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Abstract— In this paper the inter-dependence of quantiza-
tion and event-triggered control is investigated. We motivate
the idea of co-designing the event-trigger and the quantizer
for emulation based discrete-event control, and then propose
a methodology for designing emulation based discrete-event
controllers for asymptotic stabilization of general nonlinear
systems. The proposed algorithm results in an easily imple-
mentable finite density logarithmic quantizer and a simple
event-trigger. The resulting emulation based discrete-event con-
troller semi-globally asymptotically stabilizes the origin of the
system with a specified arbitrary compact region of attraction.
The quantizer is designed to be endowed with hysteresis so as
to avoid chattering of the controller. The proposed design is
illustrated with a two-dimensional nonlinear system.

I. INTRODUCTION

A common challenge in Cyber Physical Systems (CPS) is
control under data rate constraints and limited computational
capabilities, a problem that has been actively researched in
the last decade. Many papers have looked at issues such as
fundamental limits on communication rate for stabilization,
while others have focused on asymptotic stabilization with
dynamic quantization. A good survey paper on these and
other topics is [1]. In this paper, we focus on the problem
of control under sampling as well as quantization.

The newly emerging field of event-triggered control (ex-
ample: [2], [3], [4], [5]), seeks to systematically design
controllers that update or sample the control action at low
average rates. These controllers are based on the principle
of updating the control only when necessary (control by
exception). In other words, event-triggered control seeks
to minimize the average rate of communication instances,
although the amount of information that can be conveyed
at each communication instance is not limited. However,
in practical situations quantization is inevitable, and hence
it is necessary to consider event based control along with
quantization. The survey paper [6] makes a related remark
that the connection between quantized and even-triggered
feedback must be studied. Keeping in mind the limited
computational resources, in this paper we only consider static
quantizers.

The above discussion motivates the need for design of
coarsest static quantizers. Elia and his co-workers first stud-
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ied this problem in the context of quadratically stabilizable
linear time invariant systems [7], [8] (single input), [9]
(two input), and demonstrated that the coarsest quantizer
is the logarithmic quantizer. Fu and Xie [10] extended the
results of [8] to linear multiple input systems by quantizing
each dimension separately, and their design resulted in an
infinite-density logarithmic quantizer. Finite density logarith-
mic quantizers for the multiple input case were designed in
[11], [12] (and references therein). All the above references
focussed on Linear Time Invariant (LTI) systems and, except
for [7], [8], the results were only developed for discrete time
systems. While [7] designed an implicitly verified discrete-
event controller, [8] studied the optimal periodic sampling
time. The references [13], [14] utilized a Robust Control
Lyapunov Function (RCLF) approach to characterize the
coarsest quantizers for single input control affine nonlinear
systems.

Motivation: Systems with quantization can be viewed
as switched systems [15], the switching surfaces being the
boundaries of the quantization cells. In other words, a
quantizer is a discrete-event encoder, whose output is the
quantization state. The quantization state evolves in a discrete
set and the boundaries of the quantization cells determines
the event-trigger. The complexity of the event-triggering
condition is determined by the complexity of the shape of
the quantization cells. An RCLF approach to quantization in
nonlinear systems may lead to very complicated geometries
(for example, see Equation (10) in [13]) and the event-
triggering condition may be as computationally intensive, if
not more, as the original control law.

Thus, we see that on the one hand, event-triggered control
[2], [3], [4], [5] assumes the availability of an infinite
precision quantizer and on the other an RCLF quantizer
assumes that the induced event-trigger is computationally
inexpensive. Therefore, in the context of Cyber Physical
Systems, there is a need to co-design the quantizer and the
event-trigger for emulation based control.

