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Abstract—This paper is on observability of discrete-time LTI
systems under unknown piece-wise constant inputs with suffi-
ciently slow, but arbitrary update times. Assuming knowledge
of the update times, we characterize the unobservable subspace
and show that with sufficiently many measurements in each inter-
update interval of the input, the unobservable subspace remains
fixed. We explore the implications of the result for privacy in
event-triggered control through an illustrative example.

Index Terms—Networked Control Systems, Sampled-Data
Control, Observability under Unknown Input, Event-triggered
Control, Privacy

I. INTRODUCTION

OBSERVABILITY under unknown inputs has been a topic
of interest to the controls community for several decades.

Motivated by the recent research trend of event-triggered
control, we revisit the classical problem of observability.

Literature Review:

The literature on observability of linear time invariant (LTI)
systems under unknown or partially known inputs stretches
back to late 1960s. Some early works on the topic are [1]–[4].
More recent works on the topic include sliding mode observer
for unknown input and state estimation [5], observability under
unknown inputs in the context of singular differential algebraic
systems [6], structural input and state observability [7], time-
delayed observers [8], [9] and in the context of switched
systems [10], [11]. It is well known that if a continuous-time
LTI system is observable under known inputs then periodic
sampling retains that property except for some pathological
sampling periods [12]. The increasing popularity of event-
triggered control [13]–[16] raises the question of observability
under aperiodic sampling, a topic on which there is currently
very limited work [17].

The topic of this paper is also relevant for privacy in event-
triggered control. While there exist some papers on privacy
preserving or secure event-triggered control, such as [18]–
[22], there is no work that studies the privacy implications
of existing event-triggered controllers. Such a study is partic-
ularly important given that in event-triggered control there is
implicit information in the event times about the state of the
system [23].
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Contributions: In this paper, we characterize the unobserv-
able subspace of a discrete-time LTI system under unknown
piece-wise constant input but known, possibly aperiodic, up-
date times of the input. In particular, we give a result that if
the updates in the input are slow enough then with sufficiently
many measurements in each inter-update interval of the input,
the unobservable subspace remains fixed with time. We apply
this result to a system with event-triggered control in the
presence of an eavesdropper (ED), which is an entity that seeks
to determine private data, such as the state of the system. We
assume that the ED has access to the sensor measurements,
the control input update times and the triggering rule, which
implicitly determines the input update times. We demonstrate,
through an example, that if the triggering rule is event based
then the state can be identified by ED up to a bounded set,
whose “size” decreases with time to zero. This illustrates how
such an ED can breach the privacy of the system under the
knowledge of the event-triggering rule. On the other hand, for
time-triggered updates of the input, this ED can infer nothing
about the component of the state in the unobservable subspace.

In the context of observability under unknown inputs, to
the best of our knowledge, there is no existing work on
observability under an aperiodically updated, unknown piece-
wise constant input. In the context of event-triggered control,
this paper is the first one to explore the privacy implications
of existing event-triggered controllers. Such a study is timely
given the increasing popularity of event-triggered control.

Notation: We let R, Z and N0 be the set of real numbers,
integers and the set of natural numbers including zero, re-
spectively. For x ∈ Rn, we let ||x|| be the Euclidean norm
of x. We use the notation [Ki,Ki+1)Z for [Ki,Ki+1) ∩ Z.
We use similar notations for closed, open and the other half-
open intervals. We use 0 to denote zero matrices of appropriate
dimensions. For vectors v and w, we use (v, w) to represent the
vector [vT , wT ]T . We use M†, Ker(M) and Im (M) for the
pseudo-inverse, null-space and the image space of the matrix
M , respectively. We let Z⊥ be the orthogonal complement of
a subspace Z . We use Ir to represent the identity matrix of
dimension r.

