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Abstract— This paper considers Linear Time Invariant (LTI)
control systems with full state feedback, a central controller
and distributed sensors not co-located with the central con-
troller. We present a methodology for designing decentralized
asynchronous event-triggers, which utilize only locally available
information, for determining the time instants of transmission
from the sensors to the central controller. The proposed design
guarantees a positive lower bound for the inter-transmission
times of each sensor, while ensuring global asymptotic stability
of the origin of the system. Additionally, the proposed decentral-
ized asynchronous event-triggers are shown to preserve scale
invariance of inter-transmission times. The proposed method is
illustrated through simulations of a linear example.

I. INTRODUCTION

State based aperiodic event-triggering is receiving in-
creased attention (a representative list of the recent literature
includes [1]-[7]) as an alternative to the traditional time-
triggering (example: periodic triggering) in sampled data
control systems. In event based control systems, a state or
data dependent event-triggering condition implicitly deter-
mines time instances at which control is updated or when a
sensor transmits data to a controller. Such updates or trans-
missions are in general aperiodic and depend on the system
state. Such a paradigm is particularly appealing in control
systems with limited computational and/or communication
resources.

Much of the literature on event-triggered control utilizes
the full state information in the triggering conditions. How-
ever, in two very important classes of problems full state
information is not available to the event-triggers. These are
systems with decentralized sensing and/or dynamic output
feedback control. In the latter case, full state information
is not available even when the sensors and the controller
are centralized (co-located). In systems with decentralized
sensing, each individual sensor has to base its decision
to transmit data to a central controller only on locally
available information. These two classes of problems are
receiving attention in the community only recently - [8]—
[12] (decentralized sensing) and [13]-[18] (output feedback
control). This paper is an important addition to the limited
literature on decentralized event-triggering in control systems
with distributed sensors.

The basic contribution of this paper is a methodology for
designing implicitly verified decentralized event-triggers for
control of Linear Time Invariant (LTI) systems. The system
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architecture we consider is one with full state feedback but
with the sensors distributed and not co-located with a central
controller. The proposed design methodology provides event-
triggers that determine when each sensor transmits data
to the central controller. The event-triggers are designed
to utilize only locally available information, making the
transmissions from the sensors asynchronous. The proposed
design guarantees global asymptotic stability of the origin
of the system and a positive lower bound for the inter-
transmission times of each sensor individually. In addition,
scale invariance of inter-transmission times is preserved.

In the literature, distributed event-triggered control was
studied in [11], [12] with the assumption that the subsystems
are weakly coupled, which allowed the design of event-
triggers depending on only local information. Our proposed
design method requires much less restrictive assumptions.
In [8]-[10], each sensor checks a local condition (based on
threshold crossing) that triggers asynchronous transmission
of data by sensors to a central controller. However, this
design guarantees only semi-global practical stability (even
for linear systems) if the sensors do not listen to the central
controller. Compared to this work, our proposed design holds
for Linear Time Invariant (LTI) systems and guarantees
global asymptotic stability without the sensors having to
listen to the central controller. A similarity between the
current paper and [8]-[10] is that both are partially motivated
by the need to eliminate or drastically reduce the listening
effort of the sensors to save energy.

In the dynamic output feedback control literature,
[13]-[15] consider asynchronous and decentralized event-
triggering for Linear Time Invariant (LTI) systems. Again,
the method in [13] can guarantee only semi-global practical
stability. In [14], [15], we have proposed a method that
guarantees global asymptotic stability and positive minimum
inter-transmission times. In principle, the method in [14],
[15] can be utilized to design decentralized asynchronous
event-triggers for the special case with full state feedback.
Thus, apart from clearly spelling out the design for the case
with full state feedback, the additional contribution of this
paper with respect to [14], [15] is an improved presentation
of the design method that is much more intuitive and the
result on the preservation of the scale invariance of inter-
transmission times.

The rest of the paper is organized as follows. Section II
describes and formally sets up the problem under considera-
tion. In Section III, the design of asynchronous decentralized
event-triggers for Linear Time Invariant (LTI) systems is
presented. The proposed design methodology is illustrated
through simulations in Section IV and finally Section V



provides some concluding remarks.

