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Abstract: In this paper we investigate event-triggered controllers for dynamic output feedback
control of Linear Time Invariant (LTI) systems. We propose a systematic methodology for
designing implicitly verified event-triggered dynamic output feedback controllers for LTI
systems that are observable and controllable. Event-triggering conditions for sampled-data
implementation of the observer and the controller are proposed for a decentralized architecture.
The output of each sensor and actuator are asynchronously sampled by event-triggers that
depend only on local information. The proposed controllers are shown to guarantee global
asymptotic stability of the closed loop system, and provide global lower-bounds on inter-
communication times. The proposed design methodology is illustrated through simulation

results.
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1. INTRODUCTION

Recently, the event-triggered paradigm for sampling and
control has been proposed as an alternative to the
traditional time-triggered (example: periodic triggering)
paradigm. In event based control systems, the timing of
control execution is not necessarily periodic and is im-
plicitly determined by a state dependent event-triggering
condition. Thus, by encoding the nature of the task (for
example stabilization) into an event-triggering condition,
it is possible to design controllers that make better use of
computational and communication resources.

In recent years, event-triggered controllers have been
systematically designed (a representative list includes
Tabuada (2007); Heemels et al. (2008); Wang and Lem-
mon (2010); Tallapragada and Chopra (2011)) for different
stabilization tasks. Most work in this literature assumes
the availability of full state information. However, in many
practical applications only a part of the state information
can be directly measured and a dynamic (for example, ob-
server based) output feedback controller must be utilized.

The main contribution of this paper is a methodology
for designing implicitly verified event-triggered dynamic
output feedback controllers for Linear Time Invariant
(LTT) systems that are observable and controllable. We
consider a decentralized architecture, in which the output
of each sensor is transmitted to a central controller asyn-
chronously and each output of the controller are trans-
mitted asynchronously. All the transmission times are de-
termined by local event-triggers that depend only on local
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information and explicit positive lower thresholds for inter-
sampling times. These thresholds are designed a priori by
first expressing the dynamics of the measurement errors,
resulting from sampling, in terms of the unknown state of
the closed loop system and then finding a lower bound
on the inter-sampling times that is independent of the
unknown closed loop state. The resulting event-triggering
conditions are shown to ensure global asymptotic stability
of the closed loop system as well as global minimum inter-
sampling times.

In the literature, among the few works that consider
this problem, Donkers and Heemels (2010) proposed an
event-triggered implementation that can guarantee uni-
form ultimate boundedness of the plant state and pro-
vided an estimate of minimum inter-communication time
that holds semi-globally, whereas our proposed controller
guarantees asymptotic stability and an estimate of inter-
communication times that holds globally.

In Lehmann and Lunze (2011), a model based output
feedback controller was proposed, where the communica-
tion from the observer subsystem to the system model
subsystem is triggered by a condition that compares the
observer state with that of a local copy of system model
subsystem. Again, the controller guarantees only uniform
ultimate boundedness of the closed loop state. In Li and
Lemmon (2010, 2011) an output feedback control imple-
mentation for discrete-time systems is considered as an op-
timal control problem. The proposed architecture includes
a Kalman filter in the sensor subsystem and identical
observers in the sensor as well as actuator subsystems.
The results provide an upper bound on the optimal cost
attained by the event-triggered system. Another major



difference of our proposed design with these works is that
we do not require identical models/observers to be run at
different locations.

Recently, in Almeida et al. (2012) (and references therein),
a self-triggered dynamic output feedback controller was
presented. The design involves a discrete time observer in
cascade with a self-triggered controller designed for full
state feedback, which is then shown to render the closed
loop system input-to-state stable (ISS) with respect to
exogenous disturbances. It would be interesting to see, in
future, how these results can be utilized to design improved
event-triggered output feedback controllers.

Among other works that consider event-triggered con-
trollers for decentralized architectures, Mazo Jr. and
Cao (2011); Wang and Lemmon (2011) (and references
therein), it is assumed that each state of the system is
measured by some sensor directly. To the best of our
knowledge, asynchronous decentralized (in the sense de-
scribed above) output feedback control is an open problem.

The rest of the paper is organized as follows. Section 2
describes the problem under consideration in this paper.
In Section 3, the design of an event-triggered dynamic con-
troller is presented - first for the centralized architecture,
as a way of introduction and for comparison, and then
for the decentralized architecture. The proposed design
methodology is illustrated through simulations in Section
4 and finally Section 5 provides some concluding remarks.