II. PROBLEM FORMULATION

We consider a discrete-time linear time-invariant system

x(k + 1) = Ax(k) +Bu(k) (1a)
y(k) = Cx(k) (1b)



where x(k) ∈ Rn, u(k) ∈ Rm, y(k) ∈ Rp are the plant
state, the control input and the measurement, respectively. We
assume that the input is piece-wise constant i.e.

u(k) = u(Ki), ∀k ∈ [Ki,Ki+1)Z, (1c)

where K := {Ki}i∈N0 is the increasing sequence of input
update times. We call the set of time steps [Ki,Ki+1)Z as the
ith inter-update interval.

A. Assumptions

We make the following assumptions about the system (1)
and the input (1c).
A1 Matrices B and C are full column rank and full row rank

matrices, respectively.
A2 Pair (A,C) is observable.
A3 Input signal u(.) is unknown. The update times Ki are

known and the inter-update times satisfy Ki+1 − Ki ≥
n+ 1 for all i ∈ N0.

Note that there is no loss of generality in Assumption (A1),
i.e. if B is not full column rank, then we can choose a matrix
B̂ whose columns form a basis for the column space of B
and for each u there is a unique û such that Bu = B̂û. At
the same time, for each û there is at least one u such that
Bu = B̂û. Thus, the effect of the input u on the system is
the same as that of û. Similarly, assuming C is full row rank
is only to ensure that there are no redundant outputs that are
obtained as a linear combination of other outputs.

B. Reformulation as an impulsive system

To study the unobservable subspace of the system (1)
with unknown piece-wise constant input, as described in (1c),
we reformulate the system into an autonomous system with
state “jumps” at the input update times. We consider the
unknown piece-wise constant input as an additional state
variable û. Hence, the augmented state of the system is
z(k) := (x(k), û(k)). During the ith inter-update interval,
û(k) is constant and it “jumps” to u(k) at the time steps
k ∈ {Ki}. Thus, letting

Ā =

[
A B
0 Im

]
, C̄ =

[
C 0

]
,

we can write the dynamics (1) as

z(k + 1) =


Āz(k), ∀(k + 1) /∈ K,[
Ax(k) +Bû(k)

u(k + 1)

]
, ∀(k + 1) ∈ K

(2a)

y(k) = C̄z(k). (2b)

Thus, the full system is given by the collection of A, B, C,
K and u(K) for all K ∈ K.

Note that (2) is an exact reformulation of system (1). Thus,
we can study the question of observability under unknown
piece-wise constant u(.), with known update times, in the
context of the impulsive system (2). To systematically analyze
this question, we introduce the following definition.

Definition II.1. For the system (2), we define the unobservable
subspace at time k given a horizon w ≥ k, Z(w, k), as the
set of all z such that there exist initial x(0) and a piece-wise
constant control input with input update times K such that
z(k) = z and the output is uniformly zero on [0, w]Z. Thus,
formally Z(w, k) is the set

{z ∈ Rn+m : ∃x0 ∈ Rn, ∃uKi ∈ Rm, ∀Ki ∈ K
s.t. for (2), x(0) = x0, û(Ki) = uKi , ∀Ki ∈ K,
z(k) = z, y(j) = 0, ∀j ∈ [0, w]Z}. (3)

C. Objectives

Under Assumptions (A1)-(A3), the objectives of this paper
are the following.

1) Characterize the unobservable subspace and observability
of system (1), equivalently (2), under unknown input.

2) Explore the implications for privacy in event-triggered
networked control systems.

We explore this question in the following two sections. In
Section III, we address the question under the assumption of
constant but unknown input. Then, in Section IV we extend
the analysis to the case of piece-wise constant unknown inputs
but with known update times.

III. OBSERVABILITY UNDER CONSTANT UNKNOWN INPUT

Observability of system (2) with a constant unknown input
can be studied with the observability matrix associated with
the pair (Ā, C̄), i.e. O(w), where

O(w) :=



C̄
C̄Ā
C̄Ā2

C̄Ā3

...
C̄Āw−1


=



C 0
CA CB
CA2 C(A+ I)B
CA3 C(A2 +A+ I)B

...
...

CAw−1 C
∑w−2
i=0 AiB


.

