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Abstract: In this paper, we consider the problem of second moment stabilization of a scalar linear plant with process noise. We
assume that the sensor communicates with the controller over an unreliable channel, whose state evolves according to a Markov
chain, with the transition matrix on a timestep depending on whether there is a transmission or not on that timestep. Under such
a setting, we propose an event-triggered transmission policy which meets the objective of exponential convergence of the second
moment of the plant state to an ultimate bound. Further, we provide upper bounds on the transmission fraction of the proposed
policy. We illustrate our results through an example scenario of control in the presence of a battery-equipped energy-harvesting
sensor. We verify the proposed control design as well as the analytical guarantees through simulations for the example scenario.

1 Introduction

In the literature, the problem of control over time-varying action-
dependent channels has been understudied. This paper addresses this
gap by using the approach of event-triggering for controlling a scalar
linear system over an unreliable action-dependent Markov channel.

Literature Review Last two decades have seen extensive research
on various issues and design methods in networked control systems
(NCS) [1–4]. One such area is that of event-triggered control [5–
9], which has been applied in numerous contexts for various control
goals. However, the volume of work on event-triggered control in a
stochastic setting is still not as considerable as in the deterministic
setting. Some early work in the stochastic setting includes [10–
13]. Several papers that consider event-triggered transmissions under
stochastic packet drops exist in the context of estimation [14], LQG
control [15–17], non-linear systems [18], multiloop control of linear
systems [19, 20] and stabilization [21–23]. However, these works
consider only independent and identically distributed packet drops.
An exception in the works on event-triggered control is our previous
paper [24], which considers Markov packet drops.

Even in the literature on NCS, a very common assumption is that
the packet drops are independent and identically distributed (i.i.d)
across time. However, in order to better capture time-correlation
effects in networks, there has been recent consideration of packet
drop probabilities evolving according to a Markov Chain. Some
recent works considering Markov packet drops include stability
of Kalman filtering over networks [25, 26], channel selection for
control of multi-loop nonlinear systems [27], and mean-square sta-
bilization with quantized feedback [28, 29]. Beyond packet drops,
some other works on NCS with Markovian channels include [30]
for Kalman filtering with Markov inter-reception times, control
under Markov missing data [31], mean-square stabilization with
the channel data rate evolving as a Markov chain [32] and over a
noisy fading channel where the evolution of fading gain is Marko-
vian [33, 34] as well as in the context of control over vehicular
ad-hoc networks [35, 36] (see also references therein).

In the literature on communication systems, Markov models for
channels have a long history, starting with the work of Gilbert [37]
and Elliott [38]. The reference [39] is a relatively recent survey on
Markov modeling of fading channels. Channels whose properties
depend on past actions also serve as useful models for communi-
cation systems as well as for other applications. Some examples in
the communication literature include [40], which considers stream-
ing in buffer enabled wireless networks, and [41], which is on
communication in underwater acoustic channels. Action-dependent

Markov processes also model systems other communication chan-
nels. The reference [42] is a recent survey on models and research
work on systems whose operation depends on a “utilization depen-
dent component” such as queueing in action dependent servers [43],
iterative learning algorithms and systems with energy harvesting
components, among other applications. The reference [44] considers
a communication system powered by an energy harvesting bat-
tery, modeled as an action-dependent Markov channel. This model
shares significant conceptual commonality with the model we use
for simulations in Section 6.

Contributions The major contributions of this paper are as follows.

• We consider the problem of second moment stabilization over a
channel with action-dependent Markov packet drops. To the best of
our knowledge, such channels have not been considered before in the
context of NCS. For example, the works [28, 29] consider Markov
packet drops without dependence on past transmission actions. We
provide a necessary condition on the plant dynamics and the channel
parameters for our transmission policy to achieve the control objec-
tive. This necessary condition is similar to the conditions often found
in the data rate limited control [45] and NCS in general.
• The proposed event-triggered transmission policy is similar in
spirit to our earlier work [21, 24]. However, [21] considers only i.i.d
bernoulli packet drops and [24] considers Markov packet drops. In
contrast, here we consider action-dependent Markov packet drops,
which results in a coupling of the evolution of the plant and chan-
nel states. This aspect makes the analysis necessary for providing
theoretical guarantees on performance significantly more challeng-
ing. In particular, the two main analytical contributions in this part
are theoretical guarantee on second moment stability and an upper
bound on the fraction of timesteps, over a time horizon, on which a
transmission occurs under the event-triggered policy.
• We model the problem of control with a battery-equipped energy-
harvesting sensor using the proposed action-based Markov channel
framework and illustrate our proposed event-triggered policy and
results through simulations. This example also demonstrates the
wider applicability of our model, beyond the problem of control over
wireless communication channels.

Notation We let R, Z, N, and N0 denote the sets of real numbers,
integers, natural numbers and non-negative integers, respectively.
We use the standard font for scalar quantities while boldface for
vectors and matrices. The notations 1, δδδi, and I denote the vec-
tor with all 1s, the vector whose ith entry takes the value 1 and 0
everywhere else, and the identity matrix, respectively, of appropri-
ate dimensions. We use ρ (A) to denote the spectral radius of a real
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Fig. 1: Schematic of the system under consideration.

square matrix A. We denote the space of probability vectors (i.e.
vectors with non-negative entries that sum to 1) of n dimensions as
Pn. The notation Pr[.] denotes the probability of an event. We denote
a generic transmission policy using T , and ET [ ] represents expec-
tation of a random variable under a given transmission policy T . We
denote the cardinality of a finite set S as |S|. For integers a and b,
we let [a, b]Z, (a, b)Z, and (a, b]Z represent the finite sets [a, b] ∩ Z,
(a, b) ∩ Z, and (a, b] ∩ Z, respectively. For random variables X , Y
and Z, the tower property of conditional expectation is

E [ E [X |Y,Z] |Y ] = E [X |Y ] .

2 System Description

In this section, we describe the plant, channel, controller and the
control objective. A schematic of the system is provided in Fig. 1.

2.1 Plant and Controller Model

Consider a scalar linear plant with process noise

xk+1 = axk + uk + vk, xk, uk, vk ∈ R, ∀k ∈ N0. (1)

The parameter a is the inherent gain of the plant, which we assume
is unstable, i.e. |a| > 1. The variables xk, uk and vk are the plant
state, the control input and the process noise, respectively at timestep
k ∈ N0. We assume that vk is independent and identically dis-
tributed (i.i.d.) across timesteps k and independent of all the other
system variables. Its distribution has zero mean and finite variance,
i.e. E [vk] = 0, E

[
v2
k

]
=: M <∞.

At each timestep, a sensor perfectly measures the plant state
and decides on whether to transmit a packet to the controller. The
sensor’s transmission decision on timestep k is tk, where

tk :=

{
1, if sensor transmits at k
0, if sensor does not transmit at k.

The sensor determines tk at each timestep k according to an event-
triggered transmission policy on the basis of plant state and all the
information available to it on timestep k. Even if the sensor transmits
a packet at timestep k (tk = 1), the packet may be dropped by the
communication channel according to a packet drop model which we
describe in Section 2.2. We let rk be the reception indicator,

rk :=


1, if tk = 1 and packet received
0, if tk = 1 and packet dropped
0, if tk = 0.

The controller uses the controller state, x̂+
k , to generate the input

uk := Lx̂+
k , where L is such that ā := (a+ L) ∈ (−1, 1). The

controller state x̂+
k itself evolves as

x̂+
k =

{
xk, if rk = 1

x̂k, if rk = 0,
(2)

where x̂k := āx̂+
k−1 is the estimate of the plant state given past data.

Corresponding to the controller state and plant state estimate, we

define the estimation error zk and controller state error z+
k as

zk := xk − x̂k, z+
k := xk − x̂+

k . (3)

The two quantities differ only on successful reception times. It is
possible to write the plant state evolution as

xk+1 = axk + Lx̂+
k + vk = āxk − Lz+

k + vk, (4a)

x̂k+1 = āx̂+
k . (4b)

Equations (2)-(4) compositely describe the evolution of the plant
state, controller state and the estimate of plant state.

2.2 Channel Model

We model the communication channel as an action-dependent finite
state space Markov channel (FSSMC). The channel can be in one
among a finite number of states on each timestep. The state of the
channel on a given timestep describes the quality of service it pro-
vides. In this paper, the channel state on a timestep determines the
packet drop probability on that timestep. We denote the channel state
at timestep k by γk ∈ {1, · · · , n}, with n a finite positive integer.
We assume that the probability distribution of γk+1 depends on γk
and tk, the transmission decision on timestep k. Thus, the evolution
of the channel is an action-dependent Markov process. We let p(0)

ij

and p(1)
ij denote the probabilities of the channel state transitioning

from j to i given tk is equal to 0 and 1, respectively. Thus,

p
(0)
ij := Pr [γk+1 = i | γk = j, tk = 0] ,

p
(1)
ij := Pr [γk+1 = i | γk = j, tk = 1] .