Contributions: In this paper we exploit the common
principle behind event based control (as in [2], [5]) and
coarsest quantization, which is robustness to measurement
errors, to design a discrete-event controller for semi-global
asymptotic stabilization of general nonlinear systems. Specif-
ically, we propose a methodology for co-designing the event-
trigger and the quantizer in an emulation based controller.
Although the resultant quantizer is not necessarily coarsest,
it is however a finite density logarithmic quantizer and is
easy to implement. The proposed algorithm produces an
implicitly verified emulation based discrete-event controller



that asymptotically stabilizes the origin with a specified
arbitrary compact region of attraction. In the special case that
a certain Lipschitz constant holds globally, the origin of the
closed loop system is globally asymptotically stabilizable.
In comparison to the coarsest quantization literature, our
quantizer design holds for general multi-input nonlinear
continuous time systems. Another important aspect of the
proposed quantizer is the presence of hysteresis, which is
utilized for guaranteeing a dwell time for the updates of the
discrete event controller.

The rest of the paper is organized as follows. Section II
introduces the basic notation and states precisely the problem
under study. The design of the event-trigger is discussed in
Section III and the quantizer design is described in Section
IV. An example of a two dimensional nonlinear system is
provided in Section V and finally some concluding remarks
are made in Section VI.

II. PROBLEM STATEMENT

Note: The results in Sections II and III do not depend on
a specific choice of a norm. However, the proposed quantizer
design utilizes the max or the infinity norm. Therefore, we
adopt this norm through out the paper, and use the notation
|y| to denote the max norm, ‖y‖∞, of a vector y.

Consider a nonlinear system of the form

ẋ = f(x, u), x ∈ Rn, u ∈ Rm (1)

with feedback control u = κ(x) that renders the origin of
the closed loop system

ẋ = f(x, κ(x)) (2)

globally asymptotically stable. Now, consider the problem of
controlling the system with quantized state feedback, where
the quantizer is static. A static quantizer can be modeled as
a nonlinear function of the state. However, in this paper we
consider quantizers with hysteresis (hence memory). Thus,
we define the quantizer function in a more general sense as
follows.

Definition 1: A quantizer is a function q : Rn×Ω −→ Ω,
where Ω = {ω0, ω1, ω2, . . . } is a countable set, with ωk ∈
Rn for each k and

⋃
ωk∈Ω

{x ∈ Rn : q(x, ωk) = ωk} = Rn.

In this paper ωk are called the generating points and Ω is
called the generating set (or the set of generating points) of
the quantizer. The quantization density is defined as

Definition 2: Quantization density: For 0 < ε ≤ 1, let
N(ε) be the number of elements ω ∈ Ω such that ε ≤ |ω| ≤
1/ε. The quantization density of the quantizer q is defined
as

ηq = lim sup
ε→0

N(ε)

−2ln(ε)
. (3)

This definition is similar to the one in [8].
The presence of hysteresis in the quantization state xq , and

the interpretation of a quantizer as a discrete-event encoder
necessitates the treatment of xq as a state variable and the
resultant closed loop system as a hybrid system. In this paper,
we adopt the notation and theory developed by Teel and his

co-workers (see [16] and the references therein) to study
this hybrid system. Let ξ = [x;xq] ∈ Rn × Ω denote the
state of the hybrid system (the notation [x;xq] denotes the
concatenation of the vectors x and xq). Then, the closed loop
hybrid system may be expressed as

ξ̇ = F (ξ) :=

{
ẋ = f(x, κ(xq))

ẋq = 0
, ξ ∈ C (4)

ξ+ = G(ξ) :=

{
x+ = x

x+
q = q(x, xq)

, ξ ∈ D (5)

H = (C,F,D,G) (6)

where C ⊂ Rn × Ω and D ⊂ Rn × Ω are appropriately
defined sets. The hybrid system H is the collection of the
flow set, C, the flow map, F , the jump set, D, and the
jump map, G. The quantizer is specified by the set Ω and
the function q(x, xq). As is clear from our formulation, in
this paper the updates of the quantized state information, xq ,
are not periodic, unlike in [8]. Rather, the quantized state is
updated whenever a state-dependent triggering condition is
satisfied, that is when ξ ∈ D.