(4)
Clearly, observability of the system (1) under a constant
unknown input, K = {0}, is directly related to observability
of system (2) in the classical sense. With K = {0}, Z(w, k)
in (3) reduces to

Z(w, k) = {z ∈ Rn+m : ∃z0 ∈ Rn+m s.t. for (2)
z(0) = z0, z(k) = z, y(j) = 0, ∀j ∈ [0, w]Z}. (5)

In particular, it is easy to see that under a constant unknown
input, Z(w, 0) = Ker(O(w)). The following lemma charac-
terizes Ker(O(w)) and hence the unobservable subspace of
the system (2) under constant unknown input.

Lemma III.1. Suppose that Assumption (A2) holds. Then for
all w ≥ n+ 1, Ker(O(w)) = Ker(R), where

R :=

[
(A− In) B

C 0

]
. (6)

Thus, under a constant unknown input, K = {0},

Z(w, 0) = Ker(O(w)) = Ker(R), ∀w ≥ n+ 1.



Proof. From (4), we see that z = (x, û) ∈ Ker(O(w)) iff

CAix = 0, for i = 0, (7a)

CAix+ C

i−1∑
j=0

Aj

Bû = 0, ∀i ∈ [1, w − 1]Z. (7b)

Subtracting the ith from the (i+ 1)th equation in (7), we get

CAi((A− In)x+Bû) = 0, ∀i ∈ [0, w − 2]Z. (8)

Under Assumption (A2), the only vector v that satisfies
CAiv = 0 for all i ∈ [0, n− 1]Z is v = 0. Thus, (8) and (7a)
imply that Ker(O(w)) = Ker(R), ∀w ≥ n + 1. The result
now follows as Z(w, 0) = Ker(O(w)) if K = {0}.

Remark III.2. Notice that the matrix R in (6) is in essence the
Rosenbrock’s system matrix [24] of system (1) for the discrete-
time DC frequency. This is not surprising since in Lemma III.1,
we seek precisely the “transmission blocking” plant states and
constant control inputs.

Also, given that O(w) has n+m columns, one may expect
that Z(w, 0) would, in general, remain constant only for w ≥
n+m. However, Lemma III.1 in fact says that Z(w, 0) remains
constant for all w ≥ n+ 1. •

In the following result, we give a simple property of
Ker(O(w)) that plays a very important role in the setting of
piece-wise constant unknown input.

Corollary III.3. Suppose that Assumptions (A1) and (A2)
hold and w ≥ n+ 1. Then the following statements are true:

(a) If (x, u1) ∈ Ker(O(w)) and (x, u2) ∈ Ker(O(w)) then
u1 = u2.

(b) If (x1, u) ∈ Ker(O(w)) and (x2, u) ∈ Ker(O(w)) then
x1 = x2.

Proof. From Lemma III.1, we know that Ker(O(w)) =
Ker(R). Then, claim (a) follows from the full column rank of
B in Assumption (A1). Claim (b) follows from observabiliy
of the pair (A,C) in Assumption (A2), which implies that[
(A− In)

C

]
has full column rank.

We now go on to characterize Z(w, k) when K = {0}.
In particular, if K = {0}, (5) indicates that the dimension
of Z(w, k) is no larger than that of Z(w, 0). Further, we also
know that Z(w, 0) is an Ā-invariant subspace [24] for all w ≥
n + 1. Thus, we can say that Z(w, k) ⊆ Z(w, 0). But the
following result says that Z(w, k) = Z(n+1, 0) for all k ≥ 0
and w ≥ n+ 1.

Theorem III.4. Consider the system (2) with a constant
unknown input and suppose Assumptions (A1) and (A2) hold.
Further, suppose that z(0) ∈ Ker(R). Then z(k) = z(0) for
all k ≥ 0. As a consequence, Z(w, k) = Z(n + 1, 0) for all
k ≥ 0 and w ≥ n+ 1.

Proof. Since Z(w, 0) is an Ā-invariant subspace, we know
that Z(w, k) ⊆ Z(w, 0), and from Lemma III.1, we know
that Z(w, 0) = Z(n + 1, 0) = Ker(R) for all w ≥ n + 1.
Thus, it suffices to show that Ker(R) ⊆ Z(w, k).

