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Abstract— This paper presents the design of event-triggered
output feedback controllers for LTI systems over Sensor-
Controller-Actuator Networks (SCAN). The SCAN is divided
into three functional layers - sensor layer, controller layer and
the actuator layer, each layer consisting of several nodes. The
communication between the nodes is intermittent and event-
triggered. Further, the flow of information occurs from the
sensor to controller to actuator layer with the intra-layer
communication occurring only in the controller layer. The
event-triggers are designed to utilize only locally available
information, making the nodes’ transmissions asynchronous.
The proposed control design guarantees global asymptotic
stability of the origin of the system and a positive lower bound
for the inter-transmission times of each node individually.
The proposed design method is illustrated through simulation
results.

I. INTRODUCTION

Sensor-Controller-Actuator Networks (SCAN) consist of
physically distributed nodes, each of which performs one or
more of sensing, control computation and actuation tasks in
order to control a plant. If the aggregate feedback provided
by the sensor nodes does not constitute full state feedback,
then the controller nodes may also have to distributively
estimate the state of the plant. Interest in such networked
control systems has been rising steadily - specially in the
context of large scale systems such as power grids, building
HVAC and even in vehicles. Some of the challenges in
SCAN are asynchronous transmission of data; asynchronous
and distributed computation; decision making based only on
local information and time delays. Many of these features
can be thought of as a manifestation of asynchronously
sampled data. Further, in SCAN there are constraints on data
rate, resources and energy. Given these factors, state based
aperiodic event-triggering techniques have great potential for
analyzing and designing SCAN.

In event based control systems, a state or data dependent
event-triggering condition implicitly determines the (gener-
ally aperiodic) time instances at which control is updated
or when a sensor transmits data to a controller. However,
much of the literature on event-triggered control assumes
the availability of full state information in the event-triggers,
which is usually not possible in SCAN because no single
node has complete state information or state estimate.
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In order for the proposed event-triggering technique to
be applicable for a variety of architectures, we take a func-
tional approach. We group the nodes in a SCAN into three
functional layers - sensor layer, controller/observer layer and
the actuator layer, with no two nodes being co-located. In
practice though, several nodes from the same or different
layers may be co-located. Any such scenario can simply be
treated as a special case of the proposed framework. Further,
the sensor nodes intermittently broadcast their data to the
nodes in the observer (dynamic controller) layer. The nodes
in the observer layer compute the state of the observer in
a distributed manner, with each node in the observer layer
intermittently broadcasting its data to other nodes in the same
layer. Each of the actuator nodes also intermittently receives
data from a corresponding unique observer node.

The contribution of this paper is a methodology for
designing implicitly verified SCAN with event-triggered
communication for dynamic output feedback control of
Linear Time Invariant (LTI) systems. The proposed design
methodology prescribes event-triggers that determine when
each node transmits data. The event-triggers are designed to
utilize only locally available information, making the nodes’
transmissions asynchronous. The proposed design renders the
equilibrium of the system, at the origin, globally asymp-
totically stable and guarantees a positive lower bound for
the inter-transmission times of each node individually. This
paper may be seen as an important extension of our previous
work [1], [2] on event-triggered dynamic output feedback
control to the case where along with distributed sensors
and actuators, the dynamic controller is also implemented
in a distributed manner by non-co-located nodes, which
communicate with each other intermittently (based on event-
triggering) and asynchronously.

Full state feedback distributed event-triggered control was
studied in [3]-[6]. In [3], [4] the subsystems are assumed
to be weakly coupled, which allowed the design of event-
triggers depending on only local information. Our proposed
design method requires much less restrictive assumptions.
In [5], [6] asynchronous transmission of data by sensors
to a central controller is triggered by local event-triggers.
However, this design guarantees only semi-global practical
stability (even for linear systems) if the sensors do not listen
to the central controller. Compared to this work, our pro-
posed design holds for Linear Time Invariant (LTI) systems
with dynamic output feedback control and guarantees global
asymptotic stability without the sensors having to listen to
the distributed nodes of the controller/observer layer. In
[7], asynchronous event-triggered dynamic output feedback



control was studied, though the proposed method utilizes
a centralized dynamic controller and guarantees only semi-
global practical stability. Recently, [8] proposed a method for
designing continuous time distributed observers with discrete
communication. In this paper, the sensor and the observer
for the " subsystem are co-located and additionally, an
observability condition for each of the individual subsystems
was assumed. Compared to [8], the current paper considers
non-co-located sensor and observer nodes, requires an ob-
servability condition only for the overall system and further,
distributed dynamic control is also implemented.

