal lights.
To handle a continual stream of vehicles, we propose trajectory
computation in two phases - in the first phase, vehicles are con-
strained to not enter the intersection; and in the second phase
multiple vehicles’ trajectories are planned for coordinated use
of the intersection. For computational scalability, we propose a
data-guided method to obtain the intersection usage sequence
through an online “classification” and obtain the vehicles’
trajectories sequentially. We show that the proposed algorithm
is provably safe and can be implemented in a distributed
manner. We compare the proposed algorithm against traditional
methods of intersection management and against some existing
literature through simulations. We also demonstrate through
simulations that for the proposed algorithm, the computation
time per vehicle remains constant over a wide range of traffic
arrival rates.

Index Terms— Autonomous intersection management, con-
nected and automated vehicles, distributed control, data-guided
control, optimized and provably safe operation

I. INTRODUCTION

Traffic composed of Connected and Automated Vehicles
(CAVs) or networked robots (such as in warehouses) can be
managed using communication and coordination algorithms
to achieve better efficiency and safety than traditional traffic
signal based management. In this work, we propose a com-
putationally scalable data-driven distributed algorithm for the
management of an isolated intersection in the context of a
continual stream traffic of CAVs or robots.

Some early works on this problem, such as [1], focused
on reservation and multi-agent simulation based algorithms.
These solutions are computationally demanding and cen-
tralized. A major trend in more recent literature has been
to design model based, provably safe algorithms. [2] uses
reservations for scheduling intersection usage times, and [3]
and the references therein propose a supervisory control
method where a supervisor takes over only when a collision
is imminent. [4] formulates an optimal control problem to
optimize the trajectory of each vehicle individually. How-
ever, intersection management problem requires coordination
of multiple vehicles through a combined optimization that
is combinatorial. Thus, the overall problem of trajectory
optimization becomes a mixed integer program [5], [6].
The complexity of such formulations scales exponentially

This work was partially supported by the Wipro IISc Research and Inno-
vation Network. Darshan Gadginmath (dgadg001@ucr.edu) is with the
Department of Mechanical Engineering, University of California, Riverside.
Pavankumar Tallapragada (pavant@iisc.ac.in) is with the Department
of Electrical Engineering, Indian Institute of Science, Bangalore, India.

with the number of vehicles. For this reason, several works
have sought to decompose the overall autonomous inter-
section management problem into simpler sub-problems to
overcome the computational complexity. [7] propose a high
level intersection access management by treating the vehicles
on different lanes as queues and platooning vehicles for
local control. Given the intersection usage schedule for the
vehicles, [8] (and the references therein) seek to solve the
trajectory optimization problem in a decentralized manner
by relaxing the rear-end collision avoidance constraints and
guarantee existence of initial conditions under which the
safety constraints are satisfied. [9]–[12] also decompose
the problem into scheduling and trajectory optimization.
[12] proposes an algorithm, in which a central intersection
manager groups vehicles into bubbles and schedules the
bubbles as a whole to use the intersection. Given the sched-
ule, the vehicles compute provably safe trajectories using
a distributed switched controller. [13] proposes to achieve
coordination of vehicles by optimizing a notion of joint
rewards for the vehicles. For this, it employs Q-learning
based on episodic data, to minimize the average intersection
delay. Thus, the resulting trajectories can turn out to be non-
smooth. Although the vehicles can obtain near-optimal joint
actions, the paper does not provide safety guarantees.

Comfort of passengers and generation of smooth tra-
jectories for vehicles is also important in the context of
CAVs. [14] surveys driver comfort in autonomous vehicles
and highlights the inadequate research on the topic. [15]
introduces a metric of comfort which is a combination of
vehicle-jitter, jerk and deviation from a desired velocity.

Contributions: We propose a computationally scalable
algorithm for coordinating and optimizing the trajectories
of a continual stream of CAVs at and near an isolated, un-
signalized autonomous intersection. Most of the papers in the
literature consider only the problem of coordinating a fixed
set of vehicles. Applying such solutions to a continual stream
of vehicles can result in inefficiency or feasibility/safety
itself may be violated in the long run. Further, the optimal
coordination of vehicles at an intersection is a mixed integer
problem, which scales badly with the number of vehicles
and lanes. This work is the only paper, to the best of our
knowledge, that addresses these issues systematically.