Now, since z(0) = (x(0), û(0)) ∈ Ker(R), we have

x(1) = Ax(0) +Bû(0) = x(0).

Further, as the control input is constant, û(k) = û(0) for all
k ≥ 0. Further, if x(k) = x(0), we have

x(k + 1) = Ax(k) +Bû(k) = Ax(0) +Bû(0) = x(0). (9)

Using mathematical induction, we conclude that z(k) =
z(0) ∀k ∈ N0. Thus, (5) implies that z(0) ∈ Z(w, k), that
is Z(w, 0) = Ker(R) ⊆ Z(w, k), which then means that
Z(w, k) = Z(w, 0) for all k ≥ 0 and w ≥ n+ 1.

Note that, this result holds even if A is singular. Further, it is
interesting that if z(0) ∈ Z(w, 0) with w ≥ n+1, then z(k) =
z(0) for all k ≥ 0, which goes beyond Ā-invariance of the set
Z(w, 0). As we will see, this has an interesting implication
for observability under an unknown piece-wise constant input,
which is our next topic of discussion.

IV. OBSERVABILITY UNDER PIECE-WISE CONSTANT
UNKNOWN INPUT

We now seek to characterize Z(w, k) under an unknown
piece-wise constant input, as given in (3). Given the extra
degrees of freedom provided by uKi

for Ki ∈ K it seems
plausible, unlike in the constant input case, that in general
Z(w, k) may not be a subset of Z(w, 0).

Remark IV.1. Due to the causal nature of the system (2), we
can say that, for all w ∈ N0 and for all k ≤ w, Z(w, k) does
not depend on update times greater than w. Thus, we define
the truncated set of update times up to w as

Kw := {K ∈ K : K ≤ w} ∪ {w} =: {K0,K1, . . . ,KN(w)},

which is the set of all update times up to and including w. Note
that we include KN(w) = w ∈ Kw even if w /∈ K. However,
as the input u(w) can only affect the outputs y(k) for k > w,
we see that Z(w, k) is unaffected by whether w ∈ K or not.
Hence, we can obtain Z(w, k) by supposing K = Kw has
only finitely many input updates. •

Now, in order to characterize Z(w, k), let

yi := (y(Ki), y(Ki + 1), . . . , y(Ki+1 − 1)),

which is the vector containing all the measurements in the ith

inter-update interval in Kw. Then, we can write

yi = O(qi)z(Ki), qi := Ki+1 −Ki, ∀i ∈ [0, N(w))Z. (10)

Although z(Ki) = (x(Ki), û(Ki)), note that in (10), only
x(0) and û(Ki) can be chosen arbitrarily. The rest of x(Ki)
are determined by the dynamics (2). In particular, from vari-
ation of constants, we know that

x(Ki+1) = AKi+1−Kix(Ki)+

Ki+1−Ki−1∑
j=0

(AjB)û(Ki). (11)

Now, we can say that

Z(w, k) = {z ∈ Rn+m : ∃vi ∈ R(n+m), ∀i ∈ [0, N(w))Z,

s.t. for (2), z(Ki) = vi, (11), z(k) = z,

Cx(w) = 0, O(qi)z(Ki) = 0, ∀i ∈ [0, N(w))Z}. (12)



Now, we are ready to present our results on observability under
unknown piece-wise constant control.

Theorem IV.2. Consider system (2) with unknown piece-
wise constant input and suppose Assumptions (A1)-(A3) hold.
Further, let w ∈ N0 be such that w − Ki ≥ n + 1 for
all Ki ∈ Kw \ {w}. Finally, suppose that k ∈ [0, w]Z. If
z(k) = z = (x, û) ∈ Z(w, k) then z(j) = z = (x, û)
for all j ∈ [0, w − 1]Z and x(w) = x. As a consequence,
Z(w, k) = Ker(O(n+ 1)) = Ker(R) for all k ∈ [0, w]Z.