2. PROBLEM STATEMENT

Consider a Multi Input Multi Output (MIMO) Linear
Time Invariant (LTI) control system

i=Ax+ Bu, ze€R" uweR™

y=Czx, yeRP (1)
Assume that (A, B) and (A,C) are controllable and

observable, respectively. Then, there exists a continuous-
time dynamic controller (observer based controller)

t=(A+FC)i+ BKi—Fy, &cR" (2)
u= Kzt (3)
such that the closed loop system (1)-(3) is globally asymp-
totically stable. More precisely, there exist gain matrices
F € R" x R? and K € R™ x R” such that (A + FC)

and (A + BK) are Hurwitz. Let us denote the observer
estimation error as

F2i—x
Let ¢ = [z;%] be the aggregate state vector, where the
notation [ay;as] denotes the column vector formed by

concatenating the vectors a; and as. Then, the closed loop
system may be written as

- |z| |A+BK BK | a 7
v= M = { 0 A+Fc} M =4y )
where 0 represents a matrix of zeroes of appropriate size.

There exist gains F' and K such that the matrix A is
Hurwitz, thus rendering the closed loop system stable.

In this paper, we are interested in event-triggered imple-
mentation of the dynamic controller (2)-(3). In sampled-
data implementations (of which event-triggered implemen-
tation is an example) the data used by the controller and

actuator are sampled at discrete time instants. In the
traditional time-triggered implementation the signals are
sampled at periodic intervals or at pre-determined time
instants. On the other hand, in event-triggered implemen-
tation, the time instants at which the signals are sampled
are determined implicitly by a state/data based triggering
condition at run-time.

Before we proceed, it is useful to look at some important
notational conventions adopted in this paper. Depending
on the context, the notation ||.| denotes the Euclidean
norm or the induced matrix Euclidean norm. Next, let z
be any continuous-time signal. Let {¢7} be the increasing
sequence of time instants at which the signal z is sampled.
Then we denote the sampled signal by z,, that is,
Z‘?éz(tzz)a vte [f? f—&—l)

The sampled signal, zz, is thus piece-wise constant in
time. It is common in the event-triggered control literature
to view the sampled data as resulting from an error in
the continuous-time measurement of the signal z. This
measurement error is denoted by

ze & 25—z =2(t]) —z, Vte[t, 1)

In time-triggered implementations, the time instants ¢ are
pre-determined. However, in event-triggered implementa-
tions the time instants t; are determined implicitly by
a triggering condition. Due to this, an event-triggering
condition may result in the inter sampling times 7, — ¢7
to be arbitrarily close to zero or it may even result in the
limit of the sequence {t}} to be a finite number (Zeno
behavior). Thus for practical utility, an event-trigger has
to ensure that these scenarios do not occur.

The design of an event-triggered dynamic output feedback
controller depends critically on the architecture of the
system. The simplest case is that of all the sensors and
the controller being co-located, Figure 1a. Co-located com-
ponents have access to each others’ outputs at all times.
Thus, in this case the event-triggering condition can de-
pend on all the measured outputs. If however, the sensors
and the controller are not co-located then for each sensor,
and actuator an independent event-trigger is required,
which depends only on locally available measurements.
In this paper we consider a decentralized architecture as
shown in Figure 1b, where y;, u;, y;,s and u; s are the 4th
output, 3" input to the plant and their sampled versions,
respectively. Thus, in this case the sampling of the sensor
and controller outputs occurs asynchronously.

The problem we are interested in this paper is the design
of the dynamic controller and the event-triggers for the
decentralized architecture shown in Figure 1b. The result-
ing event-triggered controllers must render the closed loop
system globally asymptotically stable and ensure that the
inter-sampling times of each signal is lower bounded by a
positive constant.

In the next section, the dynamic controller and the event-
triggers are developed.

3. EVENT-TRIGGERED IMPLEMENTATION OF
THE DYNAMIC CONTROLLER

In this section, the dynamic controller and the event-
triggers are developed, first for the centralized architecture



L u Dynamic Y
: 4 Controller Sensor

R

Trigger

X W’(l
E " : ' Trigger[7;, | Dynamic <
! T l y : -"1 ! | controller
H. Event : Trigger Um :

R

: Event oo oo
; Trigger Y gnso :
1 ' , P

________ NI

(a) Centralized architecture: Sensor and con-
troller co-located.