Firstly, we deal with a continual stream of vehicles by
splitting the trajectory of the vehicles into two phases 1)
provisional phase and (2) coordinated phase. Every vehicle
operates in the provisional phase as soon as it enters the
system and it is restricted from entering the intersection.
Periodically, the vehicles in the provisional phase obtain a



trajectory for their coordinated phase and start executing
them. Secondly, for the coordinated phase, we propose a
data-driven framework that uses an online “classification”
from a space of features that encode the state of the traffic to
schedule vehicles to use the intersection. Then, we compute
the trajectories of the vehicles for the coordinated phase se-
quentially. [9] proposes the use of different features to estab-
lish a sequence of interesction usage. However, the best set of
features and their importance for obtaining this sequence is
unexplored, which motivates the idea of using data-guided
methods to obtain the weights for a wide set of features.
Further, the complete algorithm can be run in a distributed
manner. The proposed framework thus offers a complete
and scalable traffic management for a continual stream of
vehicles while ensuring safety, feasibility and near optimality
of the solutions. Lastly, we evaluate the performance of our
algorithm through an extensive collection of simulations. We
compare our algorithm with that of an “optimal” algorithm,
signalized intersection management, first-in first-out based
intersection management as well as the algorithm proposed
in [12]. We also demonstrate the computational scalability of
the proposed algorithm through simulations. In particular, we
show that for the proposed algorithm the computation time
per vehicle essentially remains constant for a wide range of
traffic arrival rates.

Notation: We use R and N0 for the set of real and whole
numbers, respectively. For a discrete set V , we let |V | be the
cardinality of the set V .

II. MODEL AND PROBLEM FORMULATION

A. Model

Geometry of the Region of Interest: Consider an isolated
intersection with a set of lanes L. We refer to the lanes along
with the intersection as the region of interest. Each lane l ∈ L
has a fixed path Pl ⊂ R2 associated with it. We denote by
sl the length of the portion of the path Pl that lies within
the intersection. The length of all the paths leading to the
intersection is d. Along the path on lane l, we let the positions
at the beginning of the region of interest, the beginning of
the intersection and the end of the intersection be −d, 0
and sl, respectively. Figure 1 presents the basic geometry
of an example region of interest, where the set of lanes is
L = {1, 2, 3, . . . , 12} with 3 lanes (for going left, straight
and right) on each branch. Figure 1 labels lanes 1, 8 and 12
and skips the rest for clarity. The translucent box shaded in
red represents the conflict region or the intersection, which
is the region of potential inter-lane collisions. The paths of
some lanes intersect, while others do not. For each pair of
lanes l,m ∈ L, we let compatibility c(l,m) be equal to 1 if
Pl∩Pm = ∅, or 0 if Pl∩Pm 6= ∅. A pair of lanes l and m are
compatible if c(l,m) = 1 and incompatible if c(l,m) = 0.
We require that vehicles on incompatible lanes not be in the
intersection at the same time.

Vehicles and their Dynamics: We assume that all vehicles
are CAVs - they can communicate with each other and the
infrastructure, and are automated. We also assume that the
vehicles do not change lanes within the region of interest.

Fig. 1: Region of interest and the geometry of the intersec-
tion. Here only 3 lanes with numbers 1, 8 and 12 have been
labeled. d is the length of the path to the intersection. sl
denotes the length of lane l within the interesection.

The CAVs can enter the region of interest on any lane in L.
We denote the lane that vehicle i traverses on by li ∈ L and
the vehicle’s length by Li. The state of the vehicle at time t
is (xi(t), vi(t)), where xi and vi are the position of the front
bumper of the vehicle and the vehicle’s velocity respectively
on the path Pli . The dynamics of the vehicle i is

ẋi(t) = vi(t), v̇i(t) = ui(t), (1)

where ui is the acceleration input to vehicle i. The vehicles
are in the region of interest for different time durations. In
particular, vehicle i enters the region of interest at the arrival
time, tAi , enters the intersection at the entry time, tEi , and
leaves the intersection at the exit time, tXi . Thus, xi(tAi ) =
−d, xi(tEi ) = 0. and xi(tXi ) = sli .

B. Problem

The aim of the autonomous intersection management
problem is to compute safe trajectories for the CAVs while
maximizing the following objective function

J :=
∑
i∈V

tAi +Th∫
tAi

[
Wvvi(t)−

(
Wau

2
i (t) +Wj u̇

2
i (t)

)]
dt, (2)

where V is the set of all vehicles that arrive in the region
of interest during a time interval of interest, u̇i is the jerk
of vehicle i and Wv , Wa and Wj are non-negative weights.
We model the instantaneous discomfort of the passengers
in vehicle i by the linear combination of the squares of
acceleration and jerk. This metric penalizes sporadic high-
magnitude disturbances caused by braking and accelera-
tion manoeuvres performed by a vehicle [14]. Thus, each
vehicle’s contribution to the objective function is a linear
combination of the distance it travels and the comfort of
passengers in a time horizon Th, starting from the vehicle’s
arrival time tAi .