We let P0 and P1 be column-stochastic matrices, whose (i, j)th ele-
ments are p(0)

ij and p(1)
ij , respectively. We model the unreliability

of the channel through a packet drop probability ei for each ele-
ment i of the channel state space. Thus, if on timestep k the channel
state γk = i and if the sensor transmits a packet then the channel
drops it with probability ei ∈ [0, 1] and it communicates the packet
successfully to the controller with probability (1− ei), i.e.,

rk :=


1, w.p. (1− eγk ) if tk = 1

0, w.p. eγk if tk = 1

0, if tk = 0,

where “w.p.” stands for “with probability”. Thus, the packet drops on
each timestep is Bernoulli, though not i.i.d.. We collect the probabil-
ities of packet drops across all possible channel states in the vector
e := [e1, e2, · · · , en]T ∈ [0, 1]n. Correspondingly, we define the
transmission success probability vector d as d := 1− e.

2.3 Sensor’s Information Pattern

Next, we describe the information available to the sensor to make
the transmission decisions tk. Apart from the plant state xk that
the sensor can measure perfectly on each timestep k, we assume
that if a successful reception occurs on timestep k, then the con-
troller acknowledges it by relaying the reception indicator variable
rk and the channel state γk over an error-free feedback channel.
However, the sensor may use this channel feedback information only
on subsequent timesteps.

To describe all the information available to the sensor on timestep
k more formally, we first introduce the variables Rk and R+

k to
track the latest reception time before and latest reception time until
timestep k, respectively. Thus,

Rk := max
i
{i < k : ri = 1} , R+

k := max
i
{i ≤ k : ri = 1} .



The variable Rk is useful for the sensor’s decision making while
R+
k is helpful in the analysis. Further, we let Sj for j ∈ N0 be the

jth successful random reception time, that is,

S0 = 0, Sj+1 := min
{
k > Sj : rk = 1

}
, ∀ j ∈ N,

where without loss of generality, we have assumed that the zeroth
successful reception occurs on timestep 0.

From the controller feedback, the sensor knows Rk and γRk
before deciding tk, from which the sensor can utilize the channel
evolution model to obtain the probability distribution of the chan-
nel state pk ∈ Pn given Rk, γRk and all the transmission decisions
from Rk to k − 1, that is,

pk(i) := Pr
[
γk = i | Rk, γRk , {tw}

k−1
Rk

]
,

where pk(i) is the ith element of the vector pk. Letting

p+
k :=

{
pk, if rk = 0

δδδγk , if rk = 1,

we can obtain pk recursively as

pk+1 =

{
P0p+

k , if tk = 0

P1p+
k , if tk = 1.

(5)

In the following remark, we discuss about the case when channel
state feedback may not be error-free.

Remark 2.1 (Value of p+
k under erroneous channel state feedback).

The probability distribution pk represents the belief of the sensor
about the true value of channel state γk, which evolves based on
the action-dependent Markov transition matrix and the intermittently
available feedback through p+

k . Under perfect channel state feed-
back, on a reception timestep (rk = 1), the sensor knows the value
of γk and therefore updates the intermediate belief p+

k to δδδγk , else
(rk = 0) it uses the current belief pk for the same. In case of imper-
fect channel feedback, the channel state information acquired from
the controller can be represented via a probability distribution p̂k,
and the value of p+

k can be set to p̂k when rk = 1. The analysis can
then be suitably modified. •

We denote by Ik the information available to the sensor about
the controller’s knowledge of plant state before transmission while
we use I+

k to denote the information available to the sensor after
channel state feedback (if any). Thus, I+

k = Ik when rk = 0, and
I+
k contains rk and γk over Ik when rk = 1. In other words,

Ik := {k, xk, zk, Rk, xRk ,pk, tk−1, rk−1γk−1}, (6a)

I+
k := {k, xk, z+

k , R
+
k , xR+

k
,p+
k , tk, rkγk}. (6b)

Note that the channel state feedback by the controller is repre-
sented as rk−1γk−1 and rkγk in Ik and I+

k , respectively. If rk = 1
then rkγk = γk, and if rk = 0 then rkγk = 0 and thus no chan-
nel state feedback is available. Note that {Ik}k∈N0

and {I+
k }k∈N0

are action-dependent Markov processes. In particular, the probability
distribution of Ik conditioned on {Is, ts}k−1

s=0 can be shown to be the
same as the one conditioned on {Ik−1, tk−1}. Similarly, {I+

k } is
“sufficient information” to determine the distribution of I+

k+1 given
all the past information

2.4 Control Objective

Given the plant and the controller models in Section 2.1, the only
decision making left to be designed is the sensor’s transmission pol-
icy T , which determines tk for each timestep k. In particular, we
seek to design a feedback transmission policy using the available

information Ik on timestep k. The offline control objective that we
seek to guarantee is second-moment stabilization of the plant state
to an ultimate bound exponentially. Formally, we want to ensure

ET
[
x2
k | I

+
0

]
≤ max{c2kx2

0, B}, ∀k ∈ N0, (7)

which is to have the second moment of the plant state decay expo-
nentially at least at a rate of c2 until it settles to the ultimate boundB.
We assume that the convergence rate parameter c2 ∈ (ā2, 1). Note
that (7) prescribes the restriction on the plant state evolution in an
offline fashion, in terms of only the initial information. However, a
recursive formulation of the control objective is more conducive to
designing a feedback transmission policy.

To design a feedback transmission policy, we need to define
an online version of the control objectives which is conditioned
upon the information sets I+

Rk
that become available to the sensor

through feedback received from the channel. First, we define the
performance function hk for every timestep k as follows

hk := x2
k −max{c2(k−Rk)x2

Rk , B}.

Then, the online objective is to ensure

ET
[
hk | I+

Rk

]
≤ 0, ∀k ∈ N0. (8)

We borrow Lemma III.1 from [21], which demonstrates that any
transmission policy that satisfies the online objective also satisfies
the offline objective.

Lemma 2.1 (Sufficiency of the online objective [21]). If a transmis-
sion policy T satisfies the online objective (8) then it also satisfies
the offline objective (7). �

Note that in the control objective (7), the sources of randomness
that determine the expectation are the transmission policy T , the
random channel behavior and the process noise. The transmission
policy and the random channel behavior determine the successful
reception times while the process noise affects the evolution of
the performance function during the inter-reception times. As the
online objective (8) is essentially a condition on the evolution of the
performance function during the inter-reception times, Lemma 2.1
continues to hold in the setting of this paper.

3 Two-Step Design of Transmission Policy

Designing a transmission policy so that the described system meets
the control objective (7) or even the stricter online objective (8)
poses many challenges. The main challenge stems from the ran-
dom packet drops, which makes the necessity of a transmission on
timestep k dependent on future transmission decisions. Further, the
future evolution of the channel state depends on all the past and
current transmission decisions. Thus, the transmission decisions tk
cannot be made in a myopic manner and instead must be made by
evaluating their impact on the channel and the control objective over
a sufficiently long time frame. To tackle this problem, we adopt a
two-step design procedure. This general design principle is the same
as in [21], wherein the reader can find a more detailed discussion
about this procedure as well as its merits. We now describe the two
steps of the design procedure.

In the first step, for each timestep k, we consider a family of nom-
inal policies with look-ahead parameter D ∈ N. A nominal policy
with parameter D involves a ‘hold-off’ period of D timesteps from
k to k +D − 1 during which tk = 0, and then there is perpetual
transmission, that is tk = 1 for all timesteps after k +D − 1. Thus,
letting T Dk be the nominal policy with parameter D, we have

T Dk : ti =

{
0, if i ∈ {k, k + 1, · · · , k +D − 1}
1, for i ≥ k +D.

(9)

In the second step of the design procedure, we construct the event-
triggered policy, T Det , using the nominal policies as building blocks.



Given (9), one can reason that if the nominal policy with parame-
ter D ∈ N satisfies the online objective from the current timestep
k, then a transmission on the current timestep is not necessary to
meet the online objective. Further, if the online objective cannot be
met from timestep k using the nominal policy T Dk then it may be
necessary to transmit on timestep k. This forms the basis for the
construction of the event-triggered policy, which we detail next.

First, we need a method to check if the nominal policy T Dk sat-
isfies the online objective from timestep k. For this, we define the
look-ahead function, GDk , as the expected value of the performance
function hk at the next successful reception timestep k = Sj+1
under the nominal policy, that is,

GDk := ET Dk
[
hSj+1

| Ik, Sj = Rk
]
. (10)

We can evaluate GDk as a total expectation, over all possible values
of Sj+1, as

GDk =
∑∞
w=D ET Dk

[
hSj+1

| Ik, · · ·

· · ·Sj = Rk, Sj+1 = k + w
]

ΩD(w,pk), (11)

where ΩD(w,p) is the probability of the event that the first success-
ful reception after timestep k is at timestep k + w under the nominal
policy T Dk and given pk, the probability distribution of the channel
state at time k, conditioned on the information at timeRk. Formally,

ΩD(w,p) := Pr[Sj+1 = k + w | T = T Dk , · · ·
· · ·pk = p, Sj = Rk]. (12)

The closed form of ΩD(w,p) is given as follows.

