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Abstract— In this second part of our work, we study the
steady-state of the population and the social utility for a
general class of dynamics that converge to the set of Nash
equilibria and follow a certain positive correlation property.
This class of dynamics includes the three dynamics intro-
duced in the first part. We provide sufficient conditions on
the network based on a maximum payoff density parameter
of each node under which there exists a unique Nash equi-
librium. We then utilize the positive correlation properties
of the dynamics to reduce the flow graph in order to provide
an upper bound on the steady-state social utility. Finally
we extend the idea behind the sufficient condition for the
existence of a unique Nash equilibrium to partition the
graph appropriately in order to provide a lower bound on
the steady-state social utility. We also illustrate interesting
cases as well as our results using simulations.

Index Terms— Multi-agent systems, population dynam-
ics on networks, collective behavior, bounds on steady-
state social utility.

I. INTRODUCTION

A primary goal in the analysis of evolutionary dynamics
is to characterize the set of equilibrium points and to

study their stability. Many applications might also require the
knowledge of the steady-state or steady-state social utility,
given the initial condition of the population, for higher level
control and planning problems. In this paper, we seek to obtain
efficiently computable bounds on the steady-state social utility,
as a function of the initial population state, under a general
class of dynamics that includes stratified smith dynamics
(SSD), nodal best response dynamics (NBRD) and network
restricted payoff maximization (NRPM) [1].

A. Literature Survey

Population games and evolutionary dynamics [2] find appli-
cation in problems related to distributed control and formation
control [3]–[5] as well as in social or socio-technical systems
such as transportation and opinion dynamics. In the context of
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network games, [6]–[10] model a finite population of agents
as nodes and models the interactions using the graph. Other
works of literature [4], [11]–[14] consider the nodes of the
graph to represent choices with the state of the population be-
ing composed of the fractions of population choosing different
nodes. In these works, the network plays a major role in the
evolution of the population.

In the literature on distributed Nash equilibrium seeking al-
gorithms, e.g. [15], [16], the graph models the communication
network among the finitely many agents and not the underlying
game. In these works, the existence and uniqueness of a Nash
equilibrium is assumed and emphasis is on algorithms that
drive any initial state to the Nash equilibrium.

Part one of this work [1] models the game with stratified
populations with their choices as the nodes of a graph, models
the three dynamics: SSD, NBRD and NRPM, studies existence
and uniqueness of solutions of these dynamics and shows
convergence of their solutions to the set of Nash equilibria.

B. Contribution
In this second part of our work, we first provide sufficient

conditions on the graph under which the stratified population
game has a unique Nash equilibrium. Then, for general graphs,
we provide a computationally efficient method for computing
bounds on the steady state social utility that depends on the
initial population state, the network and the node parameters
only. This method is particularly useful in the case of NBRD
and NRPM, where simulating the full dynamics in order to
determine the steady state values is computationally expensive;
as these dynamics rely on an underlying optimization problem.

References [4], [12]–[14] have a setup for the underlying
game closest to ours. However, they assume that Nash equilib-
rium is unique and in the relative interior of the n-dimensional
probability simplex and results are local. Moreover, in all
these works, the population is not stratified. Our preliminary
work on this topic [17] considers only quadratic cumulative
payoff functions as opposed to strictly concave functions and
is concerned only with the convergence analysis.

C. Organization
The rest of the paper is organized as follows. In Section II,

we list a few important results from the first part of this work
and outline the problem we wish to address in this paper. In
Section III, we give sufficient conditions on the graph under
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which the population game has a unique Nash equilibrium. In
Section IV we give algorithms to provide meaningful bounds
on the steady-state social utility. In Section V we provide
simulation results and some interesting examples.

D. Notation and Definitions
We denote the set of real numbers, and the set of integers by

R and Z, respectively. We let [p, q]Z := {x ∈ Z | p ≤ x ≤ q}.
Rn is the cartesian product of R with itself n times. If v is a
vector in Rn, we denote vi as the ith component of v and for
a vector v ∈ Rn, we let supp(v) := {i ∈ [1, n]Z |vi 6= 0}. We
let 1 be the vector, of appropriate size, with all its elements
equal to 1 and we let ei be the vector, again of appropriate size,
with its ith element equal to 1 and 0 for all other elements.
The empty set is denoted by ∅. If Q is an ordered countable
set, then Qi denotes the ith member of Q and |Q| is used to
represent the cardinality of Q. For two sets U ,V ⊂ Q, the set
subtraction operation is denoted by U \ V = U ∩ Vc, where
Vc is the set complement of V in Q. {i, j} is used to denote
an unordered pair while (i, j) is used to denote an ordered
pair. For a vector v ∈ Rn, v ≥ 0 is used to denote term
wise inequalities. For a function f(x) : Rn → R, ∇f is used
to denote the gradient of f(.) with respect to x, i.e., the jth

component of ∇f is ∂f
∂xj

. We denote by Snγ , the n-dimensional
simplex Snγ := {v ∈ Rn | v ≥ 0 , 1Tv = γ}.