Constraints: The first set of constraints on the CAVs are
bounds on their acceleration ui(t) and velocity vi(t), i.e.,

ui(t) ∈ [u, ū], vi(t) ∈ [v, v̄], (3)



for all ∀i ∈ V over an appropriate time interval. We assume
that u < 0, and v = 0.

The second set of constraints ensure safety between the
vehicles. Two types of collisions can occur in the region of
interest: (1) rear-ended collision between successive vehicles
on the same lane, and (2) collision between vehicles on
incompatible lanes, within the intersection. To ensure in-lane
safety we impose a safe-following distance between any two
successive vehicles travelling on the same lane. Consider two
vehicles i and j on the same lane (li = lj) such that i is
the vehicle immediately following j. This arrangement is
formally denoted using the follower indicator function as,

q(i, j) :=


1, if li = lj , xi < xj ,

@k s.t. lk = li, xi < xk < xj

0, otherwise.

The minimum safe-following distance D between vehicles
i and j, when q(i, j) = 1, is a function of the velocities of
the two vehicles and is given by [12], [16],

D(vi, vj) = Lj + r+ max

{
0,

1

−2u

(
v2i (t)− v2j (t)

)}
. (4)

Here, r is a robustness parameter which is a constant distance
to account for measurement and communication errors and
delays. Then the rear-end safety constraint is

xj(t)− xi(t) ≥ D(vi, vj), j s.t. q(i, j) = 1 (5)

for the time interval of interest. Note that the rear-end safety
constraint (5) is more robust to loss of coordination, either
due to breakdown in communication, control or due to ma-
licious vehicles, than rear-end non-collision constraints [12],
[16]. To ensure safety within the intersection, we also impose
the constraint that vehicles on incompatible lanes not be
within the intersection simultaneously. Thus, the intersection
safety constraint for a pair of vehicles i and k is

tEi ≥ tXk OR tEk ≥ tXi , if c(li, lk) = 0. (6)

Then, the proposed optimal control problem for intersec-
tion management is as follows,

max
ui(.), i∈V

J (7a)

s.t. (1), (3), (5) ∀t ∈ [tAi , t
A
i + Th],∀i ∈ V (7b)

(6) ∀i, k ∈ V s.t. c(li, lk) = 0. (7c)

Remark 1 (Challenges in solving (7) and problem state-
ment). There are several challenges in solving Problem (7).
First, vehicles arrive randomly in a stream into the system
and the information about their arrival and state is revealed
only incrementally. Thus, Problem (7) cannot be “solved” in
the usual sense. Hence, we seek an algorithm that satisfies the
constraints in the problem and we utilize (2) as a metric for
evaluating the performance of an algorithm after it makes
all the decisions. Further, although the exact arrival times
of the vehicles are not known a priori, we allow for the
knowledge of the statistical data such as the mean arrival

rate of vehicles. We seek to leverage this information for
more efficient traffic management. Second, Problem (7) is a
mix of large scale optimal control and combinatorial opti-
mization. In particular, the number of optimal control sub-
problems that constraints (6) generate scales exponentially
with the number of vehicles and lanes. This is a serious issue
since intersection management is a time and safety critical
problem. Hence, we seek algorithms that are computationally
scalable and yet provide near optimal performance. Lastly,
the objective function used in 2 is not restrictive. Other
objective functions could also be chosen in the problem 7. •

III. OVERVIEW OF THE ALGORITHM

Considering the complexities and time-criticality asso-
ciated with Problem (7), we propose a computationally
efficient algorithm to compute a sequence for intersection
usage as well as the trajectories for the vehicles. To overcome
the randomness in the arrival of traffic, and the challenges
associated with incremental revelation of information, we
split the trajectory of each vehicle into two phases: pro-
visional and coordinated. The provisional phase begins as
soon as a vehicle arrives into the region of interest. The
vehicle seeks to maximize its objective under the constraint
of a safe approach towards the intersection. At a prescribed
time, the vehicle switches to its coordinated phase from its
provisional phase. The vehicles in their coordinated phase
use the intersection safely while aiming to optimize the
overall objective.

In this section, we give an overview of the proposed
algorithm to solve Problem (7). For ease of exposition,
we initially assume the presence of a central intersection
manager (IM) that has communication and computation
capabilities with which it carries out the coordination of the
traffic. At the end of Section IV, we discuss how essentially
all the functions of the IM can be carried out in a distributed
manner. We present the overview of the algorithm in two
parts: from the perspectives of an arbitrary vehicle i and the
IM in Algorithm 1, and in Algorithm 2, respectively.