The event-trigger determines when the feedback is com-
municated and the control updated. The quantizer determines
what is communicated. As discussed earlier, an efficient
discrete event controller necessitates the co-design of the
event-trigger and the quantizer. Therefore, the problem under
consideration in this paper is that of co-designing an event-
trigger and a quantizer in emulation based controllers for
semi-global asymptotic stability of general nonlinear sys-
tems. Specifically, the problem is to design the sets Ω, C
and D; and the quantizer function q such that both the event-
trigger and the quantizer are efficient. In the next section, the
design of the event-trigger (design of the sets C and D) is
detailed.

III. DESIGN OF THE FLOW AND THE JUMP SETS

The following are the main assumptions in the paper.
(A1) The closed loop system (2) is input-to-state stable (ISS)

with respect to measurement error, i.e., there exists a C1

Lyapunov function, V : Rn → R, that satisfies

α1(|x|) ≤ V (x) ≤ α2(|x|)
∂V

∂x
f(x, κ(x+ e)) ≤ −α(|x|), if γ(|e|) ≤ |x|

where α1(.), α2(.), α(.) and γ(.) are class K∞1 func-
tions.

(A2) The function γ is Lipschitz on compact sets.
The relatively strong ISS assumption is not necessary for the
proposed design. It is sufficient to assume that the origin of
the system (2) is asymptotically stable. This weaker assump-
tion is not pursued in this paper due to space constraints.

Define the measurement/quantization error as,

e , xq − x. (7)

1A continuous function α : [0,∞) → [0,∞) is said to belong to the
class K∞ if it is strictly increasing, α(0) = 0 and α(r) → ∞ as r → ∞
[17].



and let us define the flow and the jump sets as

C = {ξ ∈ Rn × Ω : |e| ≤W |x|} (8)
D = {ξ ∈ Rn × Ω : |e| ≥W |x|} (9)

where W is a positive constant. The sets C and D capture
a simple event-triggering condition.

A hybrid Lyapunov function candidate [16] is defined as
follows.

Definition 3 (Lyapunov-function candidate): Given the
hybrid system H with data (C,F,D,G) and the compact
set A ⊂ Rp, the function Vh : dom Vh → R is a
Lyapunov-function candidate for (H,A) if (i) Vh is
continous and nonnegative on (C ∪ D) \ A ⊂ dom Vh,
(ii) Vh is continuously differentiable on an open
set O satisfying C \ A ⊂ O ⊂ dom Vh, and (iii)

lim
{ξ→A,ξ∈(dom Vh)∩(C∪D)}

Vh(ξ) = 0.

Let

A , {ξ ∈ Rn × Ω : x = xq = 0} (10)

and define the hybrid Lyapunov function candidate for the
pair (H,A) as

Vh(ξ) = V (x) + max{0, |xq − x| − 2W |x|} (11)

Notice that Vh(ξ) = V (x) for all ξ ∈ C. The function Vh(ξ)
is positive definite and its sub-level sets are compact. Also

note that 〈∇Vh(ξ), F (ξ)〉 =
∂V

∂x
f(x, κ(xq)) for all ξ ∈ C\A

and in an open neighborhood of C \ A.

A. Selection of W

Let

Br = {x ∈ Rn : |x| ≤ r}. (12)
Er = {ξ ∈ Rn × Ω : |x| ≤ r, |xq| ≤ r}. (13)

Note that for each r finite, Br and Er are compact sets in
Rn and Rn × Ω, respectively. For each µ ≥ 0 define

R , {ξ : Rn × Ω : V (x) ≤ µ, |xq| ≤ R , α−1
1 (µ)} (14)

where α1(.) is the function from assumption (A1). Then, it
is clear that R ⊂ ER. For each compact set B that contains
the origin, there is a µ ≥ 0 such that B ⊂ R. Therefore,
without loss of generality it is assumed that the prescribed
region of attraction is of the form (14). If assumption (A2)
holds, then there exists a constant WR > 0 such that

WR|x| ≤ γ−1(|x|), ∀x ∈ BR
The design of the flow and the jump sets is complete if we

specify how the constant W is to be chosen. The following
Lemma provides a methodology for accomplishing this goal.