II. PRELIMINARIES

In this section, we recollect the framework and state the
essential aspects about the class of dynamics that we wish to
study. We consider a population composed of a continuum of
agents and a network of choices given by an undirected graph
G := (V, E) without any self loops. Here V is a set of nodes
and E ⊆ V×V is a set of edges. The fraction of population in
node i is represented by xi ∈ [0, 1] and

∑
i∈V xi = 1. Thus

x ∈ S |V|1 represents the population state.
Let pi(.) : [0, 1] → R be the function that models the

cumulative payoff of the fraction xi. We assume that the
fraction in each node is stratified and the agents in different
strata of a given node receive different payoffs. Let [a, b] ⊆
[0,xi] be an arbitrary interval. Then the agents of node i that
are in the strata [a, b] get an average payoff of

pi(b)− pi(a)

b− a .

For a node i if a ∈ [0,xi], then

ui(a) :=
d pi
d y

(a) ,

is the average payoff that the agents in the strata [a] of node i
receive. By strata [a] we mean the collection of infinitesimal
strata around a in [0,xi]. We call ui(.) as the payoff density
function of node i. We let ui(0) be the right derivative of pi(.)
at zero and ui(1) be the left derivative of pi(.) at one. We let
u(.) be the vector whose ith element is ui(.). Through out this
paper, we make the following assumption.

(A1) For all i ∈ V , pi(.) is twice continuously differentiable
and strictly concave. Hence, ∀i ∈ V , ui(.) is a strictly
decreasing function.

The function,

U(x) :=
∑
i∈V

[pi(xi)− pi(0)] , (1)

which we call as the social utility function represents the
aggregate payoff of the population as a whole. Note that
U(.) is a strictly concave function and eTi ∇U(x) = ui(xi),
∀x ∈ S |V|1 . We let N i be the set of all neighbors of node i
in the graph G and let N i

= N i ∪ {i}. Given the undirected
graph G, we let

A :=
⋃

{i,j}∈E

{(i, j), (j, i)}. (2)

The dynamics that govern the evolution of the stratified
population can be described by the general equation

ẋ = J∆(x) =: F(x) . (3)

Here J ∈ R|V|×|A| is the incidence matrix of the directed
graph F := (V,A) and ∆(x) ∈ R|A| is the vector that
accumulates the outflows δij ≥ 0 along each arc (i, j) ∈ A
into a vector. Such a class of dynamics is referred to as flow
balanced dynamics. The following lemma, which we state in
[1], holds for a general case where the total population is
ρ ≥ 0, i.e

∑
i∈V xi = ρ.

Lemma 2.1: (Non-emptiness of set of Nash equilibria).
The unique optimizer of

P1(V ′, ρ) : fV′(ρ) := max
x

U(x) s.t. x ∈ S |V′|
ρ , (4)

belongs to the set

NE |V′|
ρ :=

{
x ∈ S |V′|

ρ

∣∣ ui(xi) ≥ uj(xj),
∀ j ∈ N i,∀ i ∈ supp(x)

}
.

(5)

Hence NE |V′|
ρ is non-empty. •

The set NE |V′|
ρ in (5) is the set of Nash equilibria of the

population game. Next we describe the class of dynamics that
we wish to study and the problem setup formally.

A. Problem Setup
In this paper, we continue our analysis of SSD, NBRD and

NRPM that we started in [1]. In particular, we are interested
in the steady-state behavior of these dynamics. However, the
results stated in this paper hold for a general a class of flow
balanced dynamics on the graph G = (V, E) that satisfies the
following properties.

(A2) For the dynamics (3), the simplex S |V|ρ is positively
invariant. Moreover ∀x(0) ∈ S |V|ρ the solution x(t) exists
for all t ≥ 0 and is unique.

(A3) The solution of (3) from any initial condition in S |V|ρ

asymptotically converges to the set of Nash equilibria
NE |V|ρ in (5).

(A4) If x(t) is the solution of (3) with an initial condition
x(0) ∈ S |V|ρ , then U(x(t)) converges to a constant.

(A5) Let θ ∈ R|V| be a vector with individual components
θi ≥ 0. Then if xi ∈ [0, θi] or Fi(x) + xi ∈ [0, θi] then

δij(x) = 0, ∀(i, j) ∈ A s.t. ui(θi) ≥ uj(0) . (6)
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We seek to study the steady-state and the steady-state social
utility with the knowledge of the structure of the graph G =
(V, E) and the initial condition, x0 := x(0).

We call any dynamics that follows Assumptions (A2) and
(A3) as Nash convergent dynamics.Since by Assumption (A4),
the social utility converges to a constant value, we let Uss(x

0)
to be the value to which the social utility converges to under
the flow balanced dynamics from an initial condition x0. In
Section III, we give a sufficient condition under which the
steady-state of any dynamics that follows Assumptions (A2)
and (A3) (i.e. Nash convergent dynamics) is the same. Then
in Section IV, we provide bounds on the steady-state social
utility for any dynamics that follows Assumptions (A2) - (A5).

We end this section by stating that SSD, NBRD and NRPM
satisfy (A2) - (A5). We prove this result in Appendix II-A.