II. PROBLEM SETUP

Consider a Linear Time Invariant (LTI) system and the
feedback control law

i=Ax+ Bu, z€R" wuweR™ (1)
u=K(z+ x.) (2)

where A, B and K are matrices of appropriate dimensions
while z. is the error in the measurement of x. In general,
the measurement error can be due to many factors such
as sensor noise and quantization. However, we consider
measurement error that is purely a result of “sampling” of the
sensor data x. Before going into the precise definition of this
measurement error, we first describe the broader problem. Let
us assume that for each ¢ € {1,2,...,n}, z; € R is sensed
by the i" sensor. Thus, it is useful to explicitly express (1)-
(2) as a collection of n scalar differential equations

i = ri(A)z + ri(BK) (z + 2. 3

where & = [x1, 7, ...,2,]T and the notation r;(H) denotes
the i row of the matrix H.

In this paper we are concerned with a distributed sensing
scenario where each component, z;, of the state vector x is
sensed at a different location. Although the 7" sensor senses
x; continuously in time, it transmits this data to a central
controller only intermittently. In other words, the controller
is a sampled-data controller that uses intermittently transmit-
ted/sampled sensor data. In particular, we are interested in
designing an asynchronous decentralized sensing mechanism
based on local event-triggering that renders the origin of the
closed loop system asymptotically stable.

To precisely describe the sampled-data nature of the
problem, we now introduce the following notation. Let {¢]"}
be the increasing sequence of time instants at which z;
is sampled and transmitted to the controller. The resulting
piecewise constant sampled signal is denoted by z; -, that
is,

zis = x(t), Vte[t] ),

7otk Vie{0,1,2,...} 4
As mentioned previously, the sampled data, x; ;, may also
be viewed as resulting from an error in the the measurement
of the continuous-time signal, x;. This measurement error is

denoted by

L xis—x; = 2 (t5) Vit e [t5, 51 ,)

Ti.e j

s — Ti,
Finally, we define the sampled-data vector and the measure-
ment error vector as

A T A T
Ts = [xl,s;Z‘Q,sw- ] , Te = [Il,ewxlea-' ]

<y Tn,s <y Tne

Note that, in general, the components of the vector x, are
asynchronously sampled components of the plant state .
The components of x. are also defined accordingly.

In time-triggered implementations, the time instants tfi are
pre-determined and are commonly a multiple of a fixed sam-
pling period. However, in event-triggered implementations

the time instants tjl are determined implicitly by a state/data
based triggering condition at run-time. Consequently, an
event-triggering condition may result in the inter-sample
times ¢71, — 7' to be arbitrarily close to zero or it may
even result in the limit of the sequence {t7*} to be a finite
number (Zeno behavior). Thus for practical utility, an event-
trigger has to ensure that these scenarios do not occur.

Thus, the problem under consideration may be stated more
precisely as follows. For the n sensors, design event-triggers
that depend only on local information and implicitly define
the non-identical sequences {t"} such that (i) the origin of
the closed loop system is rendered globally asymptotically
stable and (ii) inter-sample (inter-transmission) times tf_j_l —
t; are lower bounded by a positive constant.

Finally, a point regarding the notation in the paper is that
the notation |.| denotes the Euclidean norm of a vector. In the
next section, event-triggering for the decentralized sensing
architecture is developed.

III. DECENTRALIZED ASYNCHRONOUS
EVENT-TRIGGERING

In this section, our aim is to constructively show that
for LTI systems decentralized asynchronous event-triggering
can be used to globally asymptotically stabilize x = 0 (the
trivial solution or the origin) while also guaranteeing positive
minimum inter-sample times. The proposed design relies on
the emulation of continuous-time feedback control. Thus, it
is assumed that the matrix (A + BK) is Hurwitz, which is
equivalent to the following statement.

(A1) Suppose that for any given symmetric positive definite
matrix (), there exists a symmetric positive definite
matrix P such that P(A+BK)+(A+BK)T'P = —-Q.

The proposed design of decentralized asynchronous event-
triggering progresses in stages. In the first stage, centralized
event-triggers for asynchronous sampling of the sensors are
proposed.

A. Centralized Asynchronous Event-Triggering

The following lemma describes a centralized asynchronous
sensing mechanism for linear systems that guarantees global
asymptotic stability of the origin.

Lemma 1: Consider the closed loop system (1)-(2) and
assume (A1) holds. Let () be any symmetric positive definite
matrix and let ,,, be the smallest eigenvalue of (). For each
i€{1,2,...,n}, let

0;€(0,1) st 0=> 0;<1 (5)
i=1

O—eiQm,

Y= G(2PBE)]
where 0 < o < 1 is a constant and ¢;(2PBK) is the
i™ column of the matrix (2PBK). Suppose the sampling
instants are such that for each i € {1,...,n}, |z; | < w;|z|
for all time ¢ > 0. Then, the origin is globally asymptotically
stable.