Lemma 1: Consider the hybrid system (6) with C and D
defined as in (8)-(9). Suppose assumptions (A1) and (A2)
hold. Let the desired region of attraction be R, (14), for
some µ ≥ 0. If W ≤WR then

〈∇Vh(ξ), F (ξ)〉 < 0, ∀ ξ ∈ C ∩R \ A (15)

Proof: By the definition of WR and the fact that W ≤
WR, it follows that

W |x| ≤WR|x| ≤ γ−1(|x|), ∀x ∈ BR
Recall the definition of the flow set C, (8). Also, R is a
subset of ER, (13). Therefore, (C ∩ R) ⊂ {ξ ∈ Rn × Ω :
|e| ≤ γ−1(|x|)} and assumption (A1) immediately implies
that (15) is true.

Remark 1: If the function γ is globally Lipschitz, then
(15) holds for all ξ ∈ C \A and not just for ξ ∈ (C∩R)\A.

If WR ≥ 1 then quantization is not required and a constant
control u ≡ κ(0) asymptotically stabilizes the origin of
the nonlinear system (1). This is made more precise in the
following proposition and the subsequent discussion.

Proposition 1: Consider the hybrid system (6) with C and
D defined as in (8)-(9). If WR ≥W > 1 and Ω = {0}, then
the set A, (10), is asymptotically stable with R included in
the region of attraction.

Proof: The set (D ∩ R) = {x ∈ Rn × {0} : |x −
0| ≥ W |x|} ∩ R = ∅, the empty set. On the other hand,
(C ∩ R) = {x ∈ Rn × {0} : |x − 0| ≤ W |x|} ∩ R = R.
Lemma 1 then implies that the set A is asymptotically stable
with R included in the region of attraction.
If WR ≥ W > 1 and Ω = {0}, then the set D is empty.
Thus, the hybrid system (6) is really just the continuous time
system (4) with xq ≡ 0. If WR ≥ W = 1 and Ω = {0},
then (C ∩ R) = (D ∩ R) = R and there can be jumps in
the solutions of H, (6). However, the jump map is the trivial
map, x+ = x and x+

q = xq = 0. Since the jump map is
induced by the controller and is not inherent in the system,
the trivial map can be ignored by the controller and we can
focus only on purely flowing solutions that start in R \ A.
All such solutions asymptotically converge to the set A.

Therefore, in the sequel we assume that W = WR < 1
unless specifically mentioned otherwise. In the next section
the design process of the quantizer is detailed.

IV. DESIGN OF THE QUANTIZER

Now, all that is left to be designed is the quantizer. Our
goal here is the following. Given an event-trigger, (8)-(9),
satisfying Lemma 1, design an efficient quantizer that semi-
globally asymptotically stabilizes the origin of the system
with a prescribed compact region of attraction.

In the coarsest quantizer literature, robustness to measure-
ment errors is exploited to design finite density logarithmic
quantizers and in single input LTI systems the coarsest
quantizer. The quantizer in this paper also utilizes the same
principle, although indirectly through the simplified event
triggering condition designed in Section III. In our opinion,
this approach is better suited for continuous time nonlin-
ear systems for two reasons. Considering general nonlinear
systems, the set {x ∈ Rn : ∂V

∂x f(x, κ(xq)) < 0} for
an arbitrary xq can have a complicated shape. This can
potentially lead to a complex design process, that requires
significant customization for individual systems. The second
drawback is that of implementation - checking, in real time,
whether the state belongs to a particular quantization cell



can be as intensive, if not more, as computing the control
itself. This defeats our motivation of designing controllers
that require low rate of communication and low computation
capabilities.

The proposed quantizer design is much simpler and ap-
plicable to a wide range of nonlinear systems. The chief
features of the proposed quantizer design are as follows. The
quantization cells are determined by the simplified triggering
condition, (8)-(9). In the triggering condition, the max or the
infinity norm is used, leading to a very easily implementable
triggering condition and quantizer. The quantization cells
are allowed to be overlapped, and the resulting hysteresis
is utilized to avoid chattering of the controller.