Lemma 2.2: (Properties SSD, NBRD and NRPM). Suppose
Assumption (A1) holds. Consider the dynamics SSD, NBRD
and NRPM proposed in [1] on the graph G = (V, E) with an
initial condition x(0) ∈ S |V|ρ . All three dynamics satisfy (A2)
- (A5). Further, if x(t) is the unique solution from the initial
condition, then U(x(t)) is a non-decreasing function of t. •

III. UNIQUE NASH EQUILIBRIUM

In this section, we give sufficient conditions on the graph G
and the payoff density functions, under which the set of Nash
equilibria is a singleton. We define for each node i ∈ V , the
maximum payoff density parameter (MPDP) as

ai := max
y∈[0,1]

ui(y) = ui(0), (7)

where we use the fact that ui(.) is a strictly decreasing function
in [0, 1] for all i ∈ V .

We formally define a path in a graph next.
Definition 3.1: (Path in a graph G′ = (V ′, E ′)). A path, in a

graph G′ = (V ′, E ′), between i ∈ V ′ and j ∈ V ′ is given by an
ordered set of non-repeating elements P(i, j) ⊆ V ′ such that
P1(i, j) = i, Pn(i, j) = j and {Pk(i, j),Pk+1(i, j)} ∈ E ,
∀k ∈ [1, n− 1]Z. Here Pk(i, j) denotes the kth element in
P(i, j) and n = |P(i, j)|. •
Using this definition and (7), we define a path with quasi-
concave MPDP’s next.

Definition 3.2: (Path with quasi-concave MPDP’s). Sup-
pose P(i, j) is a path, in a graph G′ = (V ′, E ′), between
i ∈ V ′ and j ∈ V ′ and let n := |P(i, j)|. Let π(k) := Pk(i, j).
We say P(i, j) is a path with quasi-concave MPDP’s if and
only if ∀ k, l ∈ [1, n]Z such that l ≥ k and ∀m ∈ [k, l]Z,
aπ(m) ≥ min{aπ(k),aπ(l)}. •
Definition 3.2 can be interpreted in the following way. For a
path with quasi-concave MPDP’s, if we arrange the MPDP’s
in order of the nodes visited in the path, then the MPDP’s
form a quasi-concave function. Using this interpretation and
Definition 3.2, the following result can be immediately stated
regarding the nature of MPDP’s in such a path.

Lemma 3.3: (Monotonicity of MPDP’s in a path with quasi-
concave MPDP’s). Let P(i, j) be a path with quasi-concave
MPDP’s between i and j, where i, j ∈ V . Let π(k) := Pk(i, j)
and n = |P(i, j)|. Then ∀ k ∈ [1, n]Z, either ai = aπ(1) ≤
aπ(2) ≤ · · ·aπ(k) or aπ(k) ≥ · · · ≥ aπ(n−1) ≥ aπ(n) = aj . •

A proof of this is provided in Appendix II-B.1.
Using Definition 3.2, we define a quasi-concave hill next.
Definition 3.4: (Quasi-concave hill or QCH). We call a

graph G′ = (V ′, E ′) a quasi-concave hill or QCH if and only if
there exists a path with quasi-concave MPDP’s between every
two nodes i, j ∈ V ′. •
Note that Definition 3.4 requires the graph G′ to be connected.
The ‘hill’ in QCH is given to evoke the interpretation that the
agents are always seeking to climb a hill to increase their
payoffs. The following lemma shows that in a QCH, if the
population is in a Nash equilibrium state, then the payoff
densities across the non-empty nodes is the same. We present
the proof in Appendix II-B.2.

Lemma 3.5: (Same payoff density across non-empty nodes
at Nash equilibrium in a QCH). Let G = (V, E) be a QCH
and let x ∈ NE |V|ρ . Then ∀ i, j ∈ supp(x), ui(xi) = uj(xj).•

Finally in this section we show that for a QCH, the Nash
equilibrium is unique. We illustrate the consequence of this
fact in the remark following the theorem, proof of which is
presented in Appendix II-B.3

Theorem 3.6: (Uniqueness of Nash equilibrium for a QCH).
Suppose ρ ≥ 0. If G = (V, E) is a QCH then NE |V|ρ in (5) is
a singleton and the unique x ∈ NE |V|ρ is the unique optimizer
of P1(V, ρ) in (4). •

Remark 3.7: (Same steady-state state of Nash convergent
dynamics for QCH). The immediate consequence of Theorem
3.6 is that ∀x(0) ∈ S |V|ρ the steady-state state of any Nash
convergent dynamics is the same. •

The utility of Theorem 3.6 and Remark 3.7 extends to the
case in which G is not a QCH. In particular, we can use them
to bound the steady-state social utility of dynamics that follow
Assumptions (A2) - (A5). This is the topic of the next section.

IV. BOUNDS ON THE STEADY-STATE SOCIAL UTILITY

The graph G being a QCH is a sufficient condition for
dynamics that follow Assumptions (A2) - (A5) to share a
common steady-state irrespective of the initial condition in
S |V|ρ . In this section, we provide meaningful bounds on the
steady-state social utility of such dynamics in the case where
G is not a QCH. In the construction of these bounds, the results
stated in Section III serve as important building blocks.