ΩD(w,p) = dT (P1E)(w−D)P
(D)
0 p, (13)

where E is the diagonal matrix with elements of e on its main diag-
onal. The explanation of (13) is as follows - the probability vector
p, when left-multiplied by P

(D)
0 provides the probability vector of

the channel state immediately after the hold-off period, which is of
D timesteps. The said vector when left-multiplied by (P1E)(w−D)

provides the probabilities of, subsequent to the hold-off period, mak-
ing a transmission attempt (w −D) times successively but failing
to achieve reception on every attempt. Finally, left-multiplication by
dT gives the probability of finally having a successful reception on
the (k + w)th timestep. Thus (13) is the closed form of ΩD(w,p)
defined in (12).

3.1 The Event-Triggered Policy

The main idea behind the proposed event-triggered policy is the fol-
lowing. A negative sign of the look-ahead function GDk indicates
that it is not “necessary” to transmit on timestep k as there exists a
transmission sequence (given by the nominal policy) that meets the
objective at least on the next random reception timestep. However, if
the sign of GDk is non-negative, it means that the sensor cannot afford
to hold off transmission for D timesteps from the current timestep
k, and still ensure that the online objective is not violated on some
future timestep. In the proposed event-triggered transmission pol-
icy, the sensor evaluates GDk at every timestep k, and when it turns
nonnegative the sensor keeps transmitting on every timestep until a
successful reception occurs, and then the sensor again waits for GDk
to turn non-negative. The event-triggered transmission policy may
be described formally as follows.

T Det : tk =

{
0, if k ∈ {Rk + 1, · · · , τk − 1}
1, if k ∈ {τk, · · · , Zk},

(14)

where τk is the first timestep after Rk when GDk ≥ 0 and Zk is the
first timestep, afterRk, on which there is a successful reception, i.e.,

τk := min{m > Rk : GDm ≥ 0},

Zk := min{m > Rk : R+
m = m}.

Note that the event-triggered policy is described recursively in terms
of Rk, the latest reception time before k, and the look-ahead func-
tion GDk . As a result, the policy in (14) is valid for all time k ≥ 0. In
the analysis of the policy (14) in the sequel, it is useful to refer to the
jth reception time, denoted by Sj . Similarly, we let

Tj := min{m > Sj : GDm ≥ 0}.

So, if Sj = Rk then Tj = τk and Sj+1 = Zk.
One can think of the policy (14) as operating in one of two modes:

“do not transmit” or “transmit”. The policy switches from the first
mode to the second at a time k exactly when GDk ≥ 0 for the first
time after the last successful reception. After a successful reception,
the policy shifts back to the “do not transmit” mode. Thus, from this
perspective, GDk ≥ 0 can be thought of as the event-triggering rule.

4 Implementation and Performance Guarantees

In this section, we describe the implementation details of the pro-
posed event-triggered policy, and analyze the system under this
policy through several intermediate results. At the end of the section,
we provide sufficient conditions on the ultimate bound B and the
look-ahead parameter D such that the system meets the online
objective (and the offline objective) under the event-triggered policy.

4.1 Closed Form Expression of the Look Ahead Criterion

For implementation of the event-triggered policy (14), we need an
easy method to compute the look-ahead function GDk . In particular,
we provide here a closed form expression of the look-ahead function.
We begin by expanding the expectation term in (11) as follows [46]

E
[
hSj+1

| Ik, Sj = Rk, Sj+1 = k + w
]

= ā2wx2
k+

2āw(aw − āw)xkzk + (a2w − 2awāw + ā2w)z2
k+

M̄(a2w − 1)−max{c2wc2(k−Rk)x2
Rk , B}. (15)

From (11) and (15), it is evident that convergence of GDk requires the
convergence of infinite series of the form

gD(b,p) :=
∑∞
w=D b

wΩD(w,p)

= bD
∑∞
w=D b

(w−D)dT (P1E)(w−D)P
(D)
0 p, (16)

with p ∈ Pn, and D ∈ N and for values of b equal to ā2, c2, a2, āa
and 1, which satisfy

0 < ā2 < c2 < 1 < a2, |āa| < a2. (17)

Each of the terms gD(b,p) involves an infinite matrix geometric
series. The criteria for convergence and the closed form of gD(b,p)
for these values of b would allow us to determine the same for GDk .
For the same, we use the well known result that for a non-negative
matrix K, the infinite matrix geometric series

∑∞
i=0 Ki converges

to (I−K)−1 if and only if ρ (K) < 1.
To obtain a closed form expression of gD(b,p), first note that

gD(b,p) = bDdT
[∑∞

w=0(bP1E)w
]
P

(D)
0 p.

If ρ (bP1E) < 1 then we obtain

gD(b,p) = bDdT (I− bP1E)−1P
(D)
0 p. (18)

In the following result, we apply the convergence criterion of
a matrix geometric series to provide a necessary and sufficient
condition for GDk to be well-defined.



Lemma 4.1. GDk converges for all probability vectors pk if and only
if a2ρ (P1E) < 1.

Proof: From (11)-(12) and (15)-(16), we see that an expansion of GDk
involves terms such as gD(b,p) with b equal to ā2, aā, a2 and c2.
Using (17) and noting that ρ (b1P1E) > ρ (b2P1E) when |b1| >
|b2|, we can state that ρ

(
a2P1E

)
> ρ

(
b̃P1E

)
for b̃ equal to ā2,

aā, and c2. Thus, ρ
(
a2P1E

)
= a2ρ (P1E) < 1 is a necessary and

sufficient condition for convergence of GDk . �

We now proceed to give a closed form expression of the look-
ahead function GDk in the following lemma.

Lemma 4.2 (Closed form of the look-ahead function). Suppose that
a2ρ (P1E) < 1. The following is a closed-form expression of the
look-ahead function GDk .

GDk =gD(ā2,pk)x2
k + 2

(
gD(aā,pk)− gD(ā2,pk)

)
xkzk+(

gD(a2,pk) + gD(ā2,pk)− 2gD(aā,pk)
)
z2
k+

M̄
(
gD(a2,pk)− gD(1,pk)

)
−
(
BfD(1,pk)+

Nk

[
gD(c2,pk)− fD(c2,pk)

])
where M̄ := M(a2 − 1)−1, Nk := c2(k−Rk)x2

Rk
, the closed form

of the function gD(b,p) is given in (18), while fD(b,p) is given by

fD(b,p) := bµdT (P1E)(µ−D)(I− bP1E)−1P
(D)
0 p.

Finally, µ is defined as follows

µ := max

{
D,

⌈
log(x2

Rk
/B)

log(1/c2)

⌉
− (k −Rk)

}
. (19)

Proof: Most terms in the closed form of GDk follow directly
from (11), the series expansion of GDk , the closed form of ΩD(w,p)
in (13), the expansion of the expectation term (15), the definition (16)
and the closed form (18) of gD(b,p). We only need to simplify∑∞

w=D max{c2wc2(k−Rk)x2
Rk
, B} ΩD(b,pk).

We split this summation into two parts based on if c2wNk is larger
or smaller than B. Observe that µ, defined in (19), is the smallest
integer w ≥ D such that B ≥ c2wNk. Then,

∞∑
w=D

max{c2wc2(k−Rk)x2
Rk , B} ΩD(w,pk)

= gD(c2,pk)Nk +
∑∞
w=µ(B − c2wNk)ΩD(w,pk)

[r1]
= BfD(1,pk) +Nk

[
gD(c2,pk)− fD(c2,pk)

]
,

where we obtain [r1] by observing that∑∞
w=µ b

wΩD(w,p) =
∑∞
w=µ b

wdT (P1E)(w−D)P
(D)
0 p

= bµdT (P1E)(µ−D)∑∞
w=0(bP1E)wP

(D)
0 p = fD(b,p),

assuming ρ (bP1E) < 1. With this we obtain the complete closed
form expression of the look-ahead function GDk . �

Note that the closed form of GDk is a third-degree polynomial of
the plant state xk, error zk, and individual elements of pk, and is

amenable for online computation. Furthermore, note that the look-
ahead function GDk possesses a mathematical structure consisting
of a linear operator with unit dimensional rowspace acting on the
stochastic vector pk.