Definition 4: For each k ∈ {0, 1, 2, . . .}, the quantization
cell generated by ωk is the set Ck = {x ∈ Rn : q(x, ωk) =
ωk}.

In the hybrid system (6), xq changes only during jumps. In
order to minimize the number of control updates or jumps, it
is necessary to ensure that at each jump the state is mapped
outside the jump set D, or more precisely, it is required that

ξ+ = G(ξ) ∈ (C \D) ∩ ER, ∀ξ ∈ (D ∩ ER) \ A (16)

However, x does not change during jumps, and x+
q =

q(x, xq). Hence, the quantizer needs to be designed such
that x+

q 6= xq . Therefore, by the definition of a quantization
cell it is necessary that

(
Ck×{ωk}

)
∩ (D∩ER)\A = ∅ for

each k ∈ {0, 1, 2, . . .}. In other words, the quantizer must be
defined such that for each k ∈ {0, 1, 2, . . .}(
Ck × {ωk}

)
∩ (C ∩ ER) = (Ck × {ωk}) ∩ ER (17)

Finally, A ⊂ C, A ⊂ D and A∩Ck = ∅ if ωk 6= 0. Hence,
it is necessary to choose ω0 = 0. Therefore, the quantizer
has to satisfy the following constraints.

ωk ∈ Rn and |ωk| ≤ R, k ∈ {1, 2, . . .} (18)

Ck = {x ∈ Rn : |ωk − x| < WR|x|}, k ∈ {1, 2, . . .} (19)

ω0 = 0 (20)

C0 = {0} ∪ {x ∈ Rn : |x| > R} (21)

C0 ∪
( k=∞⋃

k=1

Ckρ

)
= Rn, 0 < ρ < 1 (22)

where Ckρ = {x ∈ Rn : |ωk−x| ≤ ρWR|x|} and Ckρ denotes
the closure of the set Ckρ . Note that Ckρ ⊂ Ck for each k.
The constraint (22) has been introduced so that the resultant
quantizer is over designed and the quantization cells overlap.
In other words, the final constraint induces hysteresis in the
quantizer, which is useful for avoiding chattering. Moreover,
excluding C0, each cell Ck is such that in the region where
Ck overlaps with no other cell, |ωk − x| ≤ ρWR|x|. Next,
notice that the cell C0 includes the region outside BR.
Any arbitrary nominal value could have been chosen as the
quantization state for the region outside BR, and we have
selected it to be 0.

We define the quantizer function as follows.

q(x, ωk) =


ωk, if x ∈ Ck

argmin
ωj

|ωj − x|
WR|x|

, if x /∈ Ck, x 6= 0

ω0, if x = 0

(23)

In the second case there can be more than one solution. Note
that the quantizer function satisfies (16).

The following theorem demonstrates that a quantizer that
satisfies (18)-(23) asymptotically stabilizes the set A with R
in the region of attraction.

Theorem 1: Consider the hybrid system (6) with C and
D defined as in (8)-(9), and suppose assumptions (A1) and
(A2) hold. Let the desired region of attraction be R, (14),
for some µ ≥ 0. Suppose that W ≤ WR and that the
quantizer is designed to satisfy (18)-(23). Then, the set A
is asymptotically stable and the region of attraction includes
R.

Proof: The compact set R ⊂ ER, where R = α−1
1 (µ).

The function Vh in (11) is a hybrid Lyapunov candidate
function for the pair (H,A). Consider the event-trigger (the
sets C and D) designed in (8)-(9). Given a quantizer that
satisfies (18)-(23), the following hold.