Recall that G = (V, E) is the underlying undirected graph
and A the associated arc set where for each undirected edge
{i, j} ∈ E , we have directed arcs (i, j) and (j, i) in A.
Moreover, A contains no other arcs. Based on the payoff
functions ui(.), it is possible to reduce A based on the fact
that some δij’s will remain zero because of Assumption (A5)
no matter what the initial condition is.

In fact, for a given initial state x(0) = x0, if θi is a uniform
(in time) upper bound on xi or Fi(x) + xi for each i ∈ V
then for the arcs (i, j) ∈ A with the property ui(θi) ≥ uj(0),
the flow δij = 0 for all time t ≥ 0 and hence the arc (i, j)
can be removed without affecting the evolution of x.

In order to reduce the graph further, the initial condition x0

must be taken into account. In fact, only the nodes which have
a directed path in the graph F = (V,A) from some node in
supp(x0) are the ones that may participate in the evolution of
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x. The following remark describes how Algorithm 1 utilizes
Assumption (A5) to carry out such a reduction.

Algorithm 1: reduceGraph(F ′,x0)

Data: F ′ = (V ′,A′),x0

Result: ICRG of F ′
1 Fred ← (V ′,A′)
2 F temp ← (∅,∅)
3 while Fred 6= F temp do
4 F temp ← Fred
5 Fred ← repeatReduction (Fred,x

0)
6 end
7 return: Fred

Algorithm 2: repeatReduction(F ′,x0)

Data: F ′ = (V ′,A′),x0

Result: Reduced graph
1 for i ∈ V ′ do
2 Ri ← {j ∈ supp(x0) | ∃ a directed path

in F ′ from j to i}
3 θi ←

∑
j∈Ri x0

j

I estimates the maximum population

fraction that can visit i
4 end
5 Atemp ← A′ \ {(i, j) ∈ A′ |ui(θi) ≥ uj(0)}
6 F temp ← (V ′,Atemp)
7 V temp ← supp(x0)

I supp(x0) is always a subset of

the reduced node set

8 V temp ← V temp ∪ {i ∈ V ′ | ∃ a directed path in F temp
from some j ∈ supp(x0) to i}

9 Atemp ← Atemp \ {(i, j) ∈ Atemp | i /∈ V temp
or j /∈ V temp}
I remove hanging arcs

10 return: F temp = (V temp,Atemp)

Remark 4.1: (Graph reduction using initial state). The
function reduceGraph() described in Algorithm 1 takes in
a directed graph F ′ and x0 as inputs and returns the reduced
graph Fred of F ′. Algorithm 2 simultaneously estimates θi
and removes nodes and arcs of F ′ until the graph cannot be
reduced further. Steps 2-3 are used to estimate θi by setting
it as the sum of all possible population fractions that can
reach i, respecting the structure of the graph and the node
parameters. Then Steps 7-9 only consider supp(x0) and those
nodes in F ′ that have a directed path from some node in
supp(x0). The other nodes and hanging arcs are removed.
Thus, for F = (V,A), reduceGraph(F ,x0) returns the
reduced graph F̂ = (V̂, Â) with the following properties:
• supp(x0) is contained in V̂;
• Â does not contain arcs (i, j) of A with the property
ui(θi) ≥ uj(0) for the estimated θ.

We call F̂ the initial condition reduced graph (ICRG) of G.
Now, the fact that the Steps 2-3 of Algorithm 2 refine, with

each pass, the upper bound on both x(t) and F(x(t)) + x(t)

can be easily seen from the fact that F(x(t)) + x(t) is just
a simple rearrangement of the population state x(t) among
V . Thus by Assumption (A5), the evolution of the population
under G is equivalent to the evolution of the population under
the reduced graph F̂ . •

The ICRG is useful in providing reasonable bounds on the
steady-state social utility. We demonstrate this next.

A. Upper Bound on Steady-State Social Utility

In order to compute an upper bound on the steady-state
social utility, we try to compute the best social utility that
the population as a whole can receive starting from x0. This
best social utility is in the space of all possible dynamics
that have the property that the evolution is same under
G and F̂ . From Remark 4.1, we see that θ provided by
reduceGraph(F ,x0), Algorithm 1, is an upper bound on
x(t) and F(x(t))+x(t) for all t ≥ 0. Thus, if F̂ is the ICRG of
G and (i, j) /∈ Â then by Assumption (A5) δij(x(t)) = 0 for
all t ≥ 0. Moreover if i ∈ V but i /∈ V̂ , then xi(t) = 0, ∀t ≥ 0.
For a node i ∈ V of G, we define the set of in-reachable nodes
of i as inRi := {j ∈ V̂ | ∃ a directed path from j to i in F̂}∪
{i} and the set of out-reachable nodes of i as outRi := {j ∈
V̂ | ∃ a directed path from i to j in F̂} ∪ {i}. We use rij to
represent the outflow from i to j ∈ outRi and let r be the
vector that accumulates all the rij into a vector. Then the
optimum value of the optimization problem P4 can be used as
an upper bound on the steady-state utility.

