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Abstract— In this paper we propose a systematic method-
ology for designing implicitly verified event-triggered dynamic
output feedback controllers for LTI systems that are observable
and controllable. Event-triggering conditions that depend only
on local information are proposed for sampled-data implemen-
tation of the observer and the controller in three different
architectures. It is demonstrated that the triggering conditions
provide a global lower bound on the inter-sample times and
guarantee asymptotic stability of the closed loop system. The
proposed design methodology is illustrated through simulation
results.

I. INTRODUCTION

Recently, event-triggered control has been proposed as
an alternative to the traditional time-triggered (example:
periodic triggered) approach to digital control. In event based
control systems, the timing of control execution is implicitly
determined by a state dependent event-triggering condition.
Thus, by encoding the nature of the task (for example
stabilization) into an event-triggering condition, it is possible
to systematically design controllers that make better use of
computational and communication resources.

In recent years, event-triggered controllers have been
systematically designed (a representative list includes [1],
[2], [3], [4] and references therein) for different stabilization
tasks. Most work in this literature assumes the availabil-
ity of full state information. However, in many practical
applications only a part of the state information can be
directly measured and a dynamic (for example, observer
based) output feedback controller must be utilized. Thus, it is
important to develop event-triggered implementations of dy-
namic output feedback controllers and this paper contributes
to the presently limited literature on the subject.

The main contribution of this paper is a methodology
for designing implicitly verified event-triggered dynamic
output feedback controllers for Linear Time Invariant (LTI)
systems that are observable and controllable. We consider
architectures where the sensor and the dynamic controller are
co-located as well as one where they are not co-located. The
proposed event-triggering conditions depend only on local
information and include explicit positive lower thresholds
for inter-sampling times that are designed to ensure global
asymptotic stability of the closed loop system.
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In comparison, [5] proposed an event-triggered implemen-
tation that guarantees uniform ultimate boundedness of the
plant state and a semi-global estimate of the minimum inter-
communication time (dependent on the initial state of the
dynamic controller and the unknown state of the plant).

In [6], a model based output feedback controller was
proposed, in which the communication from the observer
subsystem to the system model subsystem is triggered
whenever a condition comparing the observer state and
the state of a local copy of the system model exceeds a
threshold. This controller guarantees a positive minimum
transmission time and uniform ultimate boundedness of the
closed loop state. In [7], [8] event-triggered output feedback
control for discrete-time systems was studied as an optimal
control problem, explicitly involving communication costs.
The proposed architecture includes a Kalman filter in the
sensor subsystem and identical observers in the sensor as
well as actuator subsystems. The results provide an upper
bound on the optimal cost attained by the event-triggered
system. In comparison to [6], [7], [8], we do not require
identical observers/models to be run at different locations.

Recently, a self-triggered dynamic output feedback con-
troller was proposed in [9] where a discrete-time observer is
in cascade with a full state-feedback self-triggered controller.
The resulting closed loop system is rendered input-to-state
stable (ISS) with respect to exogenous disturbances. Finally,
we have extended the proposed designs in this paper to
decentralized LTI systems [10].

The rest of the paper is organized as follows. In Section II
the problem under consideration is described and some math-
ematical notation is established. In Section III the dynamic
controllers and the event-triggering conditions for different
architectures are designed. This section also contains the
main analytical results of this paper. The proposed design
methodology is illustrated through simulations in Section IV
and finally some concluding remarks are made in Section V.

II. PROBLEM STATEMENT

Consider a Linear Time Invariant (LTI) control system

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm (1)
y = Cx, y ∈ Rp (2)

Assume that (A,B) and (A,C) are controllable and observ-
able, respectively. Further, assume that the gain matrices F
and K (which exist) are such that (A+FC) and (A+BK)
are Hurwitz. Thus, the continuous-time dynamic controller

˙̂x = (A+ FC)x̂+BKx̂− Fy, x̂ ∈ Rn (3)
u = Kx̂ (4)



is such that the closed loop system (1)-(4) is globally
asymptotically stable. To see this, let us first denote the
observer estimation error as

x̃ , x̂− x

Let ψ , [x; x̃] be the aggregate state vector, where the
notation [a1; a2] denotes the column vector formed by con-
catenating the vectors a1 and a2. Then, the closed loop
system may be written as

ψ̇ =

[
ẋ
˙̃x

]
=

[
A+BK BK

0 A+ FC

] [
x
x̃

]
, Āψ (5)

where 0 represents a matrix of zeroes of appropriate size.
There exist gains F and K such that the matrix Ā is Hurwitz,
thus rendering the closed loop system stable.