4.2 Necessary Condition on the Ultimate Bound B

We now seek a necessary condition on the ultimate boundB for there
to exist a transmission policy that satisfies the online objective. To
this end, we introduce the open loop performance function,H(w, y),
which we define as the expectation of the performance function
hSj+1

conditioned upon I+
Sj

and the event that Sj+1 = Sj + w and
x2
Sj = y, that is,

H(w, y) := E
[
hSj+1

| I+
Sj
, x2
Sj = y, Sj+1 = Sj + w

]
. (20)

Note that H(w, x2
Sj ) is very similar to (15) except that H is condi-

tioned upon I+
Sj

and defined for the special case of k = Sj . Thus, the
closed form ofH(w, x2

Sj ) may be obtained from (15) by replacing k
with Sj , xk with xSj and zk with z+

Sj
= 0 and Rk with R+

Sj
= Sj .

Hence we have

H(w, x2
Sj ) = ā2wx2

Sj + M̄(a2w − 1)−max{c2wx2
Sj , B}.

(21)
Note that H(w, x2

Sj ) < 0 indicates that given the information I+
Sj

,
the online objective is satisfied on timestep Sj + w. Conversely, a
positive sign implies that the online objective is expected to be vio-
lated on timestep Sj + w. Using this observation, we demonstrate
in the following proposition that for B less than a critical B0, there
exists no transmission policy that can satisfy the online objective.

Proposition 4.1 (Necessary condition on the ultimate bound for
meeting the online objective). If B < B0 :=

M̄ log(a2)
log(c2/ā2)

then no
transmission policy satisfies the online objective.

Proof: The proof relies on demonstrating that H(w, y) > 0 for all
w ∈ N and for all y ∈ (B,B0). This implies that if x2

Sj ∈ (B,B0),
then the system would violate the online objective on the very next
timestep. From (21), note that for a fixed y, the function H(w, y)
can be written as

H(w, y) =

{
l1(w, y), if w ≤ w∗∗(y)

l2(w, y), if w > w∗∗(y),

with l1(w, y) := ā2wy + M̄(a2w − 1)− c2wy and l2(w, y) :=

ā2wy + M̄(a2w − 1)−B, where w∗∗(y) :=
log(y/B)

log(1/c2)
is such

that l1(w∗∗(y), y) = l2(w∗∗(y), y). Now, it suffices to prove the
following two claims.

Claim (a): l1(w, y) > 0 for all w ∈ N for y ∈ (B,B0).
Claim (b): l2(w, y) > 0 for all w ∈ N for y ∈ (B,B0).
First, note that l1(0, y) = 0 for all values of y. Next, evaluat-

ing the partial of l1(w, y) with respect to w at w = 0 and for
y ∈ (B,B0), we obtain

∂l1(0, y)

∂w
= log(ā2/c2)y + M̄ log(a2)

[r1]
> log(ā2/c2)B0 + M̄ log(a2)

[r2]
= 0.

Note that we have used the fact that ā2 < c2 to obtain [r1], and used
the definition of B0 in [r2]. Since l1(w, y) is a quasiconvex function
ofw (Lemma IV.8, [21]), it is increasing for allw > 0, which proves
claim (a).

Now, we prove claim (b). We first derive a function g(w) that is a
lower bound on l2(w, y) for w ≥ 0 and y ∈ (B,B0).

l2(w, y) = ā2wy − M̄(a2w − 1)−B



> ā2wy − y + M̄(a2w − 1)

[r3]
>

B0

c2w
(ā2w − 1) + M̄(a2w − 1) =: g(w),

where in [r3], we have used the fact that ā2 < 1, c2 < 1 and w ≥ 0.
Note that g(w) is strictly convex in w because

∂2g(w)

∂w2
= B0

ā2w

c2w
log2(ā2/c2) + M̄a2w log2(a2) > 0.

The partial derivative of g(w) evaluated at w = 0 is

∂g(0)

∂w
= B0 log(ā2/c2) + M̄ log(a2)

[r4]
= 0,

where in [r4] we have used the definition of B0. Since g(0) = 0,
g(w) has slope 0 atw = 0 and g is strictly convex inw, we conclude
that l2(w, y) > g(w) > 0 for allw ∈ N, which proves claim (b) and
thus concluding the proof. �

Proposition 4.1 demonstrates that B > B0 is a necessary condi-
tion on B for a transmission policy to satisfy the online objective.
Note that this is a necessary condition on B even under the setting
of [21, 24], where no such condition is provided. In the following
subsection, we further analyse the open-loop performance function
H(w, y) to find a sufficient criterion onB andD that guarantees that
the online objective is met under the event-triggered policy.

4.3 The Performance-Evaluation Function, JDSj

For the purpose of analysing system performance betweeen any two
successive reception times Sj and Sj+1, we define the performance-
evaluation function, JDSj . Its definition is similar to that of GDk
in (10), though we define JDSj only for k = Sj (successful recep-
tion times) and condition upon the information set I+

Sj
instead of

ISj . In particular, we let

JDSj := ET D−1
Sj+1

[
hSj+1

| I+
Sj

]
=
∑∞
w=DH(w, x2

Sj )Ω̃D(w, γSj ).

(22)

Here, Ω̃D(w, γ) is the probability of getting a successful reception
w timesteps after Sj starting with channel state γ on Sj under the
nominal policy T D−1

Sj+1 . The purpose of the function Ω̃D(w, γ) is

analogous to that of ΩD(w,p) in GDk , and is formally defined as

Ω̃D(w, γ) := Pr[Sj+1 = Sj + w | T = T D−1
Sj+1 , γSj = γ]. (23)

The closed form of Ω̃D(w, γ) can be obtained in a manner similar
to the closed form of ΩD(w,p), and is given as

Ω̃D(w, γ) = dT (P1E)(w−D)P
(D−1)
0 P1δδδγ . (24)

Note that in (24), the probability function Ω̃D(w, γ) takes the chan-
nel state γ as an argument instead of a probability distribution p,
since our assumed channel state feedback mechanism stipulates
perfect feedback, i.e. pSj = δδδγSj , and thus pSj is a determinis-
tic function of γSj . Before proceeding, we discuss conceptual and
structural differences between GDk and JDk in the following remark.

Remark 4.1 (Differences between GDk and JDSj ). The core differ-
ence between the look ahead criterion GDk and the performance-
evaluation function JDSj is that while GDk is computed onboard the
sensor on every timestep k for the purpose of determining tk accord-
ing to the event-triggered policy,JDSj is used as an analytical tool for
evaluation of inter-reception performance between timesteps Sj and

Sj+1. Note that the expectation in GDk is conditioned upon the nom-
inal policy T Dk , while the expectation in JDSj is conditioned upon
the nominal policy T D−1

Sj+1 (as opposed to T DSj in the iid case [21]
and in the Markov channel case in [24]). The reason for doing this
is that in case of non action-dependent channels (P0 = P1), once
γSj is known, the resulting closed form of the probability function
Ω̃D(w, γ) is the same irrespective of whether we condition the prob-
ability in (23) upon nominal policy T D−1

Sj+1 or T DSj . However, this is
not true for the action-dependent Markov channels, since the stipu-
lation that tSj = 1 leads to calculation of belief on timestep Sj + 1
as pSj+1 = P1δδδγSj instead of pSj+1 = P0δδδγSj . This is visible in
the closed form of Ω̃D(w, γ) in (24), and obviously this would not
be an issue if P0 = P1, as aforementioned. •

For a well-chosen value of B, it can be shown that the open loop
performance function possesses the property of sign monotonicity.
This property is an important characteristic of H(w, y) and will
prove useful in later results.

Proposition 4.2 (Sign behaviour of the open-loop performance func-
tion, Proposition IV.6, [21]). There exists a B∗ ≥ B0 with B0
defined in Proposition 4.1 such that if B > B∗, then H(w, y) > 0
implies H(s, y) > 0 for all s ≥ w. �

The value of B∗ defined in Proposition 4.2 can be numerically
computed using the procedure in the Appendix, which is based on
the proof of Lemma IV.13 in [21]. We now provide a closed form
expression of the performance evaluation function JDSj , similar to
the closed form of GDk in Lemma 4.2.

Lemma 4.3 (Closed form of performance-evaluation function).
Suppose that a2ρ (P1E) < 1. A closed form of the performance-
evaluation function JDSj is given as

JDSj :=g̃D(ā2, γSj )x
2
Sj + M̄

[
g̃D(a2, γSj )− g̃D(1, γSj )

]
−
[
Bf̃D(1, γSj ) + x2

Sj

(
g̃D(c2, γSj )− f̃D(c2, γSj )

)]
,

where

f̃D(b, γ) := bνdT (P1E)(ν−D)(I− bP1E)−1P
(D−1)
0 P1δδδγ ,

g̃D(b, γ) := bDdT (I− bP1E)−1P
(D−1)
0 P1δδδγ ,

and finally, ν is defined as

ν := max

{
D,

⌈
log(x2

Sj/B)

log(1/c2)

⌉}
.