P4 :

Umax := max
w,r

∑
i∈V̂

[pi (wi)− pi(0)]

s.t. wi =
∑
j∈ inRi

rji, ∀i ∈ V̂

rij ≥ 0, ∀i ∈ V̂, ∀j ∈ outRi∑
j∈ outRi

rij = x0
i , ∀i ∈ V̂ .

(8)

Note that P4 is visually similar to P3 of NRPM in [1] but
they are very different problems. In P3, the decision variables
in d restricts the movement of the population fraction in each
node to itself and among its neighbors in G, i.e. dij captures
the outflow form node i ∈ V to node j ∈ N i (the neighbor
set only). In P4, on the other hand, the decision variables
in r allows the movement of the population fraction from
each node to any node that is out-reachable from it in F̂ .
Thus, while P3 gives us the instantaneous flows in NRPM,
P4 gives us the socially optimal longterm redistribution of the
population starting from x0 and under the path constraints
imposed by F̂ .

Next, we present the main result of this section and present
its proof in Appendix II-C.1.

Theorem 4.2: (Upper bound on steady-state social utility).
Suppose x0 ∈ S |V|ρ and the evolution of x is governed by (3)
with Assumptions (A2) - (A5) . Then the steady-state social
utility from the initial condition x0, Uss(x

0) ≤ Umax. •
In the next subsection, we provide algorithms to compute

lower bounds on the steady-state social utility.
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B. Lower Bound on Steady-State Social Utility
In order to provide a meaningful lower bound on the

steady-state social utility, we partition the graph into certain
subgraphs, each of which is a directed QCH, which we
define formally in the sequel. Then, using the properties in
Section III, we utilize (4) to compute the social utility of
the population among each group independently for different
allocations of population fractions in the group. Then, the
problem is converted to one of optimal allocations to the
collection of directed QCHs so that social utility is minimized.

We now formally define a directed QCH and subsequently,
we also define other useful definitions. Note: up to the very
end of this subsection, we present in the context of an arbitrary
graph and in the end we apply it to ICRG F̂ .

Definition 4.3: (Directed quasi-concave hill). We call a di-
graph to be a directed quasi-concave hill (DQCH) if and only
if its corresponding undirected graph is a QCH. •

Definition 4.4: (Directed quasi-concave hill component or
DQCH component). A subgraph H = (W,Q) of a directed
graph F ′ = (V ′,A′) is said to be a directed quasi-concave hill
component or DQCH component if and only if H is a DQCH.

•
Each DQCH component can be classified into one of two

types: attractive or non-attractive. We define these next and
also describe their significance.

Definition 4.5: (Attractive DQCH component or A-DQCH
component). Let F ′ = (V ′,A′) be a directed graph and let
outN i(F ′) be the set of out-neighbors of a node i ∈ V ′ in F ′.
A subgraph H = (W,Q) of the graph F ′ is said to be an
attractive directed quasi-concave hill component or A-DQCH
component of F ′ if and only if
• H is a DQCH;
• outN i(F ′) ⊆ W , ∀i ∈ W and Q = {(i, j) | i ∈ W, j ∈

outN i(F ′)}. •
Definition 4.6: (Non attractive DQCH component or NA-

DQCH component). Let F ′ = (V ′,A′) be a directed graph
and let outN i(F ′) be the set of out-neighbors of a node i ∈ V ′
in F ′. A subgraph H = (W,Q) of the graph F ′ is said to
be a non-attractive directed quasi-concave hill component or
NA-DQCH component of F ′ if and only if
• H is a DQCH;
• ∃ i ∈ W and j ∈ outN i(F) such that j /∈ W . •
See Figure 6 in Appendix I for examples of A-DQCH and

NA-DQCH components of a directed graph.
From the definition of an A-DQCH component, it is clear

that if some fraction of population starts inside it, then the
fraction remains there forever as there are no outgoing arcs
from such a component to other components. This is the
main reasoning for the nomenclature. Moreover, for every
DQCH component, if the fraction of population in the said
component is known apriori, we can use (4) to calculate the
steady-state social utility for that population fraction. Thus, the
graph F̂ (the ICRG of G) can be partitioned into such DQCH
components in order to formulate a suitable optimization
problem (like in Section IV-A) for providing a lower bound
on the steady-state social utility. Note that such a partition is
not unique. We use the following partition to tighten the lower
bound as much as possible.

Definition 4.7: (Maximal attractive component partition
or MAC partition). A collection of subgraphs {Hq =
(Wq,Qq)}q∈[1,n]Z is said to be a maximal attractive compo-
nent partition or MAC partition of a directed graph F ′ =
(V ′,A′) if and only if
• ∀q, r ∈ [1, n]Z such that q 6= r,Wq∩Wr = ∅,Qq∩Qr =

∅;
•
⋃
q∈[1,n]Z

Wq = V ′, ⋃q∈[1,n]Z
Qq ⊆ A′;

• ∀q ∈ [1, n]Z, Hq is a DQCH component of F ′;
• ∀q ∈ [1, n]Z if Hq is an NA-DQCH component, then Hq

does not contain any A-DQCH component of F ′;
• ∀q ∈ [1, n]Z if Hq is an A-DQCH component, then @I ⊆