A. Vehicle i’s Perspective

A vehicle i starts execution of Algorithm 1 at tAi , its time
of arrival into the region of interest. Vehicle i communicates
with the IM as soon as it arrives at tAi . The IM prescribes
tCi , the start time of coordination phase for vehicle i, and
also informs about the planned trajectory of the vehicle
(if any) that precedes vehicle i on its lane. This is suffi-
cient for vehicle i to plan its trajectory for the provisional
phase, which ends at tCi . In particular, vehicle i computes
its trajectory for the provisional phase by solving optimal
control Problem (9), which we refer to in Algorithm 1 as
prov phase(i). Vehicle i communicates its provisional
phase trajectory back to the IM and starts executing it at
tAi . At tCi , vehicle i receives a new trajectory from the IM
for the coordinated phase.

Provisional Phase of Vehicle i: Here we describe
prov phase(i), the method that vehicle i utilizes to com-
pute the trajectory for its provisional phase. At tAi , vehicle
i obtains tCi , the start time of its coordination phase, and



Algorithm 1: Algorithm from a vehicle i’s perspec-
tive

1 if t = tAi then
2 receive tCi and trajectory of

vehicle preceding i in its lane
3 prov phase(i)
4 send provisional trajectory to IM
5 start provisional phase
6 end
7 if t = tCi then
8 receive new trajectory from IM for

coordinated phase
9 start coordinated phase

10 end

the trajectory of the vehicle preceding it on its lane. Vehicle
i computes an optimal trajectory under several constraints
including the intersection entry prevention constraint,

vi(t) ≤ V(xi(t)) :=
√

2uxi(t), (8)

for all t in the time interval of interest. The upper bound
V(xi(t)) is the maximum velocity that vehicle i may have
at position xi(t) so that with maximum braking (ui(t) = u)
vehicle i can come to a stop before entering the intersection.
Thus this constraint prevents the vehicle from entering the
intersection under the bounded control constraint. Then, the
optimal control problem for vehicle i’s provisional phase is

max
ui(.)

∫ tAi +Tp

tAi

(
Wvvi(t)−

[
Wa u

2
i (t) +Wj u̇

2
i (t)

])
dt

s.t. (1), (3), (5), (8) ∀t ∈ [tAi , t
A
i + Tp]. (9)

B. Intersection Manager’s Perspective

Now, we describe Algorithm 2, which is from the IM’s
perspective. As soon as a vehicle i enters the region of

Algorithm 2: Algorithm from IM’s perspective

1 if t = tAi then
2 tCi ← kTc, with k = min{k ∈ N0 : kTc ≥ tAi }
3 Send to vehicle i, tCi and trajectory

of vehicle preceding i in li
4 receive vehicle i’s provisional

trajectory
5 end
6 if t = kTc then
7 Vc(k)← {i : tAi ∈

(
(k − 1)Tc, kTc

]
}

8 coord phase(Vc(k))
9 send trajectories to vehicles Vc(k)

10 k ← k + 1
11 end

interest, the IM sends to vehicle i, the next instance of
coordinated trajectory planning as tCi and the trajectory of the
vehicle preceding vehicle i on its lane li so that vehicle i can

compute its provisional phase trajectory and communicate
it back to the IM. In this paper, for simplicity, we assume
that IM carries out coordinated planning periodically at the
instances kTc, where k ∈ N0. And we let tCi = kTc, where
k is the smallest integer such that kTc ≥ tAi .

At each coordinated trajectory planning time instance kTc,
the IM first considers Vc(k), the set all the vehicles that have
arrived during the interval

(
(k−1)Tc, kTc

]
. Then, it com-

putes a trajectory for each vehicle in Vc(k) seeking to achieve
optimized coordination and ensures the vehicles cross the
intersection safely. We denote the coordinated phase planning
problem at the instance kTc by coord phase(Vc(k)). The
IM communicates the trajectories for the coordinated phase
to the vehicles in Vc(k), which then execute them. In
Section IV, we present coord phase(Vc(k)), the algorithm
for planning the trajectories in the coordinated phase.

IV. COORDINATED PHASE

This section presents the trajectory optimization for the
coordinated phase. We first present combined optimization,
which is a naive centralized method and is not computation-
ally scalable. Based on this method, we present the data-
guided sequential weighted algorithm, which is significantly
superior in terms of computational requirements. Further, as
we demonstrate through simulations in Section V, this algo-
rithm performs almost as well as the combined optimization.