II. PROBLEM SETUP

Consider a Multi Input Multi Output (MIMO) Linear Time
Invariant (LTT) control system

i=Ax+ Bu, y=Cxr (1)
t=(A+FC)i+Bu—Fy, u=Ki 2)

where © € R”™ is the plant state, £ € R"™ is the observer
state, y € RP is the output of the plant and v € R™ are
the m actuator inputs to the plant. The matrices A, B, C, F
and K are of appropriate dimensions. Denoting the observer
estimation error and the state of the closed loop system,
respectively, as

iE2i—x, 2"

where the notation [z7, Z7]T denotes the vector formed by
concatenating the column vectors z and z, the closed loop
system may be written as
: z A+ BK
’(/} = . = 0
n,n

A+ FC||Z
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]éAw 3)
where 0,, ,, represents the n x n matrix of zeroes. The origin
of the closed loop system (3) is globally asymptotically stable
if and only if the matrix A is Hurwitz. Typically, (4, B)
and (A, C) are assumed to be controllable and observable,
respectively. This is sufficient to design the gain matrices F'
and K (which exist) such that (4 + FC), (A + BK) and
hence A are Hurwitz. For our purpose here, it is sufficient
to assume A is Hurwitz.

In this paper, we are interested in a decentralized imple-
mentation of the dynamic controller (2) with event-triggered
communication. In sampled-data implementations (of which
event-triggered implementation is an example) the controller
and or the actuator use sampled versions of signals. Formally,
let ¢ be any continuous-time signal (scalar or vector) and let
{tf} be the increasing sequence of time instants at which ¢
is sampled. Then we denote the resulting piecewise constant
sampled data signal by (, that is,

G £ C(E), VEelt th) “)
and the “measurement error” due to sampling as

Ce2C—C=Ct) ¢ Vet i)

It is sometimes convenient (and intuitive) to group together
asynchronously transmitted signals into a single vector.
Therefore given a vector ¢ = [(1, (o, - - -, CnC]T e R™¢, let

C: £ [Cl,m CQ,S? cee Cnc,s]T (5)

where (i, for k& € {1,...,n¢} are piecewise constant
sampled data signals defined as in (4). The measurement
error is correspondingly defined as

CEC—¢

In time-triggered implementations, the time instants tg
are pre-determined and are commonly a multiple of a fixed
sampling period. On the other hand, in event-triggered imple-
mentations the time instants tf are determined implicitly by a
state/data based triggering condition that is checked online.
Consequently, an event-triggering condition may cause the
inter sampling times t? 1 tf to be arbitrarily close to zero
or it may even result in the limit of the sequence {t°} to be
a finite number (Zeno behavior). Thus for practical utility, an
event-trigger has to ensure that these scenarios do not occur.

Figure 1 shows the control architecture under consid-
eration in this paper. The control system contains three
functional layers - the sensor layer, the dynamic con-
troller/observer layer and the actuator layer. Each layer
consists of non-co-located (distributed) nodes. The sensor,
observer and the actuator layers consist of p, n and m nodes,
respectively. In the figure, the solid arrows indicate physical
links, while the dotted arrows indicate the links on which
the communication is event-triggered. The event-trigger for
each of these latter links is located at the tail end of the
arrow and uses only information locally available at that
node. Meanwhile, the node or the nodes at the receiving
end utilize the asynchronously transmitted data (sampled
data), indicated by the subscript s. Note that the arrows
that go from an arbitrary node ‘A’ to a layer circle in the
figure indicate broadcast communication from the node ‘A’
to all the nodes in the layer circle. The aggregate observer
state z = [z1,...,2,)7 is simply a basis transformation
of the vector Z of (2). When this basis transformation is
appropriately chosen, the communication from the observer
layer to the actuator layer is simplified and the actuator inputs
to the plant are u; = z; ; for i € {1,...,m}.

Figure 1 is a functional description of the control system
and also represents the most general case, where no two
nodes are co-located. If some nodes are co-located, then each
collection of co-located nodes need not utilize the sampled
versions of the data. Of particular interest is the case where
the observer node z; is co-located with the actuator node u;
for i € {1,...,m}. This special case is briefly discussed in
the sequel. Next, in order to keep the notation simple, the
data at each node is assumed to be scalar. Our results can be
generalized to the vector case with only minor changes in the
notation. Finally, note that in this paper, the terms ‘transmit’,
‘update’ and ’sample’ are used interchangeably.