In this paper, we are interested in event-triggered imple-
mentation of the dynamic controller (3)-(4). In sampled-data
implementations (of which event-triggered implementation
is an example) the data used by the controller and actu-
ator are sampled at discrete time instants. Thus, let z be
any continuous-time signal and let {tzi } be the increasing
sequence of time instants at which z is sampled. Then we
denote the resulting piecewise constant sampled signal by
zs, that is,

zs , z(tzi ), ∀t ∈ [tzi , t
z
i+1) (6)

The sampled data, zs, may also be viewed as resulting from
an error in the the measurement of the continuous-time
signal, z. This measurement error is denoted by

ze , zs − z = z(tzi )− z, ∀t ∈ [tzi , t
z
i+1)

In time-triggered implementations, the time instants tzi are
pre-determined and are commonly a multiple of a fixed sam-
pling period. However, in event-triggered implementations
the time instants tzi are determined implicitly by a state/data
based triggering condition at run-time. Consequently, an
event-triggering condition may result in the inter sampling
times tzi+1− tzi to be arbitrarily close to zero or it may even
result in the limit of the sequence {tzi } to be a finite number
(Zeno behavior). Thus for practical utility, an event-trigger
has to ensure that these scenarios do not occur.

In this paper we consider three different architectures of
the closed loop system, shown in Figure 1. In the first two
architectures, Figures 1a and 1b, the sensor and the con-
troller are assumed to be co-located. Co-located components
have access to each others’ outputs at all times. Thus in
Architecture I, the sensor output is used by the controller
without sampling. In Architecture II, the controller utilizes
the sampled version of the sensor output even though it has
access to the continuous-time signal y. The utility of this
architecture is discussed in the sequel. In this architecture,
a single event-triggering condition triggers the sampling of
both the sensor output, y, and the controller output, u. Thus
these signals are sampled synchronously, that is, tyi = tui
for each i ∈ {0, 1, . . .}. In Architecture III, the controller
and the sensor are not co-located. Hence, the sensor output,
y, and the controller output, u, are sampled asynchronously

(tyi 6= tui ) by separate event-triggers, each depending only on
local information.

The problem we are interested in this paper is the design
of the dynamic controller and the event-triggers for each of
the architectures shown in Figure 1. The resulting event-
triggered controllers must render the closed loop system
globally asymptotically stable and ensure that the inter-
sampling times of each signal is lower bounded by a positive
constant.

Finally, a point regarding the notation in the paper is that
depending on the context, the notation ‖.‖ denotes either the
Euclidean norm of a vector or the induced matrix Euclidean
norm. In the next section, the dynamic controllers and the
event-triggering conditions for the three architectures are
developed.

III. EVENT-TRIGGERED IMPLEMENTATIONS OF THE
DYNAMIC CONTROLLER

In this section, the dynamic controllers and the event-
triggering conditions are developed for the three architectures
shown in Figure 1.

A. Architecture I

In Architecture I, the observer and the sensor are co-
located, which means the observer has access to the sensor’s
output at all times. The closed loop system with the sampled
data implementation of the observer and the controller is
given by

ẋ = Ax+Bus (7)
y = Cx (8)
˙̂x = (A+ FC)x̂+BKx̂s − Fy (9)
u = Kx̂ (10)

where the subscript s denotes the sampled versions of the
corresponding continuous-time signals. The second term,
BKx̂s, in the observer, (9), is the natural choice to model
the effect of the sampled data control us = Kx̂s in the plant
dynamics (7).

The closed loop system can be written in terms of the
measurement error x̂e = x̂s − x̂ as

ψ̇ = Āψ +

[
BK

0

]
x̂e = Āψ +G1H1ψe (11)

where G1 ,

[
BK

0

]
, H1 ,

[
In In

]
(12)

where ψ = [x; x̃] = [x; x̂ − x], Ā is as defined in (5), 0
represents a matrix of zeroes of appropriate size and In is
the n×n identity matrix. Note that the sampled-data nature of
the system is implicit in the measurement error term, x̂e (or
ψe). The system description is still incomplete and requires
specification of the event-triggering condition.

To design the event-triggering condition we first present
the following lemma, which is a modified version of Corol-
lary IV.1 from [1].