The planning for the coordinated phase is carried out
periodically with period Tc. In particular, at the instance
kTc, trajectory planning is carried out for the set of vehicles
Vc(k) that arrive into the region of interest during the interval(

(k−1)Tc, kTc
]
. In this section, we discuss the methods for

coordinated planning at an arbitrary but fixed instance kTc.
We also introduce the set Vs that contains all the vehicles
that have received a trajectory for the coordinated phase.
The vehicles in Vc(k) are added to Vs after they receive
their respective trajectories for the coordinated phase. For
brevity, we omit the argument k for Vc(k) in the rest of this
section. Further, notice that tCi is the same for all vehicles in
Vc(k). Hence, in the sequel, we drop the index i from tCi .

A. Combined Optimization

In this method, the IM computes the trajectories for all the
vehicles in Vc simultaneously. The optimal control problem
for the combined optimization method is a variation of the
problem (7). The only differences are: the time horizon for
the coordinated phase is Tc and the set of participating
vehicles is Vc. Specifically, the objective function is

Jc =
∑
i∈Vc

tC+Tc∫
tC

(
Wv vi(t)−

[
Wa u

2
i (t) +Wj u̇

2
i (t)

])
dt

and the combined optimization problem is

max
ui(.), i∈Vc

Jc (10a)

s.t. (1), (3), (5) ∀t ∈ [tC , tC + Tc], ∀i ∈ Vc (10b)
(6) ∀i, k ∈ Vc ∪ Vs s.t. c(li, lk) = 0. (10c)



Subsequent to solving (10) and updating the trajectories for
the vehicles, Vs is updated to Vs ∪ Vc. Combined optimiza-
tion (10) requires the IM to compute optimal trajectories
for each feasible intersection usage sequence and then pick
the best sequence and the corresponding optimal trajectories.
However, the number of feasible sequences grows exponen-
tially with the number of vehicles on incompatible lanes.
Thus, this method is not scalable and is not well suited for the
time and safety critical problem of autonomous intersection
management. Hence, we next propose a computationally
scalable and efficient method for computing near optimal
sequences and trajectories for the coordinated phase.

B. Data Driven Sequential Weighted Algorithm (DD-SWA)

We next propose a scalable method for optimizing the
intersection usage sequence and trajectories of vehicles in
the coordinated phase. We call it data-driven sequential
weighted algorithm (DD-SWA). The method scales linearly
with the number of vehicles and it is amenable to a dis-
tributed implementation. We present an overview of DD-
SWA in Algorithm 3. The algorithm begins with the set of
unscheduled vehicles, Vc. In Step 6, we identify F , the set of
vehicles in Vc that are closest to the intersection. In Step 8

Algorithm 3: DD-SWA

1 if t = 0 then
2 Vs ← ∅ {set of scheduled vehicles}
3 end
4 if t = kTc , for k ∈ N0 , then
5 while |Vc| > 0 do
6 F ← {i ∈ Vc | xi ≥ xj , ∀j ∈ Vc s.t. lj = li}
7 for i ∈ F do
8 pi ← precedence(i)
9 end

10 i∗ ← argmax{pi | i ∈ F}
11 traj opti(i∗)
12 Vc ← Vc \ i∗ {remove i∗ from Vc }

Vs ← Vs ∪ i∗ {i∗ is scheduled}
13 end
14 end

of the algorithm, the precedence index pi is computed for
every vehicle i in F . The vehicle i∗ ∈ F with the highest
precedence index (after arbitrarily resolving any potential
ties) is allowed to use the intersection before any other
vehicle in F . A trajectory for the coordinated phase is then
computed for i∗ in Step 11, after which i∗ is removed from
Vc and added to Vs. This process is repeated until Vc is
empty. The vehicles optimize their trajectories sequentially
so as to satisfy the intersection safety constraint (6). Next,
we describe the computation of the precedence indices
precedence(i) and the trajectory optimization.

1) Computation of the Precedence Index
precedence(i): We let the precedence index pi be
a linear combination of certain scheduling features related

to the vehicle i ∈ F

pi := wx(d+ xi(t
C
i )) + wvvi(t

C
i ) + wt(t

C
i − tAi ) + wn|Qi|+

ws

∑
j∈Qi

(xi(t
C
i )− xj(tCi ))

|Qi|
+ wσ σli − ww τi. (11)

Three of the features are based on the state at time tCi
and history of the vehicle i, namely, distance traveled since
arrival d + xi(t

C
i ), velocity v(tCi ) and time since arrival

(tCi − tAi ) of vehicle i. Three features capture the “demand”
on lane li that is “following” vehicle i. First of these features
is the number of vehicles |Qi|, where Qi is the set of vehicles
that follow vehicle i on lane li at time tCi . The second feature
is the average separation of vehicles in Qi from vehicle i.
The third feature in this group is the average rate of arrival of
vehicles σli on lane li. The final feature is the minimum wait
time to use the intersection, τi, for vehicle i. Specifically,
τi := max{tXm− tCi | m ∈ Vs s.t. c(li, lm) = 0} . To prevent
frequent switching of the right of way between incompat-
ible lanes, minimum wait times are weighted negatively.
The weighted linear combination of the features makes the
computation of the precedence indices extremely simple. We
propose tuning the weights based on offline simulations.