Proof:  Consider the candidate Lyapunov function
V(x) = 2T Pz where P satisfies (Al). The derivative of

(6)




the function V' along the flow of the closed loop system
satisfies

V =a2T[P(A+ BK) + (A+ BK)"Plz + 22T PBK .
< ~(1 - 0)a"Qu + |x|[|2PBKw.| ~ oQulal]

S 7(1 — O’)J;TQ,I —+ |x‘ -Z ‘67(2PBK)£ZELP| — O'Qm|l’|:|

where the function 7 is given by (7) and

ag = |ri(A+ BK)| + |ri(BK)|W;,

a1 = |A+ BK| + |ry(BK)|+ |BK|W;, a3 =|BK]|
Proof: Letting v; £ |z;|/|z|, for i € {1,...,n}, an

upper bound for the time derivative of v; can be found by

direct calculation.

T ... \-1/2,.T ;..
_(xi,exl,e) LieLi,e

— vi ' @|z; o
ES dt ] jz[?
< (1= 07 Qu s 3 P B s - o Qe fricllivel _ lalilloic]
_2:1 < i K 9
|%i,e||] |z
The sensor update instants lalave been assumed to be such |ri(A 4+ BK)||z| + |ri(BK)||z|
; <
that [z;|/[z| < w; = % for each ¢ and for all - ||
Ci
time ¢ > 0. Thus, (|A+ BK||z| + |BK||z|) |2 .|
. . [af?
V<—-(1-
<= o)z Qu where for z;. = 0 the relation holds for all directional

which implies that the origin is globally asymptotically
stable. ]

The lemma does not mention a specific choice of event-
triggers but rather a family of them - all those that ensure
the conditions |z; .| < w;|x| are satisfied. Thus, any decen-
tralized event-triggers in this family automatically guarantee
asymptotic stability with the desired region of attraction. To
enforce the conditions |z; .| < w;|z| strictly, event-triggers
at each sensor would need to know |z|, which is possible
only if we have centralized information. One obvious way
to decentralize these conditions is to enforce |z; | < w;|x;|.
However, such event-triggers cannot guarantee any positive
lower bound for the inter-transmission times, which is not
acceptable. So, we take an alternative approach, in which the
next step is to derive lower bounds for the inter-transmission
times when the conditions in Lemma 1 are enforced strictly.

Before analyzing the lower bounds for the inter-
transmission times that emerge from the event-triggers in
Lemma 1, we introduce some notation. Let the function 7
be defined as

T(w,ag,a1,az) = {t >0: $(t,0) = w} @)

where ag, a1, as are non-negative constants and ¢(t, ¢g) is
the solution of

¢ =ap+a1d+ax0?,  $(0,h0) = o

Lemma 2: Consider the closed loop system (1)-(2). For
each i € {1,...,n}, let §;, w; be defined as in (5)-(6) and

n

let W; = Z w? | —w?. Suppose the sampling instants
Jj=1

are such that |z;.|/|z| < w; for each ¢ € {1,...,n} for

all time ¢ > tg. Then, for all ¢ > ¢y, the time required for
|zi.e|/|x| to evolve from O to w; is lower bounded by T; > 0,
where

T; = 7(wj, ag, a1, az) ¥

derivatives while the notation r;(H) denotes the i row of
the matrix H. Next, notice that

j=n

xr

- S| —ur vt Witn,
=1

where the condition that v; < w;, the definition of W; and
the triangle inequality property have been utilized. Thus,

dy;
2L < |ri(A+ BK)| + |4+ BK|v

+ (Ir(BE)| + | BE]v ) (Wi +v3)

2
=ap + a1v; + asv;

The claim of the Lemma now directly follows. [ ]
Now, by combining Lemmas 1 and 2, we get the following
result for the centralized asynchronous event-triggering.
Theorem 1: Consider the closed loop system (1)-(2) and
assume (A1) holds. Let () be any symmetric positive definite
matrix and let (), be the smallest eigenvalue of (). For each
i € {1,2,...,n}, let §; and w; be defined as in (5)-(6).
Also suppose the i sensor transmits its measurement to
the controller whenever |z; .|/|z| > w;. Then, the origin
is globally asymptotically stable and the inter-transmission
times have a positive lower bound.
Proof: The result follows from Lemmas 1 and 2. H

B. Decentralized Asynchronous Event-Triggering

Now, we turn to the main subject of this paper. In the
decentralized sensing case, unlike in the centralized sensing
case, no single sensor knows the exact value of |z| from
the locally sensed data. As mentioned earlier, the centralized
asynchronous event-triggers that enforce |z;.| < w;|z
may be decentralized by making them enforce the more
conservative conditions |z; .| < w;|x;| and still satisfy the
assumptions of Lemma 1. However, such a choice cannot
guarantee a positive minimum inter-sample time. At this
stage, it might seem that Lemma 2 cannot be used to design
an implicitly verified event-triggering in the decentralized



sensing case. However, the lemma can be interpreted in an
alternative way, which would aid in our design goal.