Lemma 1: Let ζ̇ = Aζ+B1ξe+B2ωe denote a LTI control
system where ζ ∈ Rnζ , ξe ∈ Rm1 , ωe ∈ Rm2 , while A,



(a) Architecture I: Sensor and controller co-
located. Sensor output available to the con-
troller at all time.

(b) Architecture II: Sensor and controller co-
located. Synchronous sampling of the sensor
and controller outputs.

(c) Architecture III: Sensor and controller not
co-located. Asynchronous sampling of the sen-
sor and controller outputs.

Fig. 1: The three control loop architectures considered in this paper. The components within a dotted box are at the same
location - that is each component has access to the other components’ output at any given time.

B1 and B2 are matrices of appropriate dimensions. Further,
ξe , ξs− ξ, ξ = K1ζ, ωe , ωs−ω, ω = K2ζ where ξs and
ωs are defined as the piecewise constant signals obtained
by asynchronously sampling ξ and ω, respectively, as in
(6). Let w1 ≥ 0 and w2 ≥ 0 be any arbitrary constants.
Suppose the sampling times are such that ‖ξe‖/‖ζ‖ ≤ w1

and ‖ωe‖/‖ζ‖ ≤ w2 for all time. Then, the time required
for ‖ξe‖/‖ζ‖ to evolve from 0 to w1 and time required for
‖ωe‖/‖ζ‖ to evolve from 0 to w2 are lower bounded by τ1
and τ2, where

τ1 = τ(w1, ‖A‖+ ‖B2‖w2, ‖B1‖, ‖K1‖)
τ2 = τ(w2, ‖A‖+ ‖B1‖w1, ‖B2‖, ‖K2‖)

The function τ is given by

τ(w, a, b, k) = {t ≥ 0 : φ(t, 0) = w} (13)

where w ≥ 0, a, b, k are positive constants and φ(t, c) is the
solution of

φ̇ =
(
k + φ

)(
a+ bφ

)
, φ(0, c) = c.

Proof: By direct calculation we see that

d

dt

(
‖ξe‖
‖ζ‖

)
=
−(ξTe ξe)

−1/2ξTe K1ζ̇

‖ζ‖
− ζT ζ̇‖ξe‖
‖ζ‖3

≤
(
‖K1‖+

‖ξe‖
‖ζ‖

)
‖ζ̇‖
‖ζ‖

≤
(
‖K1‖+

‖ξe‖
‖ζ‖

)
‖A‖‖ζ‖+ ‖B1‖‖ξe‖+ ‖B2‖‖ωe‖

‖ζ‖
where for ξe = 0 the relation holds for all directional
derivatives. Now, let ν1 , ‖ξe‖/‖ζ‖ and ν2 , ‖ωe‖/‖ζ‖.
Then, it follows that

ν̇1 ≤
(
‖K1‖+ ν1

)(
‖A‖+ ‖B2‖w2 + ‖B1‖ν1

)
where w2 appears due to the assumption that the sampling
instants are such that ‖ωe‖/‖ζ‖ ≤ w2 for all time. An
analogous expression for a bound on the rate of change of
‖ωe‖/‖ζ‖ can be obtained. The claim of the Lemma follows
directly by comparison with (13).

The following result presents the triggering condition
(with an explicit positive lower bound on the inter-sampling
times) for Architecture I and demonstrates global asymptotic
stability of the closed loop system.

In the sequel the following notation is utilized.

Lyap(A,Q) = P such that PA+ATP = −Q

where A is a square Hurwitz matrix and Q is a positive
definite matrix.

Theorem 1: Consider the system given by (11) with
(A,B) controllable, (A,C) observable and Ā Hurwitz. Let
Q ∈ R2n be any positive definite matrix and let the event-
triggering condition be

ti+1 = min{t ≥ ti + T : η ≥ 0} (14)

η = 2‖PG1‖‖x̂e‖ − σQm

(
θ1‖x̂‖√

2
+
θ2‖y‖
‖C‖

)
(15)

where Qm is the smallest eigenvalue of Q, 0 < σ < 1,
0 ≤ θ1 ≤ 1, 0 ≤ θ2 ≤ 1 are design parameters such that
θ1 + θ2 = 1, P = Lyap(Ā,Q) is a positive definite matrix

and T = τ

(
σQm

2‖PG1‖
, ‖Ā‖, ‖G1‖, ‖H1‖

)
, the function τ

being as defined in (13). Then, the origin of the closed loop
system is globally asymptotically stable and the inter-sample
times are lower bounded by T .