Proof: Recall the infinite series expansion of JDSj in (22). To evalu-
ate it, we substitute H(w, x2

Sj ) with its closed form from (21) and
that of Ω̃D(w, γSj ) from (24). Correspondingly, we get an expres-
sion that is the sum of multiple infinite series, as in the derivation of
GDk in Lemma 4.2. To evaluate said terms, we define the summation
functions f̃θ(b, γ) and g̃θ(b, γ) given in the statement of the lemma
and which are analogous to fθ(b,p) and gθ(b,p), respectively and
used for obtaining the expression for GDk . Proceeding exactly like in
Lemma 4.2, we obtain the expression for JDSj . �

The next result is concerned with the expected value of GDk+1
after no transmission or after successful reception and the channel
state feedback on timestep k. Note that this result is valid for any
transmission policy T .

Proposition 4.3 (Expected value of look-ahead function on next
timestep). Let T be any transmission policy. Then,



1. ET
[
GDk+1 | Ik, tk = 0

]
= GD+1

k .

2. ET
[
GDk+1 | Ik, rk = 1, γk

]
= JD+1

Sj
, where Sj = k.

Proof: 1: Note that

ET
[
GDk+1 | Ik, tk = 0

]
[r1]
= ET

[
ET Dk+1

[
hSj+1

| Ik+1, Sj = Rk+1

]
| Ik, tk = 0

]
,

[r2]
= ET D+1

k

[
ET Dk+1

[
hSj+1

| Ik+1, Sj = Rk
]
| Ik, tk = 0

]
,

[r3]
= ET D+1

k

[
hSj+1

| Ik, tk = 0, Sj = Rk
]

= GD+1
k ,

where [r1] follows from (10), while in [r2] we can replace the policy
T with T D+1

k because the event tk = 0 is consistent with the policy
T D+1
k on time step k and once tk = 0 is fixed the expected value of
GDk+1 is independent of the transmission policy used on subsequent
timesteps. In [r2], we also use the fact that if tk = 0 then Rk+1 =
Rk. Finally, [r3] uses the fact that {Ik, tk} is sufficient information
and then the tower property.

2: For proving this part, we observe that Ik and the additional
information that rk = 1 and γk implies the knowledge of I+

k . Con-
sidering this fact and proceeding with a similar methodology as the
proof of claim 1, we observe that

ET
[
GDk+1 | Ik, rk = 1, γk

]
= ET

[
ET Dk+1

[
hSj+1

| Ik+1, Sj = Rk+1

]
| I+
k , rk = 1

]
,

= ET Dk+1

[
ET Dk+1

[
hSj+1

| Ik+1, Sj = Rk+1

]
| I+
k , Sj = k

]
,

= ET (D+1)−1
k+1

[
hSj+1

| I+
k , Sj = k

]
= JD+1

Sj
. �

Remark 4.2 (Comparison with [21]). Note that the statement of
Proposition 4.3 1 differs from Proposition IV.4 (a) (first part) of [21]
which considers the expected value of GDk+1 in the setting of a chan-
nel with iid bernoulli packet drops, in that we condition GDk+1 upon
the stricter condition that tk = 0 as opposed to rk = 0 in [21].
This is because if the probabilities of channel state transition are
action dependent, then on a timestep with a transmission but no
reception (i.e. tk = 1, rk = 0) the expected value of the look-ahead
criterion on the next timestep cannot be written in terms of either
GD+1
k or JD+1

k , as opposed to iid bernoulli packet drop channel

where ET
[
GDk+1|Ik, rk = 0

]
= GD+1

k holds. However, due to the
robustness of the event-triggered policy design, this does not pre-
clude utilization of the event-triggered policy in the current case, as
will be demonstrated in the proof of Theorem 4.1. •

We use Proposition 4.2, Lemma 4.3, and Proposition 4.3 to give a
sufficient condition on ultimate boundB, and the look-ahead param-
eter D under which the online objective is met. First, we give a
sufficient condition to ensure J θSj is negative.

Proposition 4.4 (Sufficient condition for performance-evaluation
function to be negative). Suppose B ≥ B0 =

M̄ log(a2)
log(c2/ā2)

. Consider
the vector valued function Q(θ) : N0 → Rn given by

Q(θ) :=
[
Zθ(ā2)−Zθ(c2)

] B

c2θ
+ M̄

[
Zθ(a2)−Zθ(1)

]
wherein Zθ(b) := bθdT (I− bP1E)−1. If Q(D) < 0 (element-
wise), for someD ∈ N, then J θSj < 0, ∀xSj ∈ R and ∀θ ∈ [1, D]Z.

We provide the proof of Proposition 4.4 in the Appendix. Next,
we consolidate the results so far to provide a theoretical guarantee
that the event-triggered policy satisfies the online objective (8).

Theorem 4.1 (Performance guarantee of the event-triggered policy).
If B > B∗ (see Appendix) and the lookahead parameter D satisfies
the condition Q(D) < 0 then the event-triggered policy (14) guar-
antees that the online objective (8), and therefore the original offline
objective (7), are met.

Proof: Given Lemma 2.1, it suffices to show that the online objec-
tive (8) is met by the event-triggered policy. We center the proof
around the following two claims.

Claim (a): For any j ∈ N0, ET Det
[
hSj+1

| I+
Sj

]
≤ 0 implies

ET Det
[
hk | I+

Sj

]
≤ 0 for all k ∈ [Sj , Sj+1]Z.

Claim (b): For any j ∈ N0, ET Det
[
hSj+1

| I+
Sj

]
< 0.

These two claims guarantee that the online objective is met, as

ET Det
[
hk | I+

0

]
= ET Det

[
. . .ET Det

[
ET Det

[
hk | I+

Sj

]
| I+
Sj−1

]
. . . | I+

0

]
,

where {Si} are the random reception times and Sj = R+
k .

To prove Claim (a), we note that by the definition of open-loop
performance function H(w, y) in (20), we have

ET Det
[
hk | I+

Sj

]
= H(k − Sj , x2

Sj ), ∀k ∈ [Sj , Sj+1]Z.

If ET Det
[
hSj+1

| I+
Sj

]
= H(Sj+1 − Sj , x2

Sj ) < 0, then the sign
monotonicity property of the open-loop performance func-
tion (Proposition 4.2) implies H(k − Sj , x2

Sj ) ≤ 0 for all k ∈
[Sj , Sj+1]Z, which proves Claim (a).

We now prove Claim (b). It can be seen from Proposition 4.3 that
for all k ∈ (Sj , Tj)Z,

ET Det
[
GDk+1 | k ∈ (Sj , Tj)Z, I

+
Sj

]
[r1]
= ET Det

[
ET Det

[
GDk+1 | Ik, tk = 0

]
| I+
Sj

]
[r2]
= ET Det

[
GD+1
k | I+

Sj

]
, (25)

where [r1] is obtained by using the tower property and the fact
that tk = 0 for k ∈ (Sj , Tj)Z, while [r2] is obtained from Propo-
sition 4.3. Furthermore, Proposition 4.3 (b) implies that

ET Det
[
GDSj+1 | I

+
Sj

]
= ET Det

[
GDSj+1 | ISj , rSj = 1, γSj

]
= JD+1

Sj
. (26)

Next, we condition the expected value of hSj+1
over information

from timestep Tj as well as timestep Sj and using the tower property
of conditional expectations, we obtain

ET Det
[
hSj+1

| I+
Sj

]
[r3]
= ET Det

[
ET 0

Tj

[
hSj+1

| ITj , Sj = RTj
]
| I+
Sj

]
= ET Det

[
G0
Tj | I

+
Sj

]
(27)

where the inner expectation in [r3] is conditioned under the nom-
inal policy T 0

Tj since for all timesteps k ∈ [Tj , Sj+1]Z, we have
transmissions (tk = 1). We consider two cases: Tj ≤ Sj +D and
Tj > Sj +D. In the first case, since tk = 0 for k ∈ (Sj , Tj)Z, we
use (25) and (26) to write (27) as

ET Det
[
G0
Tj | I

+
Sj

]
= ET Det

[
GTj−Sj−1
Sj+1 | I+

Sj

]
= J Tj−SjSj

,



where Proposition 4.4 ensures that if Tj − Sj ≤ D then J Tj−SjSj
<

0. We now consider the second case in which Tj > Sj +D. Since
we have tk = 0 for k ∈ (Sj , Tj)Z, we use (25) to write (27) as

ET Det
[
G0
Tj | I

+
Sj

]
= ET Det

[
GDTj−D | I

+
Sj

]
< 0,

since GDk is negative, by definition, for k ∈ (Sj , Tj)Z. This proves
Claim (b), and hence also the result. �

We conclude this section by commenting on the extension of the
event-triggered policy to vector systems.