(b) Decentralized architecture: Centralized controller with distributed sensors and
actuators, each transmitting data in parallel and asynchronously.

Fig. 1. The centralized and decentralized architectures for event-triggered dynamic output feedback control. The
components within a dotted box are at the same location.

and then for the decentralized architecture. But first we
present a Lemma that is a modified version of Corollary
IV.1 from Tabuada (2007), which is useful in the design of
event-triggers in the sequel.

q

Lemma 1. Let & = Ax + Z B;u; . be any linear control
i=1

system where u; . = s — Ui, u; = Ky for i € {1,...,q},

with wu; s being the piecewise constant signals obtained

by asynchronously sampling u; respectively. Let w; > 0

for ¢ € {1,...,q} be any arbitrary constants and let

q
W = ZHBszz Suppose the sampling instants are such

i=1
that for all time ||u;.||/||z| < w; for each ¢ € {1,...,¢}.
Then, the time required for ||u; . ||/||z] to evolve from 0 to
w; is lower bounded by 7;, where
7i = 7(wi, Al + W — || Billws, | Bill, [ K:l])
The function 7 is given by
T(w,a,b, k) ={t >0: ¢(t,0) = w} (5)

where a, b, k are positive constants and ¢(t,c) is the
solution of

¢ = (k+¢)(a+bq§), #(0,¢) =c

Proof. Letting v; £ |Ju; .||/||z| and by direct calculation
we see that for i € {1,...,q

dy; _(uzeui,e)71/2UZeKi5& B ol ||u; .||
dt B ||
2]
< (MGl +vi) =
(I i) [Eal

q
1Az + D I1B; [lwj.cll
j=1
]

dl/i
< (K i
5 < (Kl + )
where for u; . = 0 the relation holds for all directional
derivatives. This relation is further simplified by enforcing
the condition that the sampling instants are such that for
all time v; < w; for each i € {1,...,q}.

dy;

(T; <(IKll +vi) (|AIF+ W — || Bil|wi + || Bi|vi)
from which the claim of the Lemma directly follows. H

Note that in the above Lemma, u; can be scalars as well
as vectors.

3.1 Centralized Architecture

As a way of introduction, the event-triggered output feed-
back controller for the centralized architecture will be pre-
sented first. This is also useful in comparing the efficiency
(in terms of the average control update frequency) of the
decentralized architecture with the centralized architec-
ture. Detailed results for the centralized architecture and
other variations are presented in Tallapragada and Chopra
(2012).

In the centralized architecture the observer and the sensor
are co-located, which means the observer has access to the
sensor information at all times. Now consider a sampled
data version of the observer and the controller, that is

& = Az + Bus, y=Cx (6)
&=(A+FC)i+BKi,—Fy, u=Ki (7)
where the subscript s denotes the sampled versions of the
corresponding continuous-time signals. The purpose of the
term BKZ in the observer (7) is to model the effect of

the control Bu; = BK %, in the plant dynamics. Hence,
(7) is the natural extension of the original observer (2).

The closed loop system may be written in terms of the
measurement error I, = Is — & as

b= Av+ [Bﬂ Fo = Av+ [Bﬂ L L] ¥
— A+ Gy H,, where Gy 2 [B(ﬂ L Hy 21, 1)

(8)
where ¥ = [0:3] = |3 — al, Yo = by — ¢, A is
as defined in (4), 0 represents a matrix of zeroes of
appropriate dimension and I, is the n x n identity matrix.
In this centralized architecture, ¢ = 1 in the notation of
Lemma 1 because all the controller outputs are updated
synchronously. Also note that the sampled-data nature of
the system is implicit in the measurement error term, Z.
(or 1.). Hence, the system description is complete only
with the specification of the event-triggering condition.

Now, the event-triggering condition is introduced in the
following result, which also demonstrates that the resulting
closed loop system is globally asymptotically stable and
that the inter-sampling times are uniformly lower bounded
by a positive constant.