The design requirements in this paper are: (i) global
asymptotic stability of the closed loop system and (ii) a
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Fig. 1: The SCAN control system has three functional layers.
Each node in the sensor layer intermittently broadcasts its
output to all the nodes in the observer layer. Each node
in the observer layer intermittently broadcasts its state to
every other node in that layer. Each of the first m nodes
of the observer layer also transmit intermittently to one of
the actuator nodes. The dotted arrows indicate even-triggered
communication links, with the event-trigger running at the
tail end of the arrow. The solid arrows are physical links.

global positive lower bound for the inter-transmission times
of each node. The proposed design procedure can be divided
into two major stages. In the first stage, event-triggers are
designed for asynchronous transmissions using centralized
information. In the second stage, realizable event-triggers
that depend only on local information are derived by appro-
priately under-approximating the centralized asynchronous
event-triggers. The next section details this procedure in a
general setting and in the subsequent section, it is applied to
the problem at hand.

Note: In this paper, the notation |.| is used to represent the
Euclidean norm of a vector and also the induced Euclidean
norm of a matrix.

III. DESIGN OF DECENTRALIZED ASYNCHRONOUS
EVENT-TRIGGERING

This section presents the design of decentralized asyn-
chronous event-triggering in a general setting so as to be
applicable for multiple system architectures. Therefore, con-
sider the system

q

E=AE+) Bi(js = AL+ B
j=1

where £ € R, A € R" x R, (;, € R% is the

sampled-data version of (;, B; € R x R% is the j" input

matrix, ¢¢ = [¢T,,...,¢L]" € R? is the asynchronously

sampled-data version of ¢ and is defined according to (5),

(6)

B = [By,...,B,] € R" x R Given a continuous-time
feedback control law as
(=K ¢=Ki& jefl,....q} (7

with K; € R% x R"¢ being the j block-row matrix of K,
the closed loop system with the sampled-data controller can

be expressed as
§ = (A+BK)§ + B¢ = A + BC ®)

where A = (A+BK) and ¢ = (¢ — ¢) € R? is the
measurement error due to sampling. Finally, suppose that
the continuous time control law would have stabilized the
closed loop system, that is,

(A1) Suppose that the matrix A is Hurwitz, which ensures
that for each symmetric positive definite matrix (), there
exists a symmetric positive definite matrix P such that
PA+ ATP = —-Q.

In order to develop the decentralized asynchronous event-
triggers that implicitly specify the sampling time instants,
{t;”}, let us first consider the following result.

Lemma 1: Consider the sampled-data system (6) and as-
sume (A1) holds. Let @) be any symmetric positive definite
matrix and @, its smallest eigenvalue. For each j €

q

{1,...,q}, let 6; € (0,1), such that § = ZHJ» <1 and
j=1
O'@ij
w; = )
I |2PB;|

where 0 € (0,1) is a design parameter. Suppose that for
each j € {1,..., ¢}, the sampling instants ¢;’ are such that
|Gjel < wjlé| for all time ¢ > 0. Then, £ = 0 (the origin) is
globally asymptotically stable.

Proof: ~ Consider the candidate Lyapunov function
V(&) = ¢T P& where P satisfies (A1). Utilizing the measure-
ment error interpretation, (8), of the system (6), the derivative
of the function V' along the flow of the system is

V =T [PA+ AT Pl + 26T PBC;
< —(1- o) Q¢ + ¢I[12PBE; | - oQue]]

i
< —(1-0)s" Qe+ 1| Y
P>
j=1

[2PB;Csl = 0Qulé]|

< —(1= )ETQE+ I¢l | D 12PBilIGs el — oQué]]

The sampling instants have been assumed to be such that the
conditions |(je|/|¢] < w;
for all time ¢ > 0. Thus,

V<-(1-0)"Q¢

which implies that the solution & = 0 (the origin) is globally
asymptotically stable. [ ]

Note that Lemma 1 holds for a family of asynchronous
event-triggers, all satisfying the conditions |(j .| < w;[¢].
Also note that to enforce these conditions strictly some
centralized information, |£], is required. Our aim now is to
derive realizable decentralized asynchronous event-triggers
that belong to the family considered in Lemma 1. Con-
sider the ¢ centralized asynchronous event-triggers for the
sampled-data system (6)

9 =min {t > t7 1 |Gl Zwylel}, j€{L..qb (10)

O'oj Qm

~ 2PB,|

for each j are satisfied



where w; are given by (9). From (7) it follows that |;| <
IIC;1|€]. Thus, enforcing the conditions |(; .| < w;|(;]/|K;]
satisfies the requirements of Lemma 1. Although these condi-
tions utilize only locally available data, they fail to guarantee
positive minimum inter-sampling times. In order to design
event-triggers that utilize only locally available data while
also guaranteeing minimum inter-sample times, let us first
analyze the emergent inter-sample times of the centralized
asynchronous event-triggers (10).