Remark 4.3 (Extension to vector systems). The event-triggered pol-
icy for control objective (7) can easily be extended to a general
vector system of the form xk+1 = Axk + Buk + vk, with xk ∈
Rn, E [vk] = 0, and E

[
vkv

T
k

]
= M = MT > 0, with the con-

trol objective being to find a policy T such that ET
[
xTk xk | I+

0

]
≤

max{c2kxT0 x0, B}. The control scheme could be uk = Lx̂k (sim-
ilar to uk = Lx̂k in the scalar case), with (A + BL) being Schur
stable. There are two primary approaches towards the vector case
extension. The first approach is applicable when it is possible
decompose the vector system into n scalar subsystems, and corre-
spondingly obtain n look-ahead criteria (G(D,1)

k , · · · ,G(D,n)
k ) on

every timestep. We can then use the largest value of the n look-ahead
criteria so obtained in the triggering condition (14), thereby creat-
ing an event-triggered policy that can stabilize the worst-case mode
of the system, and can thus stabilize the entire system. The second
approach involves a scalarization of the vector system by using any
appropriate lp norm of the state variables and matrices involved in
various calculations. This approach has been considered for vector
systems in the bernoulli packet-drop channel system in [21], and can
easily be extended for the present case. •

5 Transmission Fraction

This section analyzes the efficiency of the proposed event-triggered
transmission policy in terms of the fraction of times the sensor trans-
mits (tk = 1) over a given time horizon. First, we introduce the
transmission fraction up to timestep K as

FK :=
ET Det

[∑K
i=1 ti

∣∣ I+
0

]
ET Det

[
K
∣∣ I+

0

] ,

wherein the stopping timestep K could itself be a random vari-
able. We call the limit of FK when K →∞ as the asymptotic
transmission fraction, denoted by F∞.

We also consider another type of transmission fraction which we
call the transmission fraction up to state X , and denote it with FX .
It is defined as the transmission fraction up to the first reception
timestep such that the squared plant state is lesser than X . That is,

FX :=
ET Det

[∑Sj
i=1 ti

∣∣ I+
0 , {x

2
Sl
}j−1
l=0 ≥ X , x

2
Sj < X

]
ET Det

[
Sj
∣∣ I+

0 , {x2
Sl
}j−1
l=0 ≥ X , x

2
Sj
< X

] .

In the following remark, we discuss the conceptual difference
between F∞ and FX , and the advantages of having a closed-form
upper bound for both.

Remark 5.1 (Comparison between F∞ and FX ). The asymp-
totic transmission fraction F∞ denotes the fraction of timesteps the
sensor transmits under the event-triggered policy over an infinite
horizon. An upper bound on F∞ is therefore useful in determin-
ing the worst-case channel utilization over a long period of time.
Note that the system behaviour captured by F∞ is dominated by
the timesteps when the second-moment plant state x2

k is under the

ultimate bound B since F∞ is defined over the infinte horizon k ∈
[1,∞)Z. However, prior to the timestep k = log(Bx−2

0 ) log(c2)−1

the control envelope max{c2kx2
0, B} is decaying exponentially, and

the transmission fraction to state X , FX , is useful in capturing the
transmission fraction during this transient period. •

In Theorem 5.1, we give an upper bound onFX that only involves
plant and channel parameters, and X . Then, we derive an upper
bound on the asymptotic transmission fraction F∞ as a corollary.

Theorem 5.1 (Upper bound on FX ). Suppose Q(D) < 0 for a
given value of D. The transmission fraction up to state X is upper
bounded by

FX ≤
C(1)

C(0) + C(1)
,

where

C(0) := max
B∈N0

{B |QX (D + B) < 0}

QX (θ) :=
[
Zθ(ā2)−Zθ(c2)

]
max{X , Bc−2θ}+

M̄
[
Zθ(a2)−Zθ(1)

]
,

with Zθ(b) as defined in Proposition 4.4, while C(1) is given by

C(1) = max
i∈[1,n]Z

{dT (P1E)(I−P1E)−2δδδi}.

Proof: We find an upper bound on FX by first considering the time
horizon between two successive reception times, and then extending
the analysis to an arbitrary number of inter-reception cycles. For j ∈
N0, we let ∆j be the time horizon (Sj , Sj+1]Z. Further, throughout
this proof, we use the shorthand Πθ(γSj ) := P

(θ−1)
0 P1δδδγSj for

notational convenience.
Using the structure of the event-triggered policy, we split ∆j into

two parts as ∆
(0)
j := (Sj , Tj)Z and ∆

(1)
j := [Tj , Sj+1]Z. Hence,

for k ∈ ∆
(0)
j , no transmission occurs (tk = 0) while for each k ∈

∆
(1)
j , a transmission occurs (tk = 1). Now, consider the following

two claims.
Claim (a): ET Det

[
|∆(0)
j |

∣∣ I+
Sj
, x2

Sj > X
]
≥ C(0).

Claim (b): ET Det
[
|∆(1)
j |

∣∣ I+
Sj

]
≤ C(1), for all xSj ∈ R.

Supposing the two claims are true, consider the transmission frac-
tion during the jth horizon, ∆j , conditioned on I+

Sj
. We note that

it satisfies the inequality in (28) since the transmission fraction is
increasing in the term ET Det

[
|∆(1)
j |

∣∣ I+
Sj

]
, and decreasing in the

term ET Det
[
|∆(0)
j |

∣∣ I+
Sj
, x2

Sj > X
]
. Now, as this upper bound is

independent of the state of the system as long as x2
Sj > X , we obtain

the upper bound on FX , stated in the result. Thus all that remains
now is to prove claims (a) and (b).

To prove Claim (a), we start by demonstrating that, for a given
value of θ ∈ N and under the assumption that x2

Sj ≥ X , J θSj ≤
QX (θ)Πθ(γSj ). To this end, we consider two cases, X ∈ Λ1 =

[0, Bc−2θ) and X ∈ Λ2 = [Bc−2θ,∞) respectively. If X ∈ Λ1,
then we have

J θSj ≤ Rj(θ) = Q(θ)Πθ(γSj ) = QX (θ)Πθ(γSj ),

where the inequality is from Claim (a) of Proposition 4.4, the first
equality from (33) and the second equality from the fact that X ∈
Λ1. Now, consider the case of x2

Sj ≥ X ∈ Λ2. Recall from the proof
of Claim (a) of Proposition 4.4 that J θSj cab be upper bounded
as given in (29), where [r1] is a result of (33) and the facts that
Zθ(ā2)−Zθ(c2) < 0 and x2

Sj ≥ X ≥ Bc
−2θ , and [r2] uses the



definition of QX (θ). Thus, we have demonstrated that for any given
X ≥ 0, if x2

Sj ≥ X then J θSj ≤ QX (θ)Πθ(γSj ).
Now, suppose x2

Sj ≥ X and QX (D + B) < 0 for some B ∈ N0,
where D is the operational value of the look-ahead parameter. Then,
through a recursive application of Proposition 4.3 B times, we get

ET Det
[
GDSj+B|I

+
Sj

]
= ET Det

[
JD+B
Sj

|I+
Sj

]
≤ QX (D + B) < 0.

(31)

Hence, from the design of the event-triggered policy (14), it follows
that Tj > Sj + B, or in other words, no transmission takes place at
least B timesteps from Sj , in expectation. Thus,

ET Det
[
|∆(0)
j |
∣∣I+

0 , x
2
Sj ≥ X

]
≥ C(0).

Now, consider Claim (b). Note that tk = 1 for all k ∈ ∆
(1)
j ,

and from the event-triggered policy, ET Det
[
|∆(1)
j |
]

is simply the
expected number of timesteps for reception under a string of contin-
uous transmission attempts, starting from timestep Tj and channel
state γTj . To capture the same, we define the constant C(1)

i for

i ∈ [1, n]Z in (30). We bound |∆(1)
j | by simply choosing the highest

value of C(1)
i among i ∈ [1, n]Z, thereby showing that C(1) is indeed

an upper bound on |∆(1)
j |. This proves Claim (b) and the result. �

Remark 5.2 (Tradeoff between control performance and transmis-
sion fraction). Suppose for a given value of X and some ψ ∈ N,
we have QX (ψ) < 0 but QX (ψ + 1)δδδi ≥ 0 for at least one i ∈
[1, n]Z. Then if the operational value of the look-ahead parameter is
D, we note that D + B = ψ. The system designer can either choose
a high value of D (conservative control) but this results in a lower
value of B, and thus a larger upper bound on FX . Conversely, a
lower value of D (aggressive control) leads to a higher value of B,
and thus a smaller upper bound on FX . •

We show in the following result that an upper bound on the
asymptotic transmission fraction, F∞ can be obtained by setting
X = Bc−2D in the upper bound of FX provided in Theorem 5.1.

Corollary 5.1 (Upper bound on asymptotic transmission fraction).
The asymptotic transmission fraction F∞ is upper bounded by

F∞ ≤ C(1)

C(0)
∞ + C(1)

,

where C(0)
∞ := max

B∈N0

{B |Q(D + B) < 0} and C(1) is as defined in

Theorem 5.1.