2) Trajectory Optimization: In Algorithm 3, the trajec-
tories of the vehicles are computed sequentially. In each
iteration, the vehicle i∗ with the greatest precedence index is
selected for trajectory optimization. However, notice from the
combined optimization problem (10) that the optimization of
the trajectory of vehicle i is coupled to the optimization of
the other vehicles’ trajectories through the constraints. One of
the purposes of the precedence indices is to set a precedence
in the constraint (6). Even then, the coupling is not fully
eliminated. In order to compute the trajectories sequentially,
we seek to decouple (10) into several optimization problems
- one per vehicle. We have to do this in a manner that
ensures we still get near optimal solutions to (10). Such a
method aids in developing a distributed algorithm. A naive
starting point for constructing such a decoupled problem is
to consider only the term involving i∗ in J of (10). However,
this ignores the “demand” for the intersection usage. Thus,
we seek to modify the “marginal” cost function of the vehicle
i∗ by incorporating a measure of the demand. Let Di be the
demand from vehicle i and those following it on the lane
li. Specifically,Di := pi +wwτi . Then, we let the objective
function for generating a trajectory for vehicle i∗ to be

Jci∗ =

tCi∗+Tc∫
tC
i∗

(
W vvi∗(t)−

[
Wau

2
i∗(t) +Wj u̇

2
i∗(t)

] )
dt,

where W v := wl

∑
i∈F Di
|F|

Wv and wl is a scaling factor.

Then, traj opti(i∗) in Step 11 of Algorithm 3 is

max
ui∗ (.)

Jci∗ s.t. (1), (3), (5) ∀t ∈ [tCi∗ , t
C
i∗ + Tc] (12a)

tEi∗ ≥ τi∗ + tCi∗ , (12b)

with i = i∗ in (1) , (3) and (5).



Remark 2 (Computational complexity of DD-SWA). In DD-
SWA, we obtain the intersection usage order by computing
the precedence indices for vehicles in F as a weighted
linear combination of the scheduling features and selecting
the maximizer of the precedence indices. Also, note that
|F| ≤ |L|, the number of lanes. These aspects make the
computation of the intersection usage order very simple.
The computation of the trajectory of the vehicles is also of
lesser complexity since for each vehicle we need to solve an
optimal control problem in which the only decision variables
are those related to the vehicle itself and the constraints are
significantly simplified. In the sequel, we use simulations to
demonstrate that DD-SWA performs only marginally worse
compared to combined optimization while the computation
time per vehicle essentially stays constant for a wide range
of traffic arrival rates. On the other hand for combined
optimization, the computation time per vehicle increases
exponentially with the traffic arrival rate. •

In the following result we show that if the vehicles arrive
into the region of interest in a safe configuration then safety
is guaranteed for all pairs of vehicles in the region of interest.

Theorem 1 (Sufficient condition for system wide inter-ve-
hicle safety). If every vehicle i satisfies the rear-end safety
constraint (5) at the time of its arrival, tAi , and its initial ve-
locity is such that that vi(tAi ) ≤ min{v̄,V(−d)}, feasiblility
of problems (9), (10) and (12) is guaranteed. Consequently,
safety of all the vehicles is also guaranteed for all time. •

Proof. The assumptions that at time tAi vehicle i satisfies the
rear-end safety constraint (5) and vi(tAi ) ≤ min{v̄,V(−d)}
ensures the feasibility for the problem for the provisional
phase (9). The feasibility of problem (9) ensures the satis-
faction of rear-end safety constraint (5) and the intersection
entry prevention constraint (8) at the start of the coordinated
phase tCi . This ensures the feasibility of problems (10), and
(12). Since feasibility of the problems ensures safety con-
straints, safety between every pair of vehicles is satisfied.

C. Distributed Implementation of the Algorithm

Note that each vehicle i can implement its provisional
phase in a distributed manner by communicating only with
the vehicle preceding it in its lane. The design of DD-
SWA is also amenable to a distributed implementation. The
information required to calculate a vehicle’s precedence
index and to solve its trajectory optimization problem can
be obtained with distributed communication.