Proof: First note that Ā is Hurwitz and hence there
exists a positive definite matrix P that satisfies the Lyapunov
condition in the statement of the theorem. Now consider the
candidate Lyapunov function V = ψTPψ, whose derivative
along the flow of the closed loop system is given by

V̇ = ψTPĀψ + ψT ĀTPψ + 2ψTPG1H1ψe

≤ −ψTQψ + 2ψTPG1x̂e

≤ −(1− σ)Qm‖ψ‖2 − ‖ψ‖
[
σQm‖ψ‖ − 2‖PG1‖‖x̂e‖

]
(16)

Now, if x̂ 6= 0 then there is a non-negative number k such
that ‖x‖ = k‖x̂‖, from which it follows that

‖ψ‖ =
√
‖x‖2 + ‖x̂− x‖2 ≥

√
‖x‖2 + 2‖x‖2 − 2‖x‖‖x̂‖

≥ ‖x̂‖
√

2k2 − 2k + 1 ≥ ‖x̂‖√
2

where the last step follows by minimizing with respect to
k. If on the other hand, x̂ = 0, then ‖ψ‖ ≥ ‖x̂‖/2 holds
trivially. Next, we see that ‖ψ‖ ≥ ‖x‖ ≥ ‖y‖/‖C‖. Thus,



the following holds

‖ψ‖ ≥ θ1‖x̂‖√
2

+
θ2‖y‖
‖C‖

, with θ1 + θ2 = 1

Hence the triggering condition (14) ensures that

V̇ ≤ −(1− σ)Qm‖ψ‖2

from which it follows that the origin of the closed loop
system is globally asymptotically stable. Next, from (16),
it is clear that V̇ ≤ −(1− σ)Qm‖ψ‖2 as long as

‖x̂e‖
‖ψ‖

≤ w1 =
σQm

2‖PG1‖
(17)

Since w1 > 0 and the norms of all the system matrices are
finite, it follows from Lemma 1 (with w2 = 0) that the inter-
sample times are lower bounded by T , which is positive.

Note that the time for the function η, (15), to grow to zero
from its initial value at a sampling instant can be arbitrarily
small. However, a lower bound on the time that the quantity
on the left hand side of (17) takes to evolve from 0 to the
threshold w1 is independent of the unknown state of the
closed loop system ψ and is given by a positive quantity, T .

In the next subsection, we design the dynamic controller
and the event-trigger for Architecture II, Figure 1b.

B. Architecture II

In Architecture II, Figure 1b, the observer and the sensor
are co-located, which means the observer has access to the
sensor information at all times. However, the observer in this
architecture utilizes sampled version of the sensor output.
The controller and sensor outputs are sampled synchronously
at time instants determined by a single event-trigger. The
observer system in this case is given by

˙̂x = (A+ FC)x̂+BKx̂s − Fys (18)

where the subscript s denotes the sampled versions of
the corresponding continuous-time signals. The closed loop
system may be written in terms of the measurement error
x̂e = x̂s − x̂ and ye = ys − y as

ψ̇ = Āψ +G1x̂e +G2ye = Āψ +GHψe (19)

G2 ,

[
0
−F

]
, G ,

[
BK 0

0 −F

]
, H ,

[
In In
C 0

]
(20)

where ψ = [x; x̃] = [x; x̂ − x], Ā is as defined in (5),
G1 is given by (12), 0 represents a matrix of zeroes of
appropriate size and In is the n × n identity matrix. Note
that the sampled-data nature of the system is implicit in
the measurement error terms, x̂e and ye (or ψe). The utility
of this architecture can be seen from (18). The observer in
this architecture has piecewise constant inputs, which greatly
simplifies the online computation of the observer state, x̂.

The following result presents the triggering condition for
Architecture II, which incorporates an explicit positive lower
bound for the inter-sampling times, and demonstrates global
asymptotic stability of the closed loop system.