Proof. Our starting point is (12). Observe that Assump-
tion (A3), Lemma III.1 and the fact that w − Ki ≥ n + 1
for all Ki ∈ Kw \ {w} together imply that O(qi)z(Ki) = 0
iff z(Ki) ∈ Ker(O(n+ 1)) = Ker(R) for all i ∈ [0, N(w))Z.
This fact together with (11) and the induction similar to the
one in (9) implies that x(Ki+1) = x(Ki), ∀i ∈ [0, N(w))Z.
Further, Corollary III.3(a) implies that û(Ki+1) = û(Ki) and
hence z(Ki) = z(K0) for all i ∈ [0, N(w))Z. Now, applying
Theorem III.4 on each of the inter-update intervals in Kw in
isolation and using (12), we obtain the first claim of the result.
The second claim is now a consequence of (12) and the fact
that z(k) = z(K0) ∈ Ker(O(n+ 1)).

Note that Theorem IV.2 allows the possibility that Z(w, k)
can be something other than Ker(O(n+1)) for w that violate
the assumption that w−Ki ≥ n+1 for all Ki ∈ Kw\{w}. For
all other w, Theorem IV.2 says that the unobservable subspace
is the same. Given this, we let

Z := Ker(O(n+ 1)) = Ker(R).

Further, for brevity, we also let O := O(n+ 1).
Next, we want to define the known and the unknown parts

of the state and the control input. To this end, letting

y(k : k + j) := (y(k), . . . , y(k + j)),

we can write the output relation as

y(Ki : Ki+n) = Oz(Ki) =: O1x(Ki)+O2û(Ki), ∀Ki ∈ K,

where O1 and O2 are the first n and last m columns of the
matrix O, respectively, such that O =: [O1 O2]. Note that by
row operations, the last n block rows of O2 can be reduced to
the first n block rows of O1B. Then, Assumptions (A1)- (A2)
imply that O1 and O2 have full column rank. Hence, there
exists a unique û(Ki) compatible with each pair of x(Ki),
and a feasible output sequence y(Ki : Ki + n). Further,

û(Ki) = O†2

[
y(Ki : Ki + n)−O1x(Ki)].

Definition IV.3. We denote the known and the unknown parts
of z(k) with r(k) and ζ(k), respectively, which we define as

r(0) := O†y(0 : n), ζ(0) ∈ Z, s.t. z(0) = r(0) + ζ(0)

(xζ(k), ûζ(k)) := ζ(k) := Ākζ(0), ∀k ∈ N0

(xr(k), ûr(k)) := r(k) := Āk−Kir(Ki), ∀k ∈ [Ki,Ki+1)Z,

where

xr(Ki) :=
[
In 0

]
Ā(Ki−Ki−1)r(Ki−1)

ûr(Ki) := O†2

[
y(Ki : Ki + n)−O1x

r(Ki)
]
.

We also call xζ(k), ûζ(k) as the unknown and xr(k), ûr(k)
as the known parts in plant states and input, respectively. •

Note that r(0) can only be computed after n + 1 mea-
surements. Similarly, for each Ki ∈ K, ûr(Ki) depends on
y(Ki : Ki + n). This implies that r(k) can only be evaluated
with an initial delay of n+ 1 time-steps in each inter-update
interval, that is to say that r(k) can only be evaluated at time
step max{k, Lk + n}, where Lk := max{K ∈ K : K < k}.
On the other hand, ζ(k) cannot be determined only from the
measurements though we know that ζ(k) remains ζ(0) for all
k. In the next result, we show that the known and the unknown
parts, r(k) and ζ(k), add up to z(k) for all k ≥ 0.

Corollary IV.4. Consider the system (2) under piece-wise
constant unknown input and suppose Assumptions (A1)-(A3)
hold. Then ζ(k) = ζ(0) and z(k) = r(k) + ζ(k), ∀k ∈ N0.