Each vehicle can obtain information such as distance
travelled, velocity and time since arrival locally. The other
scheduling features, the safety constraints (5) and (6) and the
weights for the scheduling features require communication.
We make a distinction between the three types of communi-
cation required for this purpose: (1) intra-lane, (2) inter-lane
and (3) central communication. In intra-lane communication,
a vehicle i ∈ F needs to communicate with only a vehicle
j such that q(i, j) = 1 or q(j, i) = 1, i.e., i needs to
communicate with just the vehicles immediately preceding or
following it on its lane li. The number of vehicles following

i, |Qi|, can be counted in a distributed manner and can be
communicated from one car to the next in Qi, the vehicles
following i and ultimately to the vehicle i itself. Similarly,
the vehicle immediately in front of i∗ can communicate its
position and velocity trajectory which are sufficient to com-
pute (5). The intersection safety constraint and the minimum
wait time feature require i∗ to communicate and receive the
exit time of the vehicle on an incompatible lane. We denote
such communication as inter-lane communication. Lastly,
intersection-specific information such as the weights for the
scheduling features wx, . . . , ws and the average arrival rate
of traffic σli need to be communicated to the vehicles in F
from a central infrastructure, such as an IM. Thus the central
infrastructure’s or IM’s function is essentially restricted to
communication.

V. SIMULATIONS

To evaluate the proposed algorithm, a simulation frame-
work using Casadi [17] and Python was created. All the
simulations were performed on an Intel i9-9900k 3.6GHz
processor with 128GB of RAM. In the simulations, we as-
sume that vehicles arrive according to a Poisson process with
an average arrival rate of σl on lane l ∈ L. To evaluate the
proposed algorithm, we compare combined optimization and
DD-SWA against a signalized intersection, the Hierarchical-
Distributed algorithm [12] and the coordinated phase with
a first-in first-out (FIFO) protocol for the sequence of inter-
section usage. The simulation results are for the particular
case where vehicles only pass straight across the intersection.
However, the proposed algorithms hold even when turning
is allowed.

Here, we present the algorithms and the comparisons in
greater detail. 1. Firstly, we consider the case of a signalized
intersection. In this algorithm, every vehicle i that enters the
region of interest performs prov phase(i) to approach the
intersection. When a lane l receives a green signal, all the
vehicles in lane l are considered to be a part of Vc and they
are given a green trajectory to exit the intersection by solving
problem (10). The cycle times and green times for the signals
are obtained using Webster’s method [18] corresponding
to the arrival rate σl in each lane. Next, we consider the
Hierarchical-Distributed (HD) algorithm presented in [12].
Lastly, we also compare with a FIFO protocol for the
coordinated phase in these simulations.

Simulation Parameters: Table I lists the parameters of the
intersection and the vehicles that are common to all the al-
gorithms. We conducted simulations using all the algorithms
for several arrival rates of traffic. We chose the simulation
time for each simulation to be equal to the time duration
of 10 cycles of a signalized intersection corresponding to
the particular arrival rate σ obtained from the Webster’s
method [18]. In each of the simulations, we conducted 20
trials for each of the algorithms for each arrival rate σ. Then,
we compared the average time to cross and average objective

1A video describing the main features of the proposed algorithm and
simulations is available at: http://www.ee.iisc.ac.in/˜pavant/
files/figs/Data-Driven-IM.mp4.



TABLE I: General Simulation Parameters

Intersection Parameters
Parameter Symbol Value
Length of branch d 60 m
Length of intersection (Straight) sl 20 m
Length of vehicle Li 4.3 m
Robustness parameter (4) r 0.2 m
Min. Acceleration u −3 m/s2

Max. Acceleration ū 3 m/s2

Max. Velocity v̄ 11.11 m/s
Proposed Algorithm Parameters

Time interval for coordinated phase Tc 3 s
Time horizon for provisional phase Tp tCi − tAi
Time horizon for coordinated phase Tc 30 s
Time horizon for objective function (2) Th 30 s

function value per vehicle over the 20 trials for each value
of σ across all the algorithms.

A. Results

We present 3 sets of comparisons between the various al-
gorithms mentioned previously. Table II indicates the weights
on the scheduling features used for computing the precedence
index (11) in DD-SWA in each of the comparative simula-
tions.