Theorem 1. Let Q € R?" be any positive definite matrix.
Consider the system given by (8) with (A4, B) controllable,



(A, C) observable and A Hurwitz. Let the event-triggering
condition be

ti+1 = mln{t > ti +T: n > O} (9)

) Oz 12| 9y||y|>

=2||PG1|||Ze|] — 0Qm
n=21PGillz.] 0@ (“I 4 Sl
where @, is the smallest eigenvalue of @), 0 < o < 1,
0 <6; <1,0 <0, <1 are design parameters such
that 63 + 60, = 1 and P > 0 satisfies PA+ ATp =
—@. The inter-sampling time threshold is given by T =

( oQm
"\2[PGi]
defined in (5). Then, the origin of the closed loop system is
globally asymptotically stable and the inter-sample times
are lower bounded by T

(10)

||14_1||,||G1||,H1|>7 the function 7 being as

Proof. First note that A is Hurwitz and hence there exists
a positive definite matrix P that satisfies the Lyapunov
condition in the statement of the theorem. Now consider
the candidate Lyapunov function V = 4T Py, whose
derivative along the flow of the closed loop system (8) is
given by

V =T PAY + T AT Py + 297 PGLH 9,

< —4"Qu + 207 PGy,

< (1= 0)QullI? ~ 1 [o@mlvll — 21 PG ]
(11)
Now, if & # 0 then there is a non-negative number k such
that ||z|| = k||Z||, from which it follows that
]l = Vlil? + 12 — 2| > v2l|2[|? + [|]2 - 2[2[|]|Z]

— lallvaRE — 2k +1 > L2
Jal >

where the last step follows by minimizing with respect to
k. If, on the other hand, # = 0 then ||¢| > ||#||/v/2 holds
trivially. Next, we see that ||| > [|z|| > |ly||/||C]]. Thus

Oal12l| , Oyllyll
el = + 7
v2 o cl

Hence the triggering condition (9) ensures that

V < —(1-0)Qunll¥l?
from which it follows that the origin of the closed loop
system is globally asymptotically stable. Next, from (11),
it is clear that V < —(1 — 0)Qn ||| as long as
A
Il — 2|| PG|
Thus the inter-sample times are lower bounded by T,

which is positive because w > 0 and the norms of all the
system matrices are finite. H

with 0; +6, =1

Note that if (A, B) is controllable and (A, C) is observable,
then there exist gains K and F' such that A is Hurwitz.
Next, the time for the function 7, (10), to grow to zero from
its initial value at a sampling instant can be arbitrarily
small. However, a lower bound on the time for which V
remains negative after sampling was found from (11) and
Lemma 1. This key step is possible because z. is a linear
function of 1. and Lemma 1 provides a lower bound for
inter-sampling times, which is independent of the unknown
state of the closed loop system ).

In the next subsection, we design the dynamic controller
and the event-triggers for the decentralized architecture
of Figure 1b, where the sensors are distributed and the
each controller output is updated in parallel and asyn-
chronously.

3.2 Decentralized Architecture

In the decentralized architecture of Figure 1b, the sensors
are distributed. Their outputs are sampled and communi-
cated to a central controller asynchronously by indepen-
dent event-triggers that depend only on local information.
Further, the different controller outputs are updated in
parallel and asynchronously. The closed loop system is
given by

&= Az + Bu;, y=Cx

2=(A+ FC)i+ Bus — Fys, u=K&

where z € R”™ is the state of the plant, £ € R™ is the
observer state, y € RP is the vector of sensor outputs,
u € R™ is the vector of inputs to the plant from the
actuators. The subscript s denotes the sampled versions
of the corresponding continuous-time signals.

It is to be understood implicitly that each actuator output
uis, for i € {1,...,m}, and each sensor output y; , for
j € {1,...,p}, represent asynchronously sampled signals,
that is,

uis =u(ty’), Vet ti)
vie = y(ty), VEE [t B)
It is possible to define u; and y; as vectors with only minor

changes in notation. However, in this paper we restrict to
the scalar case for simplicity.

Let us now denote the i*" column of B and F by B; and
Fy; and similarly, the i** row of K and C by K; and C;,
respectively. That is,

B£[B;y ... By|, F2[F ... F)
K 4

K2 | : c:|:
K, Cp

0 F;
where 0 represents a vector of the same size as B;, F; and

Cjin BZ-, Fj and C’j, respectively. The notation I,, denotes
the n x n identity matrix.