Let us define the function 7 as

T(w,a,b,k) ={t >0: ¢(t,0) = w} (11)

where a, b, k are non-negative constants and ¢(¢,c) is the
solution of

¢ = (k+¢)(a+bg), ¢(0,c)=c.

Note that 7(w, a, b, k) is positive for any given positive w.
The following lemma guarantees positive lower bounds for
the emergent inter-sample times for the system (6) with the
event-triggers (10).
Lemma 2: Consider the closed loop system defined by (6)
along with the event-triggers, (10). Let w; > 0 for j €
q

{1,...,q} be given by (9) and let W = Z |B;|w;. Then
i=j

for j € {1,...,q}, the inter-sample times {tffH - tfj} are

lower bounded by the positive constants

T; = 7(wj, |[A| + W = |Bj|wj, |Bj], [K;]). (12)

Proof: Letting v; £ |(;¢|/|¢| and by direct calculation
we see that for j € {1,...,q}

dyy _ —(Gelie) PGKE €T
i & G
€]
< (K] +v5) =
( J J)|£‘
- q
AL+ 1Bj11G e
< (1651 + ;) o
€]
where for (;. = 0 the relation holds for all directional

derivatives. This relation is further simplified by considering
(10), which ensures that the sampling instants are such that
for all time v; < w; for each j € {1,...,q}.

dv; _
S < (5] + ;) (JA] + W — |Bjlw; + 1B;1y)

dt
from which the claim of the Lemma directly follows. [ ]

Lemma 2 says that the inter-sample times that emerge
from the event-triggers (10) have positive lower bounds,
given by (12). An exactly equivalent method of implementing
the event-triggers (10) is as follows.

t$ = min {t > 15+ Ty ¢ (G| > wﬂ'm} (42

In these event-triggers, the lower thresholds for the iner-
sample times is explicitly enforced, although the actual inter-
sample times that emerge from (13) may have lower bounds

greater than T;. The advantage with this implementation is
that T} depends only on the system matrices and hence is
locally known at the corresponding event-trigger. In other
words, the j® event-trigger (13) uses only locally available
information for time T} after each of its transmissions. Thus,
having guaranteed a positive lower bound for inter-sample
times, it is sufficient to under-approximate || to guarantee
global asymptotic stability of the closed loop system. One
obvious choice is to use the bound |(;|/|K;| < || in the

event-triggers, for j € {1,...,q},

(9 = min {t > 67 + T+ |Gl 2 wyAsl 3 (14)
151

A Dbetter option is to use the bound |IC;r ¢l < |&], where the

notation .+ denotes the pseudo-inverse of the matrix. In fact,
this is the greatest lower bound for || given (;. Hence the
event-triggers, for j € {1,...,q},

9 = min {t > 17 + T+ Gl = iK1 (15)
use only locally available information and achieve all the
design requirements. While the event-triggers we have de-
scribed in [1], [2] are based on (14), the ones that are de-
scribed in this paper utilize the improved version (15). Note,
however, that if (; is scalar then (14) and (15) are equivalent.
The following theorem prescribes the constants 7); and w;
in the event triggers, (15), that guarantee global asymptotic
stability of the origin while also explicitly enforcing positive
minimum inter-transmission times.

Theorem 1: Consider the closed loop system (8) and
assume (A1) holds. Let ) be any symmetric positive definite
matrix and let @, be the smallest eigenvalue of (). For each
je{1,2,...,q}, let w; and Tj be defined as in (9) and (12),
respectively. Suppose (; are asynchronously transmitted at
time instants determined by (15). Then, the origin is globally
asymptotically stable and the inter-transmission times are
explicitly enforced to have a positive lower threshold.