TABLE II: DDSWA Weights for comparisons

Weight Symbol C1 and C2 C3
wx 0.1 0.8
wv 5 7
wn 4.5 5
wt 3 5
wσ 40 40
ws 6 7
ww 0.5 5
wl 0.02 0.02

1) Comparison 1 (C1): In this comparison, we compare
the average time to cross (TTC) for the vehicles under the
different algorithms. The weights on acceleration and jerk
(Wa and Wj respectively) were set to 0 and the weight
on velocity (Wv) was set to 1. In the HD algorithm, the
fuel cost represented by Fi(v̄i) in Equation (5) of [12]
is set to 0 so that the vehicles only aim to minimize
the time spent within the intersection. This ensures a fair
comparison between the HD algorithm and other algorithms.
We show simulation results for arrival rates (σ) in the range
of 0.01 to 0.09 vehicles/s per lane with an increment of
0.01 vehicles/s per lane. Figure 2(a) shows that the average
TTC for vehicles with combined optimization and DD-SWA
is comparable for all arrival rates in the considered range.
FIFO performance is marginally poor compared to DD-SWA
and Combined Optimization as we are only considering low
arrival rates. The HD algorithm’s performance is comparable
for arrival rates initially but performs poorly beyond 0.04
vehicles/s. The signalized algorithm performs better than the
HD algorithm after 0.08 vehicles/s.

2) Comparison 2 (C2): In Comparison 2, similar to com-
parison 1, there was no emphasis on comfort, but the arrival
rates (σ) vary from 0.1 to 0.9 vehicles/s per lane. As the
computation time for combined optimization is significantly

higher compared to the other algorithms, we choose to not
include it for comparison 2. Figure 2(b) shows that DD-SWA
continues to perform better than all the other algorithms.
Although the time to cross initially increases for DD-SWA,
it saturates at 0.4 vehicles/s per lane. FIFO is initially better
than the signalized intersection but it’s performance rapidly
deteriorates as the arrival rate increases. The signalized
algorithm outperforms FIFO initially but outperforms the HD
algorithm in this range. However, it does not perform better
than the DD-SWA. The HD algorithm performs significantly
worse than the other algorithms due to it’s nature of creating
bubbles with multiple vehicles.

3) Comparison 3 (C3): Figures 2(c) and (d) depict the
average TTC and the average objective value for combined
optimization and DDSWA when there is an equal weight
of 1 on acceleration, jerk and velocity. A decrease in the
average objective value and an increase in the average TTC
can be observed as there is an emphasis on both comfort and
the distance travelled by the vehicles. It can be observed
that combined optimization marginally outperforms DD-
SWA both in terms of the average objective value and the
average TTC. FIFO performs significantly poorly compared
to the other two algorithms. The blue and red bars in the
figure correspond to DD-SWA and combined optimization
respectively.

Computation time comparison: Here we demonstrate the
computational advantage of DD-SWA over combined op-
timization. In Figure 3, the lower and the upper edges of
the boxes represent the first third quartiles respectively. The
whiskers represent the maximum and the minimum of the
data. Small circles beyond the whiskers represent outliers.
The mean of the data is represented by the bold black
line. Figures 3(a) and (b) compare the computation time
per vehicle for combined optimization and DD-SWA for
various arrival rates. Although the trend of |Vc| is similar
for both the algorithms, the computation time for combined
optimization increases exponentially with the arrival rate.
Figure 3(b) shows that DD-SWA has a nearly constant value
of computation time per vehicle. We attribute this to the
low computational effort required to determine the sequence
of intersection usage and for sequentially optimizing the
trajectories of the vehicles in Vc.

VI. CONCLUSION

In this work, we introduced a provably safe data-driven
algorithm for intersection management. By decomposing into
two phases, we ensured system wide safety and feasibility
of vehicle trajectories. Simulations suggest that the pro-
posed algorithm performs significantly better than traditional
methods such as signalized intersections and first-in first-out
algorithms. We also demonstrated through simulations that
DD-SWA takes significantly less computational effort com-
pared to the centralized implementation with only marginal
loss in the objective value. Future work can be focused on
developing learning-based methodologies to automate the
tuning of the parameters in DD-SWA for various traffic
scenarios. Other promising directions include extension to
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Fig. 2: (a) Comparison 1 - the average time to cross (TTC) for low arrival rates. (b) Comparison 2 - the average time to
cross (TTC) for high arrival rates. (c) Comparison 3 - the average time to cross (TTC) for the vehicles. (d) Comparison 3 -
the average objective value, when weight on acceleration, jerk and velocity (Wv) are equal to 1.
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Fig. 3: Results of the computation time comparison. Figure
(a) and (b) correspond to combined optimization and DD-
SWA, respectively. The plots depict computation time per
vehicle for the two methods.

traffic management for a network of intersections and hard-
ware implementation on multi-robot systems in regulated
environments.
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