B2 [Bi], P {0} R 2K (L L], G 2[C; 0]

Let ¢ = [2;%] £ [r;2 — 2] be the aggregate state vector,
where the notation [a;;az2] denotes the column vector
formed by concatenating the vectors a; and as. Then,
the closed loop system may be written in terms of the
sampling/measurement errors, u; . = u; s — u; and y; . =
Yjs — Yj, as
m P
=AY+ > Buic— Y Fiyje (12)
i=1 j=1
where A is as defined in (4). Thus for this architecture,
q = p + m in the notation of Lemma 1. Note that

the sampled-data nature of the system is implicit in the
measurement error terms, u;  and y; .. Also note that the



sensor outputs and the controller outputs can be expressed
in terms of the full closed loop state as

=Kii =Ky, y;j=Cju=0Cp (13)
Now, the event-triggering condition is introduced in the
following result, which also demonstrates that the resulting
closed loop system is globally asymptotically stable and
that the inter-sampling times are uniformly lower bounded
by a positive constant.

Theorem 2. Let @@ € R?™ be any positive definite matrix.
Consider the closed loop system given by (12) with (A, B)
controllable, (A4, C) observable and A Hurwitz. Let the
event-triggering conditions be

tpiy =min{t > " + Ty :ny, > 0}, Vi€ {1,...,m}

(14)
', =min{t >t} + T, ; :n,, >0}, Vje{l,...,p}

(15)
Mg = 2\ KGll[|PBill[[uie |l = 0Qumbui|wil (16)
1y; = 2G5 PE;|[[[Yj.ell = oQmby.;5ly;]l (17)

where Q,,, is the smallest eigenvalue of Q, 0 < o < 1,
0 <6y <1, 0<8,; <1 are design parameters such that
> 0ui+> 0,; =1and P> 0 satisfies PA+ ATP = —Q.
The inter-sampling time thresholds are given by

Tui = T(wui, [Al + W — | Billwa,i, | Bill, 1K)

Ty = 7wy, A+ W = [[Fjllwy 5, | F51] 1C5 1)

where W = || Bi|jwy,; + || EFjllwy,;, the function 7 is
defined as in (5) while wy ; = ——=—=, wy ; = 0627;7“.

- 2|PB,| 2|PE)|

Then, the origin of the closed loop system is globally

asymptotically stable and the inter-sample times of u; and
y; are lower bounded by T, ; and T}, ;, respectively.

0dmUu,i

Proof. Consider the candidate Lyapunov function V =
T Py, whose derivative along the flow of the closed loop
system is given by

V= wT(PA¢+ATP)w+2wTP{ZBuw ZFJ% ]

i=1

—¢TQ¢+2¢TP[§:Bﬂme—§:ﬁﬂm4 1)
i=1 j=1

Notice that

llwsll < K0 Nysll < IOl

Thus it is easy to see that

y S N My

V<—ﬂ—®QMWW+WM[ S
vzl Z 1G]

The triggering conditions ensure that Nu; < O and 7, < 0.
Thus,

V < —(1-0)Qnll¥l? (19)

from which it follows that the origin of the closed loop

system is globally asymptotically stable. Moreover, it is

clear from (18) that (19) holds as long as

el _ o 0Qnbus Mool |, 0@uby
Il To2pB Y T 2|PE

Note that each w,; and w, ; are strictly positive while
the norms of all the system matrices are finite. Hence, we
conclude from Lemma 1 that the lower bounds for inter-
sampling times of u; and y;, T, ; and T}, ;, respectively are
strictly positive. B

Note that in the proposed event-triggers a minimum sam-
pling time is enforced by design. This is necessary because
each event-trigger at the sensors and the controllers de-
pends only on local information and not on the complete
state of the system. Thus, each sensor and controller
subsystem has external inputs, which means no lower
bound can be guaranteed for zero crossings of 7,, and
ny,;- However, these external inputs are linear functions of
the overall system state and hence bounds on the rates of

evolution of ”mﬁu nd ”mﬁu can be found independent

of the unknown system state, ¥. From these bounds a
minimum sampling time for each of the sensors and con-
trollers can be found that ensure V' < 0. This is exactly
what the procedure in Lemma 1 accomplishes. Finally,
the proposed event-triggers only ensure that the inter-
sample times of u; and y; are individually lower bounded
by positive constants. It must be noted that it is possible
for different controller outputs and sensor outputs to be
sampled arbitrarily close to each other.