Proof: The claim about the positive lower threshold
for inter-transmission times is obvious from Lemma 2 and
(15). Thus, only asymptotic stability remains to be proven.
This can be done by showing that the event-triggers (15)
are included in the family of event-triggers considered in
Lemma 1. From the equivalence of (10) and (13), it is clearly
true that |Cj.| < wjlé| for t € [t,t5 + Tj], for each
j€1{1,2,...,q} and each i. Next, for ¢t € [tgj + Tj,tgil],
(15) enforces |(j.| < wj|IC;er| < wj|€|. Thus, the event-
triggers, (15), are included in the family of event-triggers
considered in Lemma 1. Hence, £ = 0 (the origin) is globally
asymptotically stable. [ ]

Next, this general formulation is applied to the dynamic
output feedback control over SCAN architecture in Figure 1.

IV. EVENT-TRIGGERED DYNAMIC OUTPUT FEEDBACK
CONTROL OVER SCAN

Now, let us consider the design of event-triggered dynamic
output feedback control over SCAN architecture of Figure
1. The heart of the SCAN architecture of Figure 1 is



the observer layer. Once this is designed, the decentralized
asynchronous event-triggers can be designed using the results
in Section III. As noted earlier, the nodes in the observer
layer do not compute Z but rather a basis transformation of
2. Defining this transformation is our next task.
(A2) Assume that the column space of the matrix K, in (2),
is of dimension m.

Under this assumption, the pseudoinverse K+ € R"™ x R™

has only the trivial null space. Consider the mapping

&= Ktu+ N

where #V(5) € R"™™ is an element of the null space of
K and by definition, K Tu is an element of the row space
of K. Assumption (A2) implies that this mapping is one-
to-one and onto. Further, since the row space and the null
space of K are orthogonal to each other, the basis for the

two subspaces can be chosen independently. Thus, let
S=[K+ Ky] (16)

where Ky € R™ x R"™™ is an arbitrary matrix whose
columns span the null space of K. Then, the matrix S is
invertible and satisfies

Sz (17)
uf = KSzF = Kz2¥, with K = [Im Om,n,m] (18)

z
U

where I, is the m x m identity matrix and 0, ,,—, is m X
(n—m) matrix of zeroes. Even though there is no ‘sampling’
of the data between the actuator nodes and the plant, the
notation v} is useful for keeping in mind that the actuation
signals are the asynchronously transmitted signals K z*. The
dynamic controller, (2), is equivalently expressed as

i =S N(A+ FC)Sz + BKz! — Fy

where K = K S has been used.
Letting H = S™1(A + FC)S, the sampled data version
of the distributed observer is given by

4=D(H)z+ (H—D(H))z: + S 'BKz: — S™'Fy

where D(H) is the diagonal matrix with its diagonal entries
given by those of the matrix H. It is more convenient to
write the observer equation in terms of the sampling induced
measurement errors, as follows.
5=S"(A+FC)Sz+ BKz! — Fy]
+(H — D(H))z: — S~ Fy; (19)
which when expressed in terms of & is given as
i =(A+FC)i+ Bu: — Fy+ S(H — D(H))z! — Fy*

Let us denote the observer estimation error and the state of
the closed loop system, respectively, as

Eti—w, 2R

Then the closed loop system may be written compactly as

BK

6=t 5 "oy | = - ] 0

where the matrix A is as defined in (3). The following
theorem prescribes the decentralized asynchronous event-
triggering for the control system in Figure 1.

Theorem 2: Consider the closed loop system, (20), and

assume that (A1) holds with A = A. Also suppose (A2)
holds. Let ¢ = [2T,4T]T and

BR ony,,] . {Sl 51}
S(H—-D(H)) —-F|’ L C 0,
Further, for each j € {1,...,¢ = n+p}, let (; € R, B;
is the j™ column of B and K; is the jM row of K. Let
Q € R?" x R?" be any symmetric positive definite matrix
and let @, be the smallest eigenvalue of Q). For each j €
{1,2,...,q}, let w; and T} be defined as in (9) and (12),
respectively. Suppose (; are asynchronously transmitted at
time instants determined by (15), with t;’ < 0. Then, ) =0
(the origin) is globally asymptotically stable and the inter-
transmission times are explicitly enforced to have a positive

lower threshold.

Proof: Assumption (A2) implies that S is invertible
and that the matrices BB and KC are well defined. The rest of
the proof follows from Theorem 1. [ ]

Remark 1: In case the first m nodes of the observer layer,
z, are co-located with the corresponding actuator nodes, then
u = Kz may be used. In this case, the closed system
equation is given by

A Onm, * On,p *
’(/}_A'(/}'*' [S(HD(H)):| Ze — I: F :| Ye

and Theorem 2 holds for this system if B is appropriately
chosen as

B:

21

B _ On,n On,[j
S(H—-D(H)) -F|°

Remark 2: In Figure 1 and in our results, the sensor nodes
and the observer nodes have been assumed to intermittently
broadcast their data to all the nodes in the controller/observer
layer. However, this has been done purely for ease of
presentation. In practice, a sensor node y; need not transmit
its data to the observer node z, if the dynamics of zj is not
dependent on y;. A similar statement for intra observer layer
communication also holds.