Proof. Theorem III.4 ensures that ζ(k) = ζ(0), ∀k ≥ 0. Next,
we show by induction that z(Ki) = r(Ki)+ζ(Ki), ∀Ki ∈ K,
which along with (2) implies that z(k) = r(k) + ζ(k) for
all k ∈ [Ki,Ki+1)Z, ∀Ki ∈ K. By definition r(0) ∈ Z⊥
and hence z(0) = r(0) + ζ(0). Now suppose that z(Ki) =
r(Ki) + ζ(Ki) for Ki ∈ K. Then the definition of xr(Ki+1)
implies that x(Ki+1)−xr(Ki+1) = xζ(Ki+1) = xζ(0). Next,
since

Oz(Ki+1) = y(Ki+1 : Ki+1 + n) = Or(Ki+1),

we can say that (z(Ki+1) − r(Ki+1)) ∈ Z . Then, Corol-
lary III.3(a) implies that û(Ki+1)− ûr(Ki+1) = ûζ(Ki+1) =
ûζ(0) as (xζ(0), ûζ(0)) ∈ Z .

The known part r(k) can be thought of as the estimate
of the plant state and the unknown input given sufficient
measurements. Theorem IV.2 and Corollary IV.4 indicate
that the uncertainty about the unknown part ζ(k) cannot be
reduced, from the subspace Z , after the first n + 1 time
steps even if there are many updates to the control. However,
with additional information such as the triggering rule in
event-triggered control, we show in the next section that this
uncertainty can be reduced. As a result, there can be a loss
of privacy in event-triggered control. In contrast, in time-
triggered control, there is no additional information in the
update times and hence the uncertainty remains a subspace.

V. PRIVACY IMPLICATIONS FOR EVENT-TRIGGERED
STABILIZATION

In this section, we explore the implications of the results in
Section IV for privacy in event-triggered stabilization. Through
an example, we show that uncertainty about the unknown part
can be reduced to a bounded subset of Z in finite time.

We consider a system with event-triggered state feedback
transmissions from the plant to the controller over a network
and in the presence of an eavesdropper (ED). We depict
this setup in Figure 1. We assume that the eavesdropper has
knowledge about the system matrices A, B and C in (1) and
the event-triggering rule (ET). While these can be known even
offline, we also assume that ED has access to some online
information, namely the sensor measurements and the event



times {Ki}. However, we assume that ED cannot measure the
plant state x(.) or the control input û(.).

Fig. 1. Event-triggered control in the presence of an eavesdropper.

Consider system (1) with the pair (A,B) stabilizable and a
matrix S such that (A+BS) is schur stable. We let the input
be a zero-order hold control

û(k) = Sx(Ki), ∀k ∈ [Ki,Ki+1)Z, (13)

where K := {Ki}i∈N0
is the increasing sequence of input

update times determined implicitly by an event-triggering
rule. We assume that ED has knowledge of the update times
Ki when they occur. However, we assume that ED has no
knowledge about the matrix S or even the form of the control,
except that it is piece-wise constant.

We consider the triggering rule from [25], where an event
occurs at time step k, i.e. Ki+1 = k, if

||x(Ki)− x(k)|| ≥ µ||x(k)||. (14)

Reference [25] provides a range of values of µ for which
the triggering rule (14) ensures asymptotic stabilization of the
plant state to the origin. We define ζ = (xζ , ûζ) := ζ(0) for
brevity. Then, from Corollary IV.4, x(k) = xr(k) + xζ . Thus,
the event-triggering rule can be written as: Ki+1 = k if

||xr(k) + xζ || ≤ 1

µ
||xr(Ki)− xr(k)||. (15)

We assume that system (1) and the update times K generated
by the triggering rule (14) satisfy Assumptions (A1)-(A3).
Assumption (A3) is not restrictive in this context as one could
choose a small enough sampling period for time-discretizing
the underlying continuous time system in order to ensure
Assumption (A3) is satisfied. With this review of event-
triggering rule, we now look at the privacy implications for
this stabilization task.

A. Privacy Implications

We consider plant state to be confidential information and
hence a matter of privacy. Specifically, the smaller the error
bound on ED’s estimate of the plant state the greater is the
loss of privacy. We assume that ED can accurately evaluate
xr(k), the known part of the plant state x(k). Hence the
uncertainty in ED’s estimation of the states is entirely due to
the unknown part in the state. We assume that ED has access
to the information I(k) at time k, where

I(k) := {A,B,C, {y(j)}kj=0,Kk, ET rule (14) }.