[1, n]Z such that H q
:=
(⋃

r∈I∪{q}Wr,
⋃
r∈I∪{q}Qr

)
is an A-DQCH component. •

Definition 4.7 can be interpreted in the following way. For a
MAC partition, the individual components are non-overlapping
and cover the original graph. The NA-DQCH components
do not contain any A-DQCH components. Finally, different
components cannot be joined to create a new, larger A-DQCH
component. Hence, the partition is maximally attractive. Note
that a MAC partition of a directed graph always exists as
a node in itself is a DQCH component of a graph. So is a
combination of two neighboring nodes of the graph. Thus, a
way to find a MAC partition would be to locate all the A-
DQCH components of F and then club the remaining nodes
and arcs into different NA-DQCH components. This is the
main logic behind Algorithm 3 and the supporting Algorithm
4. In particular, the function MACPartition(), which we
describe in Algorithm 3, takes a directed graph F ′ as an input
and returns a MAC partition of the same.

Remark 4.8: (Computation of MAC partitions of F̂). The
function MACPartition(F̂ ,a) in Algorithm 3 computes
a MAC partition of F̂ . The function makeQCHComp() in
Algorithm 4 aids in this process. Notice that if any directed
graph is passed to makeQCHComp(), it returns a collection
of DQCH components. This is because in Step 5, a node i
with highest value of ai is chosen. This definitely belongs
to a DQCH component as every node in itself is a DQCH
component. Then in Step 6, all nodes that have a path with
quasi-concave MPDP’s from this node is included into this
component. Thus (V temp,Atemp) at the end of a pass of the
while loop is a DQCH by definition. The algorithm then
repeats the process by considering the nodes which have not
been visited in this process.

Now once such a collection of DQCH components is
returned by makeQCHComp() to MACPartition() in Step
1, Algorithm 3 checks every component and removes nodes
that have out-neighbors not within that component (Step 10).
Thus the nodes and arcs remaining (if any) at the end (Step 17)
of each pass of the for-loop forms an A-DQCH component.
The nodes and arcs added to Vregroup and Aregroup in Steps 12,
13 have the property that they have outgoing arcs to some
other components. Thus they are regrouped into NA-DQCH
components in Step 20. Note that any NA-DQCH component
formed in this process cannot contain any A-DQCH because
of the aforementioned property. Thus, the partition obtained
at the end of Algorithm 3 satisfies all the requirements of
Definition 4.7. •
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Algorithm 3: MACPartition(F ′,a)

Data: F ′ = (V ′,A′),a
Result: MAC Partition H

1 H ← makeQCHComp(F ′,a)
2 Vregroup ← ∅
3 Aregroup ← ∅
4 for Hq ∈ H do

I Hq = (Wq ,Qq)

5 tempVar ← ∅
6 while Wq 6= tempVar do
7 tempVar ←Wq

8 for i ∈ Wq do
9 if ∃ j ∈ outN i(F ′) such that j /∈ Wq then

I outN i(F ′) is with respect to F ′

10 Wq ←Wq \ {i}
I remove nodes with out-neighbors

not in Wq and try to

make Wq an A-DQCH

11 Qq ← Qq\{(i, k) ∈ Qq}\{(k, i) ∈ Qq}
I remove corresponding arcs

12 Vregroup ← Vregroup ∪ {i}
13 Aregroup ← Aregroup ∪ {(i, k) ∈ A′}
14 Remove ai from a
15 end
16 end
17 end
18 end
19 Fregroup ← (Vregroup,Aregroup)
20 H ← H ∪ makeQCHComp(Fregroup,a)

I regroup the remaining nodes and arcs

into NA-DQCH components

21 return: H

Algorithm 4: makeQCHComp(F ′,a)

Data: F ′ = (V ′,A′),a
Result: DQCH components

1 visitSet ← ∅
I keeps track of nodes already visited

2 H ← ∅
3 while visitSet 6= V ′ do
4 i← arg max(a)
5 V temp ← {i}

I node with highest MPDP is

definitely in a QCH

6 V temp ← V temp ∪ {j ∈ V ′ | ∃ a path with
quasi-concave MPDP’s between j and i in F ′}

I these consider paths in the

undirected sense

7 Atemp ← {(i, j) ∈ A′ | i, j ∈ V temp}
8 visitSet ← visitSet ∪ V temp
9 Remove indices {i ∈ visitSet} from a

10 H ← H∪ {(V temp,Atemp)}
11 end
12 return: H

Using such a partition, we can create a super graph of F̂ (the
ICRG of G) in order to find a lower bound on the steady-state
social utility of the dynamics. This is also useful as it reduces
the number of variables (significantly in some cases) as we
can group multiple nodes into a super node and consider the
super node as a whole rather than considering the individual
nodes that constitute it.

Definition 4.9: (Maximal attractive component super graph
or MAC-SG). Suppose {Hq = (Wq,Qq)}q∈[1,n]Z is a MAC
partition of a directed graph F ′ = (V ′,A′). Construct a graph
Γ := (Λ,Π) with the following property:
• Λ = [1, n]Z;
• (q, r) ∈ Π if and only if ∃ i ∈ Wq and j ∈ Wr such that

(i, j) ∈ A′.
Such a graph Γ is called a Maximal Attractive Component
Super Graph or MAC-SG of the MAC partition {Hq =
(Wq,Qq)}p∈[1,n]Z of F ′. The q’s are called super nodes.