In the next section, simulation results are presented to
illustrate the proposed event-triggered controllers.

4. SIMULATION RESULTS

In this section, the proposed event-triggered dynamic
output feedback controllers are illustrated for a linearized
model of a batch reactor, Walsh and Ye (2001). The plant
and the dynamic controller are given by (1)-(3) with

138 —0.2077 6.715 —5.676
L |0ss14 —a20 0 0675
= | 1.067 4273 —6.654 5.803
| 0.048 4273 1343 —2.104
00 2 0
5679 0 101 -1 41
B= 11136 —3.146 702{010 0}’F:_ —9 9
1136 0 14
i [0.1769 0.079 0.0794 —0.2465
=~ 11.0328 0.1896 —0.4479 0.7176

In the event-triggered controllers, = Ig, the 8 x 8
identity matrix, o = 0.95 were chosen. For the simulations
presented here, the initial condition of the plant and the
observer were chosen as z(0) = [2;3;—1;2] and #(0) =
[0;0;0; 0], respectively. The zeroth sampling instant was
chosen as t§ = —1T, for each signal z. This is to ensure sam-
pling at ¢t = 0 if the 1,4(0) satisfies the triggering condition.
In the centralized architecture, the initial sampled data
was the same as the actual data. While in the decentralized
architecture, the initial sampled data u4(0) and y,(0) were
chosen arbitrarily to be consistent with the asynchronous
sampling model. In the presented simulations ys(0) = [2; 3]
and us(0) = [1;2] were chosen and finally the simulation
time was chosen as 10s.

In the centralized architecture, 0,, = 6, = 0.5 was chosen
and the average inter-sample time was obtained as 0.0125s.
In the decentralized architecture, the # parameters were



chosen as 6, = [0.1 0.25] and 6, = [0.35 0.3]. The average
inter-sample times obtained in this case were much higher
at [Ty,la Ty72, Tu,la TWQ] = 1073 X [36, 387 56, 38]8

Figure 2 shows the evolution of the Lyapunov function
and its derivative along the flow of the closed loop system.
Figure 3 shows the inter-sample times and the cumulative
frequency distribution of the inter-sample times in the
decentralized architecture. The slower the rise of the
cumulative distribution curves, the more useful the event-
triggered controller is as opposed to a time-triggered one.

V
Vv

o 2 10 o 2

4 5
t (seconds)

(a) (b)

Fig. 2. (a) The evolution of the Lyapunov function and (b)
its derivative along the flow of the closed loop system
in the decentralized architecture.
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Fig. 3. (a) Inter-sample times and (b) the cumulative
frequency distribution of the inter-sample times in the
decentralized architecture. The curves with colors red,
green, blue and black correspond to sampling time
data of yi1, y2, u1 and us, respectively.

Finally simulations were also performed for a decentralized
time-triggered architecture with the constant sampling
periods chosen as the observed average inter-sample times
in the event-triggered case, that is [T}, 1, Ty 2, Ty 1,Tu2] =
1072 x [3.6, 3.8, 5.6, 3.8]s. In this case too, it was observed
that the state of the closed loop system asymptotically
converged to zero, with the derivative of the Lyapunov
function along the flow of the system always being nega-
tive. Similar results were obtained for several other initial
conditions. Thus, the parameters T3 ; and T, ; in the
triggering conditions are very conservative and can be
improved.

5. CONCLUSIONS

In this paper, an event-triggered dynamic output feed-
back controller design has been developed for a decentral-
ized architecture. The designed event-triggering conditions
have been shown to ensure global asymptotic stability of
the origin of the closed loop system. A positive lower

bound on inter-sampling times of the controller and the
sensor outputs is guaranteed by explicitly including a
lower threshold on inter-sampling interval in the event-
triggering conditions. The design of these thresholds was
also presented. The proposed controllers were illustrated
through simulations.

The minimum inter-sample time thresholds in the trigger-
ing conditions were found to be very conservative. Thus, in
future, these estimates have to be improved significantly
and alternative event-triggering conditions have to be in-
vestigated. The gains and other parameters in the system
were chosen in an ad hoc manner and hence systematic
design methods are required for efficient controller design.
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