〈∇Vh(ξ), F (ξ)〉 < 0, ∀ ξ ∈ C ∩R \ A
Vh(G(ξ))− Vh(ξ) ≤ 0, ∀ ξ ∈ D ∩R \ A

where the first relation follows from Lemma 1, and the
second from the fact that the quantizer function q ensures
satisfiability of (16). Hence, for every c > 0 no complete
solution remains in the compact set {ξ ∈ Rn ×Ω : Vh(ξ) =
c} ∩ R. Recall the definition of R, (14). The function
V (x) decreases monotonously during flows and does not
change during jumps. The constraints (18) and (20) imply
that |xq| ≤ R at all times. Hence, R is forward-invariant2

and every maximal solution that starts in R is a complete
solution. Therefore, by Theorem 23 in [16] we conclude that
the set A is asymptotically stable and the region of attraction
includes the set R.

Corollary 1: Suppose in addition to assumptions (A1),
(A2) the functions f and κ are Lipschitz on compact sets.
Then, there exists a constant τd > 0 such that for all solutions
starting in R \ A the jumps are separated by at least an
amount of time τd.

Proof: Outside the set A, x+
q 6= xq and x+

q is given
by the second case of (23). Further, (22) implies that after
a jump x ∈ Ckρ , where k is such that x+

q = ωk. Therefore,
|x+
q − x|/(WR|x|) ≤ ρ < 1. The rest of the proof follows

from an analysis similar to that in [2].
In Theorem 1, the set A is globally asymptotically stable

if WR is a global constant. Notice that in event-triggered
control, the measurement error is reset to zero at triggering
instants. However, in the proposed discrete-event controller

2See [16] for the definitions of the terms ‘forward invariance’, ‘maximal
solution’ and ‘complete solution’.



|x+
q −x| 6= 0 and instead satisfies |x+

q −x| ≤ ρW |x|, which
is not zero in general. This is the reason why hysteresis is
required in the quantizer to avoid chattering.

Next, we demonstrate that a quantizer satisfying (18)-
(23) indeed exists, and construct a minimal set of generating
points Ω that satisfy (18)-(22). For the sake of clarity, we first
outline the design process for n = 1, that is, for nonlinear
systems (2) that are one dimensional.

A. Design of Ω in One Dimensional Systems
Now, we invert the problem and ask: given a point in the

region of interest what are the values ωk, (18), can take such
that Ck, (19), contains that point. If the point is 0 then it is
contained in C0. Also, all cells other than C0 are intervals.
Therefore, we ask the more specific question: given ruk 6= 0
such that |ruk | ≤ R, what should ωk be such that |ωk| ≤ |ruk |
and |ωk − ruk | = ρWR|ruk |, where 0 < ρ < 1 is a constant.
Thus, ruk is the upper or the outer extreme of the interval
Ckρ (see Figure 1). Thus, ρ is a parameter that allows us to
over-design. The inverse problem has the unique solution

ωk = (1− ρWR)ruk (24)

Then the inner or lower extreme of the interval Ckρ is

rlk =
ωk

1 + ρWR
(25)

Therefore, the interval Ckρ is the open interval (rlk, r
u
k ) or

Fig. 1: Design of Ω for 1-D systems. The blue lines indicate
the actual quantization cells or intervals, while ruk and rlk
indicate the extremities of the over-designed quantization
cells Ckρ .

(ruk , r
l
k) depending on whether ruk is positive or negative,

respectively. The points ruk and rlk are in the set Ck (see
Figure 1). If we now set ruk+2 = rlk then we can recursively
determine the set Ω. Following this procedure, we arrive at
the following

ω0 = 0, ru1 = R, ru2 = −R
ωk = (1− ρWR)ruk , ∀k ∈ {1, 2, . . .}

rlk =
ωk

1 + ρWR
, ∀k ∈ {1, 2, . . .}

ruk+2 = rlk, ∀k ∈ {1, 2, . . .}

ωk+2 =
1− ρWR

1 + ρWR
ωk, ∀k ∈ {1, 2, . . .} (26)

Note the symmetry in the positive and negative generators
ωk. Simple calculations give the quantization density as

ηq =
2

ln
(

(1+ρWR)
(1−ρWR)

) (27)

Thus, the proposed quantizer is a finite density logarithmic
quantizer. The design process is summarized in Figure 1.