Theorem 2: Consider the system given by (19) with
(A,B) controllable, (A,C) observable and Ā Hurwitz. Let
Q ∈ R2n be any positive definite matrix and let the event-
triggering condition be

ti+1 = min{t ≥ ti + T : η ≥ 0} (21)
η = 2‖PG1‖‖x̂e‖+ 2‖PG2‖‖ye‖

− σQm

(
θ1‖x̂‖√

2
+
θ2‖y‖
‖C‖

)
(22)

where Qm is the smallest eigenvalue of Q, 0 < σ < 1, 0 ≤
θ1 ≤ 1, 0 ≤ θ2 ≤ 1 are design parameters such that θ1+θ2 =

1, P = Lyap(Ā,Q) and T = τ

(
σQm

2‖PG‖
, ‖Ā‖, ‖G‖, ‖H‖

)
,

the function τ being as defined in (13). Then, the origin of
the closed loop system is globally asymptotically stable and
the inter-sample times are lower bounded by T .
The proof is similar to that of Theorem 1 and Lemma 1 is
again invoked with w2 = 0 because the controller and sensor
outputs are sampled synchronously. In the next subsection,
we design the dynamic controller and the event-triggers for
Architecture III where the sampling is asynchronous.

C. Architecture III

In Architecture III, Figure 1c, the observer and the sensor
are not co-located, which implies that the observer has access
only to the sampled sensor data. Moreover, the controller and
sensor outputs are sampled asynchronously at time instants
determined by separate event-triggers. The observer in this
case is given by

˙̂x = (A+ FC)x̂+BKx̂s − Fys (23)

where the subscript s denotes the sampled versions of the
corresponding continuous-time signals. It is to be understood
implicitly that x̂s and ys represent asynchronously sampled
signals, that is,

x̂s = x̂(tx̂i ), ∀t ∈ [tx̂i , t
x̂
i+1)

ys = y(tyi ), ∀t ∈ [tyi , t
y
i+1)

Then the closed loop system can be written in terms of the
measurement errors, x̂e = x̂s − x̂ and ye = ys − y as

ψ̇ = Āψ +G1x̂e +G2ye (24)

where ψ = [x; x̃] = [x; x̂−x], 0 represents a matrix of zeroes
of appropriate size, Ā, G1 and G2 are defined as in (5), (12)
and (20), respectively. Note that

x̂ =
[
In In

]
ψ , H1ψ, y =

[
C 0

]
ψ , H2ψ (25)

where In is n×n identity matrix. As in Architecture II, the
observer has piecewise constant inputs, which simplifies the
online computation of the observer state, x̂. The final result,
which is analogous to those for Architectures I and II is now
presented.

Theorem 3: Consider the closed loop system given by
(24) with (A,B) controllable, (A,C) observable and Ā



Hurwitz. Let Q ∈ R2n be any positive definite matrix and
let the event-triggering condition be

tx̂i+1 = min{t ≥ tx̂i + T1 : η1 ≥ 0} (26)

η1 = 2‖PG1‖‖x̂e‖ −
σQmθ1√

2
‖x̂‖ (27)

tyi+1 = min{t ≥ tyi + T2 : η2 ≥ 0} (28)

η2 = 2‖PG2‖‖ye‖ −
σQmθ2
‖C‖

‖y‖ (29)

where Qm is the smallest eigenvalue of Q, 0 < σ < 1,
0 < θ1 < 1, 0 < θ2 < 1 are design parameters such that
θ1 + θ2 = 1 and P = Lyap(Ā,Q). The inter-sampling time
thresholds are given by

T1 = τ(w1, ‖Ā‖+ ‖G2‖w2, ‖G1‖, ‖H1‖)
T2 = τ(w2, ‖Ā‖+ ‖G1‖w1, ‖G2‖, ‖H2‖)

with the function τ being defined as in (13), H1 and H2 as
defined in (25) while

w1 =
σQmθ1
2‖PG1‖

, w2 =
σQmθ2
2‖PG2‖

Then, the origin of the closed loop system is globally
asymptotically stable and the inter-sample times of x̂ and
y are lower bounded by T1 and T2, respectively.