In the next section, simulation results are presented to
illustrate the proposed event-triggered controllers.

V. SIMULATION RESULTS

In this section, the proposed event-triggered dynamic out-
put feedback control over SCAN is illustrated for a linearized
model of a batch reactor, [9]. The plant and the dynamic
controller are given by (1) and (18)-(19), respectively, with

1.38 —0.2077 6.715 —5.676]

g | 705814 —4.29 0 0.675

| 1.067 4273  —6.654 5.893

| 0.048 4.273 1.343  —2.104]

[0 0 ]

5.679 0 1 0 1 -1

B = 1.136 —3.146 CO= 010 O]
1.136 0




K__'0.1768 0.079  0.0794 —0.2464
T |1.0328 0.1896 —0.4479  0.7176
—2 0
—4 -1
F=- -2 2
-1 —4

Thus, the closed loop system is given by (20). In the event-
triggers, () = Ig, the 8 x 8 identity matrix, o = 0.95
were chosen. For the simulations presented here, the initial
condition of the plant and the observer were chosen as
2(0) = [2,3,-1,2]T and 2(0) = [0,—1,1,—1]%, respec-
tively. Denoting ¢ = [27,yT]T as in Theorem 2, the initial
sampled data was chosen arbitrarily as

¢(0) = [~1.001, —1.001, 1.001, —1.001, —1.001, 3.002] "

S

so that it is consistent with the asynchronous transmission
model. The zeroth transmission instant was chosen as tgj =
—T; for each j € {1,...,6}. This is to ensure sampling at
t = 0 if necessary. However, by choosing the initial sampled
data sufficiently close to the actual data, the asynchronous
nature of transmissions is respected, as indicated by the first
transmission times by the 6 nodes which occur at tg =
[6,1.1,0.4,1.2,0.4,0.9]ms for the chosen initial conditions.
The inter-transmission time thresholds in the event-triggers,
(15), were obtained as

T =10"* x [4.886,4.676,5.247,3.976,4.12, 3.881]s

which were also the minimum inter-transmission times for
the presented simulation. Over a simulation time of 10s, the
average inter-transmission times for the nodes were obtained
as T = [3.1,3,2.7,2.6,2.7,3]ms, which are roughly an
order of magnitude larger than the inter-transmission time
thresholds. Figure 2 shows the evolution of the Lyapunov
function and its derivative along the flow of the closed loop
system. Figure 3 shows the inter-transmission times and the
cumulative frequency distribution of the inter-transmission
times of the nodes.

a0
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Fig. 2: (a) The evolution of the Lyapunov function and (b)
its derivative along the flow of the closed loop system.

VI. CONCLUSIONS

This paper presents the design of event-triggered output
feedback control of LTI systems over Sensor-Controller-
Actuator Networks (SCAN). A SCAN is divided into three
functional layers - sensor layer, controller/observer layer and

e
Cum. freq. dist. (percentage)

4 6 8 10 0 5 R 10 - 15 20
t (seconds) Inter-sample times (milli-seconds)

(a) (b)

Fig. 3: (a) Inter-transmission times and (b) the cumulative
frequency distribution of the inter-transmission times of the
nodes. The curves labelled with z; and y; denote the relevant
inter-transmission time data of those nodes, respectively.

the actuator layer, each layer consisting of several nodes. The
communication between the nodes is intermittent and event-
triggered. Further, the flow of information is only from the
sensor to observer to actuator layer with the only intra-layer
communication occurring in the observer layer. With a care-
ful choice of basis for distributed estimation of the plant state
in the observer layer, each actuator node intermittently re-
ceives data from a corresponding unique observer node. The
event-triggers are designed to utilize only locally available
information, making the nodes’ transmissions asynchronous.
The proposed design guarantees global asymptotic stability
of the origin of the system and a positive lower bound
for the inter-transmission times of each node individually.
The proposed design methodology was illustrated through
simulations of a linearized model of a batch reactor. Some
of the future work will include relaxation of assumption
(A2), extending the design to the case where an arbitrary
communication graph is given and optimal placement of the
controller/observer nodes (see Remark 1 for example).
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