B. Design of Ω in Two Dimensional Systems

Due to space constraints, only a broad outline of the
design process for the 2-D case is provided here. In the
two-dimensional case, the design process is more complex
due to the variety of possible cells, Figure 2a. Moreover,
unlike in the 1-D case only a heuristically minimal solution
is provided.

The algorithm progresses in stages by covering recur-
sively one annulus after another with quantization cells.
The process of determining these annuli is similar to the
1-D case, with the difference that the procedure (26) now
gives the inner and outer radii (in the max norm sense) of
the overlapping annuli, Figure 2b. Two completely covered
overlapping annuli are shown in Figure 2c. The procedure to
cover each annulus is identical and each annulus has the same
number of cells. Thus, a finite density logarithmic quantizer
is obtained, with a quantization density given by

ηq = 4

⌈
1 + ρWR

ρWR

⌉
1

ln
(

(1+ρWR)
(1−ρWR)

) (28)

where d.e denotes the greatest integer function.

V. EXAMPLE

In this section, the proposed emulation based controller
is illustrated through an example. Consider the second order
nonlinear system

ẋ1 = x2

ẋ2 =
1

l
(g sin(x1) + u). (29)

Let the control input be given as

u = κ(x) = −lλx2 − g sin(x1)−K(x2 + λx1). (30)

where K > 0 and λ > 0. Let the Lyapunov function in
assumption (A1) be V (x) = l

2 (x2 +λx1)2 +λKx2
1. Routine

calculations yield W = 0.0447 that satisfies the assumptions
of Theorem 1, with the induced region of attraction being all
of R2. Thus the discrete-event controller guarantees global
asymptotic stability of the set A in the hybrid system H, (6).

The quantizer designed as in Section IV with σ = 0.99 and
ρ = 0.9 has a density ≈ 2582. Figure 3 shows the evolution
of |x| and |e|/W for a sample trajectory. In the simulations
the parameters g, l, K and λ were chosen as 10, 0.2, 1
and 1, respectively. The number of jumps or equivalently
the number of control updates was observed to be 165 in
the simulated time, giving an average update frequency of
33Hz. The minimum inter-update time was observed to be
0.0011s.
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(a) The blue dots are the generators of the quan-
tization cells, whose boundaries are represented
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−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

x1

x 2

(b) The inner and outer boundaries of the first
annulus are shown in blue, while those of the
second annulus are shown in red.
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Fig. 2: Design of Ω for 2-D systems. Possible types of cells in the two-dimensional case (Figure 2a), the steps in designing
the quantization cells (Figures 2b, 2c). The procedure leads to a finite density logarithmic quantizer.
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VI. DISCUSSION AND CONCLUSIONS

This paper revisits the problem of control under data-
rate constraints. Specifically, we have combined the ideas of
event-triggered control and coarsest quantization to propose a
method for co-designing the event-trigger and the quantizer
in emulation based controllers for stabilization tasks. The
resulting quantizer is a finite density logarithmic quan-
tizer, applicable to general multi-input and multi-dimensional
continuous-time nonlinear systems. To the best of our knowl-
edge, this work is the first to look at the co-design of the
event-trigger and the quantizer in emulation based discrete-
event controllers. The proposed design algorithm results in a
controller that guarantees semi-global asymptotic stability of
the origin of the system with a specified arbitrary compact
region of attraction. In case a certain Lipschitz constant
is global, the origin is globally asymptotically stable. If
only semi-global practical stability is desired, with any
specified compact region of attraction and ultimate bound,
the quantizer has a finite number of cells.

Several extensions to the problem are possible, such as
treating W itself as a state that is updated during the jumps.
Such a formulation will lead to a more generalized quantizer
design with lower densities. Finally, as mentioned in Section
III, the proposed design easily extends to a case with a
weaker assumption than the ISS one, the details of which
will be communicated in future.
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