The function MACSG() takes in a MAC partition of F ′ and
returns the corresponding MAC-SG. •

See Figure 7 in Appendix I for example of a MAC partition
and corresponding MAC-SG of a directed graph.

Let Γ := (Λ,Π) be such a MAC-SG of a MAC partition
of F̂ (the ICRG of G). Similar to the nodes, for a super node
q ∈ Λ, we define the set of in-reachable super nodes of q as
inRq := {r ∈ Λ | ∃ a directed path from r to q in Γ} ∪ {q}
and the set of out-reachable super nodes of q as outRq :=
{r ∈ Λ | ∃ a directed path from q to r in Γ} ∪ {q}. We then
let ρqr denote the fraction of population moving from super
node q ∈ Λ to r ∈ Λ and ρ be the vector that accumulates
all such ρqr into a vector. Of course such a movement is only
allowed between nodes if there is a directed path between
them. Moreover, the total fraction of population that moves
out of a super node cannot be more than the initial fraction
that starts off in that node. Thus,

ρqr ≥ 0, ∀r ∈ outRq,∀q ∈ Λ, (9a)∑
r∈ outRq

ρqr =
∑
j∈Wq

x0
j , ∀q ∈ Λ . (9b)

Now, if we allow the entire population to fit in every super
node, then we might end up with a conservative lower bound.
To compute a more realistic lower bound, the fact that some
nodes will not contain any population fraction in the steady-
state must be taken into account. We formally define such
nodes next and then provide a result to identify such nodes.

Definition 4.10: (Eventually empty nodes). Let the evolu-
tion of x be governed by a Nash convergent dynamics from
an initial condition x0. Let L+ be the positive limit set of the
trajectory. Then i ∈ V is said to be an eventually empty node
if and only if xi = 0, ∀x ∈ L+. •

Lemma 4.11: (Sufficient condition for being eventually
empty). Let the evolution of x be governed by (3) with
Assumptions (A2), (A3) and (A5). Let x0 ∈ S |V|ρ and let
F̂ = (V̂, Â) be an ICRG of G = (V, E). For a node i ∈ V̂ ,
if ∃ j ∈ N i such that (i, j) ∈ Â and (j, i) /∈ Â, then i is an
eventually empty node. •
A proof of this is provided in Appendix II-C.2. Thus, if a
super node contains an eventually empty node, there exists an
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inherent bound on the fraction of population that can stay in
that super node in the steady-state state as this state is a Nash
equilibrium. We discuss this in the following result.

Lemma 4.12: (Upper bound on population fraction in super
nodes). Let the evolution of x be governed by (3) with As-
sumptions (A2), (A3) and (A5). Suppose x0 is the initial con-
dition and F̂ is an ICRG of G. Let {Hq = (Wq,Qq)}q∈[1,n]Z

be a MAC partition of F̂ and let Γ = (Λ,Π) be the
corresponding MAC-SG. Let L+ be the positive limit set
of the trajectories. For a super node q ∈ Λ, let the set of
eventually empty nodes in q be denoted by Mq := {i ∈
Wq | i is eventually empty}. Let

amax
q := max

i∈Mq
ai, if Mq 6= ∅ , (10)

and finally, let

ρmax
q :=


0, if Mq =Wq∑
i∈Wq\Mq

u−1
i

(
amax
q

)
, if Wq ⊃Mq 6= ∅,

1, if Mq = ∅ .

(11)

Then, ∀x ∈ L+ ∑
i∈Wq

xi ≤ ρmax
q , ∀ q ∈ Λ . (12)

•
We present a proof in Appendix II-C.3.

Recall that fV′(ρ) is the solution of the optimization
problem P1(V ′, ρ) in (4). The optimum of the following
optimization problem then provides a lower bound on the
steady-state social utility.

P5 : Umin := min
ξ,ρ

∑
q∈Λ

fWq (ξq)

s.t. ξq =
∑

r∈ inRq

ρrq,∀q ∈ Λ, (9), ξq ≤ ρmax
q ,∀q ∈ Λ .

The following lemma, proof of which is given in Appendix
II-C.4 shows concavity of the cost function in P5.

Lemma 4.13: (Concavity of cost function of P5). Consider
a fixed V ′ and the function fV′(ρ) which is the optimum of
P1(V ′, ρ) in (4). Then fV′(ρ) is concave in ρ ≥ 0. •
The constraints set of P5 is a polyhedron. Thus it is a well
known fact that the global optimum will occur at an extreme
point. Any standard method such as [18]–[20] can be used to
solve this problem.

The main sequence of steps, required to compute a lower
bound on the steady-state social utility, described in this
section is listed in Algorithm 5 and the result regarding the
same is stated to conclude the section.