We let L(k) be the uncertainty set at time-step k, which is
the set of all possible values of xζ that are compatible with

information available to ED up to time k. Then, we measure
the breach in privacy through the “size” of these uncertainty
sets as a function of time step k.

Notice that sensor output measurements alone cannot reduce
the uncertainty set L(k) to something smaller than X , which
is the projection of Z onto the plant-state space. Thus, there
is a reduction only at the event times Ki. Hence, we consider
L(k) only for k = Ki ∈ K. In particular, using (15), which
is equivalent to the ET rule (14), we first define S(Ki) as the
set of all xζ compatible with (15) at k = Ki. Thus,

S(Ki) := {x ∈ X : ||x+ xr(Ki)|| ≤ b(i)} ,

where b(i) := 1
µ ||x

r(Ki−1)− xr(Ki)||. Then,

L(Ki) := ∩ij=1S(Kj). (16)

and non-increasing with events. If in the event-triggering
rule (14) or equivalently (15) µ is such that it ensures
asymptotic stability of the origin of the plant state x then
the uncertainty sets L(Ki) are bounded, limi→∞ b(i) = 0 and
as a result L(Ki) converges to the true value of the unknown
part of the plant state.

Now, we give an illustrative example showing the loss of
privacy about the plant state information.

B. An illustrative example

Consider system (1) with input (13) under Assump-
tions (A1)-(A3). We let the parameters of the system be

A =

[
1 0.0022

−0.0044 1.0066

]
, B =

[
0

0.0022

]
, C =

[
0 1

]
,

S = [1 −4] and µ = 49.0636. This value of µ ensures that the
inter-event times are larger than n+1 = 3. In this example X is
a line spanned by the vector (1, 0). We consider the initial plant
state x(0) = (0.8,−0.4) and notice that xζ(0) = (1.1198, 0).

The evolution of the known and unknown part of plant-states
in the event-triggered feedback stabilization task is shown
in Figure 2. This verifies the results in Theorem IV.2 and
Corollary IV.4. Also note that xr(k) approaches negative of
xζ(k) = xζ(0) asymptotically. Further, the uncertainty sets

Fig. 2. Evolution of the known and the unknown parts of the plant state
at the event times in the event-triggered stabilization task. Here xζi and xri
denote the ith component in the vectors xζ(Ki) and xr(Ki). We see that
the unknown part in plant states remains time invariant and the known part
in the plant states evolves such that limKi→+∞ xr(Ki) + xζ = 0.

L(Ki) are intervals of the line X . In Figure 3, we show the
evolution of the left and the right ends of the intervals L(Ki).
We can see here that the length of the line segments L(Ki)



Fig. 3. The left and the right ends of the intervals of X that are the uncertainty
sets L(Ki). In this figure, we see that the size of the uncertainty set, i.e.
|L(Ki)| is bounded and decreasing with events.

reduces with events. Also note here that no initial estimate
needs to be provided for the uncertainty set. Hence, we can see
that ED can identify the unknown part of the plant state within
a quantifiable bound even in finite time. Moreover, the bound
shrinks with each event and converges to zero asymptotically.
Thus, in this example, with the knowledge of only the system
parameters A, B and C, sensor measurements, the event times
and the event-triggering rule, ED is able to breach the privacy
of the plant state.

VI. CONCLUSIONS

In this paper, we characterized the unobservable subspace of
discrete-time LTI systems under unknown piece-wise constant
inputs when the input update times are known. In particular,
we showed that if the input inter-update times are long enough
and if there are enough measurements in each inter-update
interval, then the unobservable subspace remains fixed. We
then explored the consequences of this result for privacy in
event-triggered control. We showed that if an eavesdropper
knows the system matrices, the input update times and the
event-triggering rule then it can estimate the plant state up to
a bound that decreases with time to zero.
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