Proof: Consider the candidate Lyapunov function V =
ψTPψ, whose derivative along the flow of the closed loop
system is given by

V̇ = ψTPĀψ + ψT ĀTPψ + 2ψTPG1x̂e + 2ψTPG2ye

≤ −ψTQψ + 2ψTPG1x̂e + 2ψTPG2ye

≤ −(1− σ)Qm‖ψ‖2

− ‖ψ‖
[
σQmθ1‖ψ‖ − 2‖PG1‖‖x̂e‖

]
− ‖ψ‖

[
σQmθ2‖ψ‖ − 2‖PG2‖‖ye‖

]
(30)

which implies

V̇ ≤ −(1− σ)Qm‖ψ‖2

− ‖ψ‖
[σQmθ1√

2
‖x̂‖ − 2‖PG1‖‖x̂e‖

]
− ‖ψ‖

[σQmθ2
‖C‖

‖y‖ − 2‖PG2‖‖ye‖
]

The triggering conditions then ensure that

V̇ ≤ −(1− σ)Qm‖ψ‖2 (31)

from which it follows that the origin of the closed loop
system is globally asymptotically stable. Moreover, it is clear
from (30) that (31) holds as long as

‖x̂e‖
‖ψ‖

≤ w1 =
σQmθ1
2‖PG1‖

,
‖ye‖
‖ψ‖

≤ w2 =
σQmθ2
2‖PG2‖

Since both w1 and w2 are strictly positive while the norms of
all the system matrices are finite, we conclude from Lemma
1 that the lower bounds for inter-sampling times of x̂ and y,
T1 and T2, respectively are strictly positive.

The design of the event-triggering condition and the proof of
the Theorem 3 are very similar to those developed earlier. A
minimum inter-sampling time is enforced by design. Given
positive thresholds w1 and w2, Lemma 1 provides a positive
minimum sampling time that is independent of the unknown
state of the closed loop system. By appropriately choosing
the thresholds w1 and w2, the resulting event-trigger is
guaranteed to globally asymptotically stabilize the closed
loop system. The triggering conditions only ensure that the
inter-sample times of x̂ and y are lower bounded by positive
constants. It must be noted that it is possible for the controller
output and the sensor output to be sampled arbitrarily close
to each other. Another minor difference of this architecture
with respect to the first two is that θ1 and θ2 cannot take
values 0 or 1 but only those between them.

In the next section, simulation results are presented to
illustrate the proposed event-triggered controllers.

IV. SIMULATION RESULTS

In this section, the proposed event-triggered dynamic out-
put feedback controllers are illustrated. The following are the
system matrices and parameters chosen for the simulations.

A =

[
2 3
1 3

]
, B =

[
0
1

]
, C =

[
1 0

]
K =

[
−15 −10

]
, F =

[
−10
−14

]
, Q = I4, σ = 0.95

where I4 is the 4 × 4 identity matrix. For the simulations
presented here, the initial condition of the plant and the
observer were chosen as x(0) = [2; 3] and x̂(0) = [0; 0],
respectively. The zeroth sampling instant was chosen as
tx̂0 = −T in Architecture I and tx̂0 = −T1 in Architectures
II and III. Similarly, ty0 = −T2 was chosen in Architectures
II and III. This is to ensure sampling at t = 0 if the ψs(0)
satisfies the triggering condition. In the simulations, x̂s(0) =
x̂(0) was chosen in all the architectures. In Architecture II,
ys(0) = y(0) was chosen because the observer and the
sensor are co-located and the sampling is synchronous. In
Architecture III, where the observer and the sensor are not
co-located and whose outputs are sampled asynchronously,
x̂s(0) = x̂(0) was chosen while ys(0) 6= y(0) was chosen as
an arbitrary value. In the presented simulations (Sim Nos. 5
and 6) ys(0) = 1.01× y(0) was chosen.

Table I summarizes the results for the three architectures.
We see that the triggering conditions ensure a lower bound
on the inter-sampling times of the sensor and the controller
outputs. The ratio of T1 over the observed average sampling
interval of x̂ is given by µ1. The variable µ2 is similarly
defined for y. Thus, µ1 and µ2 provide an indication of
the communication resources required by the event-triggered
sampling as a factor of time-triggered sampling, with a
constant sampling period of T1 and T2, respectively. The
lower the values of µ1 and µ2, the better it is.

Figure 2 shows the evolution of the Lyapunov function
V in Sim Nos. 1, 3 and 5. As can be seen, the rate of
convergence is only marginally faster in Sim No. 1 and is
similar in all the three cases. Figures 3a and 3b show the



TABLE I: Simulation results for Architectures I, II and III. In Architecture I, the sensor output y is available to the controller
all the time. In Architecture II, the controller and the sensor outputs are sampled synchronously by a single event-trigger.