Proof: The proof is similar to that of Theorem 5.1 except for one
key difference. We note that in Theorem 5.1, C(0) was obtained as
theB-maximizer of QX (D + B) under the constraint that QX (D +
B) < 0. This ensured that the transmission fraction over the horizon

(Sj , Sj+1]Z is upper bounded by C(1)(C(0) + C(1))−1, under the
assumption that x2

Sj ≥ X . In case of asymptotic transmission frac-
tion, we know that said upper bound on transmission fraction over
the horizon (Sj , Sj+1]Z has to hold for all j ∈ N0, and equivalently
for all x2

Sj > 0. Thus we derive the term C(0)
∞ by first maximizing

QX (D + B) over all possible values of X and then choosing the
largest value of B such that QX (D + B) < 0 and setting C(0)

∞ equal
to said value.

The former maximization is carried out because QX (D +
B)ΠD+B(γSj ) acts as an upper bound on JD+B

Sj
, which we want

to be negative so that (31) is valid. Thus, we let

C(0)
∞ := max

B∈N0

{B | max
X∈R, X≥0

{QX (D + B)} < 0}

= max
B∈N0

{B |Q(D + B) < 0},

which follows from the fact that c2 > ā2 and the definitions of
QX (θ) and Q(θ). The rest of the proof follows along similar lines
as that of Theorem 5.1. �

6 Illustrative Example

In this section, we validate our transmission policy design through
simulations. In this section, we illustrate the wider applicability of
our channel model and our proposed design method with a model-
based example. We consider control with a battery powered energy
harvesting sensor, and the state of charge (SoC) of said battery con-
stitutes the “channel” state. The channel state evolves according to a
linear saturated system with noise, which fits in the action-depended
Markov channel framework.

Energy harvesting sensor

In this subsection, we model an energy harvesting (EH) sensor with
a battery. The amount of energy harvested by the sensor is assumed
to be stochastic, and a lack of enough energy collected by the sen-
sor could lead to failure of transmissions. We model the SoC of the
battery as a discrete valued quantity in the set [0, s̄]Z where s̄ > 0
represents the maximum SoC. We let Sk ∈ [0, s̄]Z denote the bat-
tery SoC on timestep k, which also is the “channel” state in our
framework. On every timestep, the battery first provides energy for
transmission if required (tk = 1), and then harvests energy accord-
ing to an arrival process {Zk}∞k=1, which we assume to be i.i.d. We
let η ∈ N be the energy cost of making a successful transmission,
and if there is less that η units of energy in the battery, the trans-
mission fails and no energy is extracted from the battery. The above
dynamics can be represented with a linear saturated system as

S+
k =

{
Sk, if Sk < tkη

Sk − tkη, if Sk ≥ tkη,
(32a)

Sk+1 = min{S+
k + Zk, s̄}, ∀k ∈ N0. (32b)

where S+
k is the intermediate state after possibly a transmission,

which utilizes energy from the battery. We now derive the Markov

ET Det
[
|∆(1)
j |

∣∣ I+
Sj

]
ET Det

[
|∆(0)
j |

∣∣ I+
Sj
, x2

Sj
> X

]
+ ET Det

[
|∆(1)
j |

∣∣ I+
Sj

] ≤ C(1)

C(0) + C(1)
(28)

J θSj ≤
[
g̃θ(ā

2, γSj )− g̃θ(c
2, γSj )

]
x2
Sj + M̄ [g̃θ(a

2, γSj )− g̃θ(1, γSj )]

[r1]
=

[(
Zθ(ā2)−Zθ(c2)

)
max{X , Bc−2θ}+ M̄

(
Zθ(a2)−Zθ(1)

)]
Πθ(γSj )

[r2]
= QX (θ)Πθ(γSj ), (29)

C(1)
i :=ET Det [w |Sj+1 = Tj + w, γTj = i] = dT

[∑∞
s=0 s(P1E)s

]
δδδi = dT (P1E)(I−P1E)−2δδδi. (30)



transition matrices P0 and P1. From (32), we can obtain the (i, j)th

element of P0 and P1, with tk = 0 and tk = 1, respectively as

Pr
[
Sk+1 = s(i) | Sk = s(j), tk

]
=

Pr
[
Zk = s(i) − s(j)

]
, if s(j) < tkη and s(i) < s̄

Pr
[
Zk = s(i) − (s(j) − tkη)

]
, if s(j) ≥ tkη and s(i) < s̄

Pr
[
Zk ≥ s(i) − s(j)

]
, if s(j) < tkη and s(i) = s̄

Pr
[
Zk ≥ s(i) − (s(j) − tkη)

]
, if s(j) ≥ tkη and s(i) = s̄,

where s(i) ∈ [0, s̄]Z is the ith discrete level that the battery SoC
could be in. For the purpose of simulations, we let Zk belong to
a Poisson distribution with arrival rate λ > 0. Thus, Pr[Zk = q] =
exp(−λ)λq(q!)−1 for q ≥ 0, and Pr[Zk = q] = 0 for any q < 0. In
order to determine the packet drop probabilities, i.e. the vector e, we
note that for any state s, if s < η then the probability of packet drop
is 1, otherwise it is 0. We write this formally as

e(j) =

{
1, if s(j) < η

0, if s(j) ≥ η,

where e(j) represents the jth element of the vector e.

Simulation results

For the energy harvesting sensor model, we choose the parame-
ters s̄ = 15, η = 8, and λ = 0.85, while for the plant parameters,
we choose the values a = 1.05, c = 0.98, ā = 0.95c, M = 0.25,
B = 10, and x0 = 15.5B. From the calculations presented in the
Appendix, we find that B∗ = 2.32, and therefore the condition
B > B∗ is satisfied. We carried out simulations using MATLAB. In
order to generate empirical results, we simulate the system evolution
5000 times, followed by taking an average of these results. For the
channel, we set the initial state γ0 = 1 for all simulated trajectories,
i.e. the battery starts off completely discharged.

The simulation results are presented in Fig. 2 and Fig. 3. In par-
ticular, Fig. 2a shows the evolution of the empirical mean of the
plant state for different values of the look-ahead parameter D. We
notice that a higher value of D leads to more ‘aggressive’ control as
described in Remark 5.2. Fig. 2b shows the evolution of the empir-
ical mean of the battery SoC. In order to compare performance of
the event triggered policy with a periodic time-triggered policy, we
also include in Fig. 2a and Fig. 2b the evolution of plant and channel
state under policy T κtt , which sets tk = 1 for every k which is an
integer multiple of κ ∈ N0, and tk = 0 otherwise. It is interesting to
note in Fig. 2b that the battery SoC (channel state) settles to a con-
stant value after initial transient behavior, and this constant value is
smaller for larger values ofD, i.e. a higher value ofD expends more
energy from the battery. The benefit in terms of energy savings in the
EH battery under the proposed policy over periodic time-triggered
policies is evident from Fig. 2b. In order to demonstrate the pattern
of transmission times under the event triggered policy, we display a
stem plot of transmission and reception for one realization of system
evolution under event-triggered transmissions in Fig. 2c.

Fig. 3a shows the empirical value of the transmission fraction
Fk for both the models for 5000 timesteps, and it can be seen
that Fk reaches a steady state value for large k, with greater val-
ues of D leading to higher asymptotic values of Fk. Fig. 3b shows
the empirical value of FX generated during the simulation, while
Fig. 3c shows the theoretical upper bounds on both FX (given in
Theorem 5.1) and F∞ (given in Corollary 5.1). From Fig. 3c, it can
be seen that the theoretical upper bound on F∞ is the same as the
theoretical upper bound on FX for X = Bc−2D , as noted in the
proof of Theorem 5.1. As expected, both the empirical values of Fk
and FX , and their respective upper bounds are greater for larger val-
ues ofD, which demonstrates the tradeoff between performance and
transmission fraction, as discussed in Remark 5.2.
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Fig. 2: Evolution of the empirical mean of the plant and “channel”
states. Fig. 2a shows the empirical evolution of second moment plant
state for the EH sensor channel model. Fig. 2b shows the evolution of
empirical mean of SoC of the battery attached under the EH sensor.
In both the figures, trajectories are provided for various values of
look-ahead parameter D, and for the the times-triggered policy with
κ = 2. Fig. 2c shows the stem plot of transmissions and receptions
under event-triggered transmissions for one realization.

(a) (b)

(c)

Fig. 3: Simulation results and theoretical upper bounds on the trans-
mission fractions Fk and FX for various values of look-ahead
parameter D. Fig. 3a and Fig. 3b show the empirical mean values of
Fk and FX respectively, while Fig. 3c shows the theoretical upper
bounds on Fk and FX .