Rather than providing a minimum inter-sampling time for
an event-triggering mechanism, Lemma 2 can be interpreted
as providing a minimum time threshold only after which it is
necessary to check a data based event-triggering condition.
For example, the event-triggers in Theorem 1,

iy =min{t > 7 ¢ |z | > wilzl}, i€ {1,...,n}  (9)
can be equivalently expressed as

thy = min{t > 7 + T; ¢ || > wilz]} (10)

where T; are the known positive lower bounds for inter-
sample times provided by Lemma 2 in (8). In the latter
interpretation, a lower bound for inter-sample times is ex-
plicitly enforced, only after which, the state based condition
is checked. Now, in order to let the event-triggers depend
only on locally sensed data, one can let the sampling times,
for i € {1,...,n}, be determined as

th = min{t > 7 + T; ¢ |z | > wilzi]} (11)

where T; are given by (8). This allows us to implement
decentralized asynchronous event-triggering. The following
theorem is the core result of this paper. It prescribes the
constants 7; and w; in the event triggers, (11), that guarantee
global asymptotic stability of the origin while also explicitly
enforcing positive minimum inter-transmission times.

Theorem 2: Consider the closed loop system (1)-(2) and
assume (A1) holds. Let ) be any symmetric positive definite
matrix and let (),,, be the smallest eigenvalue of (). For each
i€{1,2,...,n}, let 6;, w; and T; be defined as in (5), (6)
and (8), respectively. Suppose the sensors asynchronously
transmit the measured data at time instants determined by
(11). Then, the origin is globally asymptotically stable and
the inter-transmission times are explicitly enforced to have a
positive lower threshold.

Proof: The statement about the positive lower threshold
for inter-transmission times is obvious from (11) and only
asymptotic stability remains to be proven. This can be done
by showing that the event-triggers (11) are included in the
family of event-triggers considered in Lemma 1. From the
equivalence of (9) and (10), it is clearly true that |z; .|/|z| <
w; for t € [t7,t7" +Tj], for each i € {1,2,...,n} and each
J- Next, for t € [t7* +T;, 7], (11) enforces |z; | < w;lzl,
which implies |z; .| < w;|z| since |z;| < |x|. Therefore, the
event-triggers in (11) are included in the family of event-
triggers considered in Lemma 1. Hence, x = 0 (the origin)
is globally asymptotically stable. [ ]

Remark 1: Although at first sight our approach of explic-
itly enforcing a lower bound on inter-transmission times may
seem similar to that of [19], there are important differences.
Unlike in [19], the combination of time and event trigger-
ing, as in (11), is used at the sensors rather than at the
central controller. Further, in our approach, the controller
utilizes the asynchronously transmitted sensor data rather
than synchronous measurements from the sensors (which are
requested by the central controller in [19]).

The decentralized asynchronous event-triggers, (11), en-
sure a type of scale invariance for LTI systems. Scaling laws
of inter-execution times for centralized synchronous event-
triggering have been studied in [20]. In particular, Theorem
4.3 of [20], in the special case of linear systems, guarantees
scale invariance of the inter-execution times determined by
a centralized event-trigger |z.| = W/|x|. The centralized
and decentralized asynchronous event-triggers developed in
this paper are under-approximations of this kind of central
event-triggering. In the following, we show that the scale
invariance is preserved in the asynchronous event-triggers.
As an aside, we would like to point out that the decentralized
event-triggers proposed in [8]-[10] are not scale invariant for
LTI systems. In order to precisely state the notion of scale
invariance and to state the result the following notation is
useful. Let z(t) and z(t) be two solutions to the system:
(1)-(2) along with the event-triggers (11).