Sim. θ1 θ2 T1 T2 Observed min. Observed min. Observed Avg. Observed Avg. µ1 µ2
No. interval (x̂) interval (y) interval (x̂) interval (y)

(ms) (ms) (ms) (ms) (ms) (ms)
Arch. I 1 1 0 2 - 2 - 7.9 - 0.25 -
Arch. I 2 0.6 0.4 2 - 2 - 7.1 - 0.28 -
Arch. II 3 1 0 0.57 0.57 0.57 0.57 3.8 3.8 0.15 0.15
Arch. II 4 0.6 0.4 0.57 0.57 0.85 0.85 3.4 3.4 0.17 0.17
Arch. III 5 0.5 0.5 1 0.48 1 0.48 4 1.6 0.25 0.31
Arch. III 6 0.3 0.7 0.61 0.67 0.61 0.67 2.5 2.2 0.25 0.31

evolution of the inter-sample times and the cumulative fre-
quency distribution of the inter-sample times, respectively, in
Sim Nos. 1, 3 and 5. As expected, Architecture I outperforms
the other two in terms of the inter-sample times.
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Fig. 2: The evolution of the Lyapunov function V .
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Fig. 3: (a) Evolution of the inter-sample times. (b) Cumula-
tive frequency distribution of the inter-sample times.

Finally, simulations were also performed on the time-
triggered architectures analogous to Architectures I, II and
III. In each case, the constant sampling period was chosen
as the average sampling periods shown in Table I. The
convergence rates in these simulations were very similar to
those shown above.

V. CONCLUSIONS

In this paper event-triggered dynamic output feedback
controllers have been developed for architectures where the
controller and the sensor are co-located as well as where
they are not co-located. In each case, a minimum inter-
sampling time is enforced by incorporating a lower threshold
on inter-sampling interval in the event-triggering conditions.

The designed event-triggering conditions have been shown to
ensure global asymptotic stability of the origin of the closed
loop system. The proposed controllers have been illustrated
through simulations.

The observer and the controller gains can be chosen
independently, as in the classical case. However, their effect
on the exact convergence rate and inter-sampling times has
to be studied in detail. The inter-sample time thresholds
can also be made less conservative. In Architecture III, the
sensor and the controller are not co-located. Hence, the
event-triggering conditions have been designed to sample the
sensor and controller outputs asynchronously. This design
can be extended to decentralized event-triggered implementa-
tions of dynamic output feedback controllers, which has been
recently accomplished in [10]. Finally, although the proposed
controllers represent an improvement over existing event-
triggered dynamic output feedback controllers, simulation
based comparison with time-triggered controllers suggests
the inter-sample times are conservative.

REFERENCES

[1] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control
tasks,” IEEE Transactions on Automatic Control, vol. 52, no. 9, pp.
1680–1685, 2007.

[2] W. Heemels, J. Sandee, and P. Van Den Bosch, “Analysis of event-
driven controllers for linear systems,” International Journal of Control,
vol. 81, no. 4, pp. 571–590, 2008.

[3] X. Wang and M. Lemmon, “Self-triggered feedback control systems
with finite-gain L2 stability,” IEEE Transactions on Automatic Con-
trol, vol. 54, pp. 452–467, 2009.

[4] P. Tallapragada and N. Chopra, “On event triggered trajectory tracking
for control affine nonlinear systems,” in IEEE Conference on Decision
and Control and European Control Conference, 2011, pp. 5377–5382.

[5] M. Donkers and W. Heemels, “Output-based event-triggered control
with guaranteed L∞-gain and improved event-triggering,” in IEEE
Conference on Decision and Control, 2010, pp. 3246–3251.

[6] D. Lehmann and J. Lunze, “Event-based output-feedback control,” in
Mediterranean Conference on Control & Automation, 2011, pp. 982–
987.

[7] L. Li and M. Lemmon, “Event-triggered output feedback control of
finite horizon discrete-time multi-dimensional linear processes,” in
IEEE Conference on Decision and Control, 2010, pp. 3221–3226.

[8] ——, “Weakly coupled event triggered output feedback control in
wireless networked control systems,” in Annual Allerton Conference
on Communication, Control, and Computing, 2011, pp. 572–579.

[9] J. Almeida, C. Silvestre, and A. M. Pascoal, “Observer based self-
triggered control of linear plants with unknown disturbances,” in
American Control Conference, 2012, pp. 5688–5693.

[10] P. Tallapragada and N. Chopra, “Event-triggered decentralized dy-
namic output feedback control for LTI systems,” in Estimation and
Control of Networked Systems, 2012, to appear.