7 Conclusion

In this paper, we have considered a networked control system con-
sisting of a scalar linear plant with process noise and non-collocated
sensor and controller. Further, the sensor communicates over a



time-varying channel whose state evolves according to an action-
dependent Markov process. The state of the channel determines the
probability with which a packet transmitted by the sensor is dropped.
In this setting, we have designed an event-triggered transmission pol-
icy that guarantees second moment stabilization of the plant state at
a desired rate of convergence to an ultimate bound. We also derived
upper bounds on the transient and the asymptotic transmission frac-
tion, the fraction of timesteps on which the sensor transmits. We
have verified and illustrated our analysis and theoretical guarantees
through simulations in an example scenario, in which we consid-
ered the problem of control with an energy harvesting and battery
equipped sensor. Future work includes incorporation of imperfect
measurement of plant and channel state, application of the pro-
posed action-dependent Markov channel framework to control over
a shared channel, and over channels that are queuing processes.
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10 Appendix

10.1 Proof of Proposition 4.4

Proof: We structure the proof in the form of two claims.
Claim (a): For the look-ahead parameter θ ∈ N, the performance

evaluation function J θSj is uniformly (in xSj ) upper bounded as
J θSj ≤ Rj(θ), where

Rj(θ) :=
[
g̃θ(ā

2, γSj )− g̃θ(c
2, γSj )

] B

c2θ
+

M̄
[
g̃θ(a

2, γSj )− g̃θ(1, γSj )
]
. •



Claim (b): For θ ∈ N, Q(θ) < 0 implies Rj(θ) < 0, ∀j ∈ N0.
Further, Q(D) < 0 for D ∈ N implies Q(θ) < 0, ∀θ ∈ [1, D]Z. •

Note that if Claims (a) and (b) are valid, then the result of Propo-
sition 4.4 follows. For proving Claim (a), we partition the possible
values of x2

Sj into two sets,

Λ1 := [0, Bc−2θ), Λ2 := [Bc−2θ,∞),

and demonstrate that J θSj < Rj(θ) in each case. The proof is cen-
tered around the following two sub-claims, which establish bounds
on some important terms of the closed form ofJ θSj from Lemma 4.2.

Claim (a1): If x2
Sj ∈ Λ1, then Bf̃θ(1, γSj ) ≥

B
c2θ

g̃θ(c
2, γSj ).•

Claim (a2): If x2
Sj ∈ Λ2, then Bf̃θ(1, γSj ) ≥ x

2
Sj f̃θ(c

2, γSj ).•
To prove Claim (a1), we recall the term ν in the closed form of

f̃θ(b, γ) in Lemma 4.2 and note that ν = θ when x2
Sj < Bc−2θ .

Thus, g̃θ(b, γSj ) = f̃θ(b, γSj ) when x2
Sj ∈ Λ1. Now observe that

Bc−2θ g̃θ(c
2, γSj )

[r1]
=

B

c2θ
c2θdT (I− c2P1E)−1P

(θ−1)
0 P1δδδγSj

[r2]
≤ BdT (I−P1E)−1P

(θ−1)
0 P1δδδγSj = Bf̃θ(1, γSj ),

where [r1] uses the definition of g̃θ(b, γSj ), and [r2] follows from
the facts that c2 < 1 and (I− c2P1E)−1 =

∑∞
w=0(c2P1E)w <∑∞

w=0(P1E)w = (I−P1E)−1, where the inequality is element-
wise. This completes the proof of Claim (a1). •

To prove Claim (a2), we establish an upper bound on c2ν under
the assumption that x2

Sj ∈ Λ2. Note that

c2ν = c
2 max

{
θ,

⌈
log(x2Sj

/B)

log(1/c2)

⌉}
≤ c

2

⌈
log(B/x2Sj

)

log(c2)

⌉
≤ B

x2
Sj

,

where we have again used the fact that c2 < 1. From this bound, one
can upper bound x2

Sj f̃θ(c
2, γSj ) as

x2
Sj f̃θ(c

2, γSj ) ≤ BdT (P1E)(ν−θ)(I− c2P1E)−1P
(θ−1)
0 P1δδδγSj

≤ BdT (P1E)(ν−θ)(I−P1E)−1P
(θ−1)
0 P1δδδγSj

= Bf̃θ(1, γSj ).

This concludes the proof of Claim (a2). •
Now, we recall the closed form of J θSj . If x2

Sj ∈ Λ1, we
have f̃θ(c

2, γSj )− g̃θ(c
2, γSj ) = 0 and x2

Sj < Bc−2θ , while
g̃θ(ā

2, γSj ) ≥ 0. These facts along with Claim (a) imply thatJ θSj ≤
Rj(θ) when x2

Sj ∈ Λ1. In the case that x2
Sj ∈ Λ2, we rearrange the

closed form of J θSj as

J θSj = [g̃θ(ā
2, γSj )− g̃(c2, γSj )]x

2
Sj + M̄ [g̃θ(a

2, γSj )

−g̃θ(1, γSj )]− [Bf̃θ(1, γSj )− x
2
Sj f̃θ(c

2, γSj )].

Then using Claim (b), the fact that g̃θ(ā
2, γSj ) < g̃θ(c

2, γSj )

(since ā2 < c2), and lastly the fact that x2
Sj ≥ Bc

−2θ , we conclude
that J θSj ≤ Rj(θ) when x2

Sj ∈ Λ2. Thus, Rj(θ) uniformly upper
bounds J θSj for all x2

Sj ∈ [0,∞). •
We start the proof of Claim (b) by noting that Rj(θ) can be

written as
Rj(θ) = Q(θ)P

(θ−1)
0 P1δδδγSj . (33)

From the elementwise non-negativity of P
(θ−1)
0 P1δδδγSj for all

θ ∈ N and γSj ∈ [1, n]Z, we conclude that a sufficient condition to
ensure Rj(D) < 0 for a given D and all j ∈ N0 is to ensure that

Q(D) < 0. We now show that every element of Q(θ) is mono-
tonically increasing in θ, and thus, Q(D) < 0 ensures Q(θ) < 0
for θ ∈ [1, D]Z. The first and the second derivatives of Q(θ) with
respect to θ are

dQ(θ)

dθ
=

B

c2θ
log

(
ā2

c2

)
Zθ(ā2) + M̄ log(a2)Zθ(a2)

d2Q(θ)

dθ2
=

B

c2θ
log2

(
ā2

c2

)
Zθ(ā2) + M̄ log2(a2)Zθ(a2).

Note that each element of the second derivative is strictly positive.
Thus, each element of Q(θ) is strictly convex in θ. Also, note that
the first derivative of Q(θ) at θ = 0 is

dQ(θ)

dθ

[r1]
> B log

(
c2

ā2

)[
Z0(a2)−Z0(ā2)

]
> 0,

where [r1] follows from the fact thatB ≥ B0. Since each element of
Q(θ) is strictly convex for θ ∈ R and increasing at θ = 0, it follows
that each element of Q(θ) is monotonically increasing for θ ≥ 0.
Thus, Q(D) < 0 implies Q(θ) < 0, and thereby J θSj < 0 for all
θ ∈ [1, D]Z. �

10.2 Procedure to Compute a Sufficient Lower Bound B∗
on the Ultimate Bound B

Here, we provide a procedure to compute the lower boundB∗ onB,
referred to in Proposition 4.2. This procedure is based on the proof of
Lemma IV.13 in [21] and we present it here for completeness. First,
we define the following constants

P1 := log(a2/ā2), P2 := log(a2c2/ā2), P3 := log(1/c2),

P4 := log

(
log(1/ā2)

M̄ log(a2)

)
.

Then, consider the following functions of B

U(B) := e
P3P4
P2 B

P1
P2 , w∗∗(B) :=

log(B)

P2
+
P4

P2
,

Y (B) := ā2w∗∗(B)U(B) + M̄a2w∗∗(B),

F∗∗(B) := Y (B)− M̄ −B.

The function F∗∗(B) is strictly concave in B (Lemma IV.13, [21]).
Thus, it has at most two zeroes, one of which is B0 =

M̄ log(a2)
log(c2/ā2)

.
There is another zero Bz > B0 of F∗∗(B) only if F∗∗(B) is
increasing at B = B0. Such a Bz can be found numerically. We let

B∗ :=

{
B0, if F∗∗(B) is non-increasing at B = B0

Bz , otherwise.

We can also generalize our results to the case when there is no
process noise (M̄ = 0). For this scenario, note that a more basic
definition of the function F∗∗(.) is given in equation (24b) in our
previous work [21]. From this definition, it is easy to see that when
M̄ = 0, F∗∗(y) := ā2σy −B, where σ is such that c2σy = B.
Thus, in particular, we see that σ = 0 when y = B and hence
F∗∗(B) = 0 for all B ≥ 0. Further, note that B0 = 0 if M̄ = 0.
Hence, if M̄ = 0, we can choose B = B∗ = B0 = 0, which then
guarantees asymptotic stability for the plant state to zero.