Theorem 3: Consider the closed loop system (1)-(2) and
assume (Al) holds. Let @) be any symmetric positive def-
inite matrix and let @, be the smallest eigenvalue of Q.
For each i € {1,2,...,n}, let 0;, w; and T; be defined
as in (5), (6) and (8), respectively. Suppose the sensors
asynchronously transmit the measured data at time instants
determined by (11). Assuming b is any scalar constant,
let [2(0)T, z5(0)T]T = b[z(0)T,25(0)T]T € R™ x R™ be
two initial conditions for the system. Further let ¢j' =
t5t < 0 for each i € {1,...,n}. Then, [2(t)T, 25(t)T]T =
blz(t)", xs(t)"]" for all t > 0 and ¢;* = t;' for each i and
J-

Proof: First of all, let us introduce two strictly increas-
ing sequences of time, {¢;*} and {¢]*}, at which one or
more components of z; and z, are updated, respectively.
Further, without loss of generality, assume t5° = tffs. The
proof proceeds by mathematical induction. Let us suppose
that ¢7° = t7* = t; for each j € {0,...,k} and that
O ()T = Bla(t)T, 2o()T)T for all t € [0,8).
Then, letting ¢, ; = min{¢;% ,, %%} the solution, 2, in

k41>
the time interval [ty, ;) satisfies

t
2(t) = et (1) —|—/ A= BK 2, (t),)do
123

t
= beA Ut () + b/ A=) BKx,(t)do

123

Hence,
2(t) = bx(t), VYt [tp,tp ) (12)
Further, in the time interval [ty,%; )
zie(t) = zi(ty) — zi(t) = b(zi(tr) — (1)) = bx; (1)
13)
Similarly, for all t € [t, 1, 1),
)] _ lie(t) "

|2(t)] |2(t)]
Without loss of generality, assume z; s is updated at
ty 1. Then, clearly, at least T; amount of time has elapsed



since z;, was last updated. Next, by the assumption
that ¢;' = t¢;° < 0 and the induction statement, it is
clear that at least 7; amount of time has elapsed since
x;s also was last updated. Further, it also means that
[220(tk) — 2t 1) > wil2i(t, 11 ). Then, (12)-(13) imply
that |z s(tg) — i(tyq1)| 2 wilai(t, )|, meaning £, =
i1 = ti%1 = tky1. Arguments analogous to the preceding
also hold for multiple z; ; updated at ¢, instead of one
or even x; , instead of z; .. Since the induction statement is
true for k£ = 0, we conclude that the statement of theorem is
true. |

Remark 2: From the proof of Theorem 3, (14) specifically,
it is clear that the centralized asynchronous event-triggers of
Theorem 1 also guarantee scale invariance.

Remark 3: Scale invariance, as described in Theorem 3,
means that the inter-transmission times over an arbitrary
length of time is independent of the scale (or the magnitude)
of the initial condition of the system. Similarly for any given
scalar, 0 < § < 1, the time and the number of transmissions it
takes for |z(t)]| to reduce to d|x(0)| is independent of |x(0)].
So, the advantage is that the ‘average’ network usage remains
the same over large portions of the state space.

IV. SIMULATION RESULTS

In this section, the proposed decentralized asynchronous
event-triggered sensing mechanism is illustrated for a lin-
earized model of a batch reactor, [21]. The plant and the
controller are given by (1)-(2) with

(138 —0.20 6.71 —5.67
Ao |-058 —420 0 067
| 106 427 —6.65 589
| 0.04 427 134 210
[0 0
567 0
B=1113 31
1130
i _  [0-1006 —0.24690 —0.0952 —0.2447
T |1.4099 —0.1966 0.0139  0.0823

which places the eigenvalues of the matrix (A4 + BK)
at around {—2.98 + 1.194, —2.98 — 1.19¢, —3.89, —3.62}.
The matrix @ was chosen as the identity matrix. The
system matrices and () have been chosen to be the same
as in [8]. Lastly, the controller parameters were chosen as
[01, 62,03,04] = [0.6,0.17,0.08,0.15] and o = 0.95. For the
simulations presented here, the initial condition of the plant
was selected as x(0) = [4,7, —4, 3]T and the initial sampled
data that the controller used was z(0) = [4.1,7.2, —4.5,2]T.
The zeroth sampling instant was chosen as t;° = —1; for
sensor ¢. This is to ensure sampling at ¢ = 0 if the local
triggering condition was satisfied. Finally the simulation time
was chosen as T;,,, = 10s.

Figures la and 1b show the evolution of the Lyapunov
function and its derivative along the flow of the closed loop
system, respectively. Figure 1c shows the time evolution of
the inter-transmission times for each sensor. The frequency
distribution of the inter-transmission times is another useful

metric to understand the closed loop event-triggered system.
Thus, given a time interval of interest [0, TinT| consider

NT, Tixr) = {3 € No: 654, € [0.Tinr] - and
(t71, - 62) € 0,71}

where Ng = {0,1,2,...} is the set of natural numbers.
Hence, the cumulative distribution of the inter-transmission
times during [0, Tyt is given as

#N (T, Tint)
#N =i (Tint, TinT)

where # denotes the cardinality of a set. Figure 1d shows the
cumulative frequency distribution of the inter-transmission
times, D% (T, Ts;m), for each sensor. The cumulative fre-
quency distribution of the inter-transmission times is a mea-
sure of the performance of the event-triggers. A distribution
that rises sharply to 100% indicates that event-trigger is not
much better than a time-trigger. Thus, slower the rise of the
cumulative distribution curves, greater is the justification for
using the event-trigger instead of a time-trigger.

The minimum thresholds for the inter-transmission times
T; for the example can be computed as in Lemma 2 and have
been obtained as [Ty, 75, T3, Ty] = [11,15.4,12.6,19.9]ms,
which are also the minimum inter-transmission times in the
simulations presented here. These numbers are a few orders
of magnitude higher and an order higher than the guaranteed
minimum inter-transmission times and the observed mini-
mum inter-transmission times in [8], [9]. The average inter-
transmission times obtained in the presented simulations
were [T, Ty, T3, Ty] = [24.9,27.7,34.5,34.2)ms, which are
about an order of magnitude lower than those reported in [8],
[9]. A possible explanation for this phenomenon is that in
[8], [9], the average inter-transmission times depends quite
critically on the evolution of the threshold 7. Although the
controller gain matrix K and the matrix () have been chosen
to be the same, by inspection of the plots in [8], [9], it appears
that the rate of decay of the Lyapunov function V" is roughly
about half of that in our simulations. However, we would
like to point out that our average inter-transmission times
are of the same order as in [10] by the same authors. In any
case, for LTI systems, our proposed method does not require
communication from the controller to sensors to achieve
global asymptotic stability. Lastly, as a measure of the
usefulness of the event-triggering mechanism compared to
a purely time-triggered mechanism, T /T; was computed for
each i and were obtained as [T} /Ty, T /Ty, T3/ T3, Ty /T1] =
[0.44,0.55,0.36,0.58]. The lower these numbers are, the
better it is.

D*(T,Tinr) = (15)

V. CONCLUSIONS

In this paper, we have developed a method for design-
ing decentralized event-triggers for control of Linear Time
Invariant (LTI) systems. The architecture of the systems
considered in this paper included full state feedback, a central
controller and distributed sensors not co-located with the
central controller. The aim was to develop event-triggers
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Fig. 1: Batch reactor example: evolution of the (a) Lyapunov function, (b) time derivative of Lyapunov function, along
the flow of the closed loop system. (c) Sensor inter-transmission times (d) cumulative frequency distribution of the sensor
inter-transmission times, D% (T, Ty, ), where Tg;p, = 10s is the simulation time.

for determining the time instants of transmission from the
sensors to the central controller. The proposed design en-
sures that the event-triggers at each sensor depend only on
locally available information, thus allowing for asynchronous
transmissions from the sensors to the central controller.
Further, for LTI systems, the design succeeds in completely
eliminating the need for the sensors to listen to other sensors
and/or the controller. The proposed design was shown to
guarantee a positive lower bound for inter-transmission times
of each sensor. The origin of the closed loop system is also
guaranteed to be globally asymptotically stable. Finally, the
proposed design method was illustrated through simulations
of a linear system.

In the system architecture considered in this paper, al-
though the control input to the plant is updated intermittently,
it is not exactly event-triggered. In fact, in all the results
the inter-transmission times of each sensor individually have
been shown to have a positive lower bound. And the time
interval between receptions of the central controller from two
different sensors can be arbitrarily close to zero. Since the
control input to the plant is updated each time the controller
receives some information, no positive lower bound can be
guaranteed for the inter-update times of the controller. How-
ever, it is not very difficult to incorporate event-triggering
(with guaranteed positive minimum inter-update times) or
explicit thresholds on inter-update times of the control by
choosing smaller o values in the event-triggers for the
sensors. Future work will include results with event-triggered
actuation in addition to event-triggered communication on
the sensing side. Finally, although time delays have not been
considered explicitly, they may be handled as in most event-
triggered control literature (see [1] for example).
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