Theorem 4.14: (Lower bound on steady-state social utility
for SSD, NBRD and NRPM). Let x0 ∈ S |V|ρ and the evolution
of x be governed by (3) with Assumptions (A2) - (A5) . Then
the steady-state social utility from the initial condition x0 is
lower bounded by Umin, i.e Umin ≤ Uss(x

0).
Further if the solution x(t) of (3) is such that U(x(t)) ≥

U(x0), ∀t ≥ 0, then max{Umin, U(x0)} ≤ Uss(x
0). •

A proof of this is presented in Appendix II-C.5.

Algorithm 5: Compute lower bound for steady-state
social utility

Data: x0,F
Result: Umin

1 F̂ ← reduceGraph(F ,x0)

2 H ← MACPartition(F̂)
I individual components are Hq = (Wq ,Qq)

3 Γ← MACSG(H) I Γ = (Λ,Π)

4 Umin ← solution of P5

V. SIMULATIONS AND ANALYSIS

In this section, we highlight some properties of SSD, NBRD
and NRPM and illustrate some results stated in Parts I and
II using some simulations. We used CVXPY [21], [22] for
solving the optimization problems. We performed all simula-
tions in a python3 programming language environment on a
standard laptop with intel 10th generation Core i5 processor.

A. Myopic Coordination can be Worse than Myopic
Selfish Behavior

Even though SSD, NBRD and NRPM converge asymptoti-
cally to the set of Nash equilibria, they may not converge to
the same state in general. Further, even though these dynamics
display increasing levels of coordination among the agents, it
is not always true that NBRD performs better than SSD nor
that NRPM performs better than NBRD. This is because these
are still essentially network restricted gradient ascent dynamics
with myopic agents. In this subsection we illustrate a situation
where the act of coordination does not result in better social
utility. For this subsection we assume the cumulative payoff
functions to be of the form pi(xi) := −0.5x2

i − aixi. This is
the uniform water tank model presented in [17].
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Fig. 1: SSD outperforms NBRD, which outperforms NRPM.
(a) Graph, initial state and MPDP’s. The tuple (., .) near each
node i represents (x0

i ,ai). (b) Evolution of social utility.

1) SSD outperforms NBRD which in turn outperforms NRPM:
Consider the graph, initial state and MPDP’s in Figure 1(a).
In case of NRPM, unlike SSD and NBRD, the population
is aware of the choice revision of the fraction in node 2 to
node 1. Thus under NRPM, more population moves from
node 3 to node 2, than under SSD and NBRD, in order
to instantaneously maximize the social utility. But, in the
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longterm, more population is able to access the more lucrative
nodes 5 and 7 in case of SSD and NBRD than NRPM. Now,
when the population reaches node 4, all the agents find it
instantaneously optimal under NBRD and NRPM to move to
node 5. Hence, they completely miss out on the best payoff
in node 7. SSD on the other hand sends some non-zero
population fraction from node 4 to nodes 5 and 6. Thus it
attains the best steady state social utility. This is seen in the
simulation results in Figure 1(b).

B. Evolution on a Quasi Concave Hill

1

2

3
4

12

5

6

7
8

9

10 
99

-51
-15

50

-71

46
37

51

89

Fig. 2: 10-node QCH for simulation. The MPDP’s of each
node are mentioned near it. The nodes are positioned in order
of increasing MPDP’s in the vertical direction.

In this section, we verify the results provided in Section III.
We first studied the evolution of the population on the 10-node
QCH shown in Figure 2 from an initial condition x0 = 0.1×1.
The simulation results are shown in Figure 3. It can be seen
that the population concentrates to nodes 2, 5, 9 and 10 which
have MPDP’s greater than the rest of the nodes.

We also randomly selected 5 QCH’s with 10 nodes and for
each QCH we ran SSD, NBRD and NRPM for 10 uniformly
randomly selected initial conditions from S10

1 . For each graph,
p(.)’s were randomly chosen from a class of strictly concave
polynomials of degree 2, 4 or 6. We then compared the steady-
state utility for all three dynamics with the solution of P1. The
maximum absolute relative error was 9.44× 10−5.

C. Bounds on Steady-State Social Utility
1) General Example: Here we consider an 18 node graph

and quadratic cumulative payoff functions and verify the upper
and lower bounds on the steady-state social utility. The graph
structure G and cumulative payoff function details are provided
in Figure 4(a). Initial population is distributed between nodes
4, 10, 17 and 18 as x0

4 = x0
10 = 0.1, x0

17 = 0.3, x0
18 = 0.5

and x0
i = 0, ∀i ∈ [1, 18]Z \ {4, 10, 17, 18}. The corresponding

ICRG F̂ is provided in Figure 4(b). Note that F̂ has only
17 nodes and not 18 (node 7 has been removed). The only
bi-directional arc in F̂ is between nodes 1 and 4. Rest of the
arcs are all uni-directional. Thus there is over 50% reduction
of δij variables from G to F̂ . The A-DQCH components are
made up of the node sets {2}, {8}, {9, 14, 17}, {10}, {16} and
corresponding arcs. The NA-DQCH components are made
up of the node sets {1, 3, 4, 5, 6, 11, 12, 15}, {13}, {18} and
corresponding arcs. To compute the upper and lower bounds
the total time taken was ≈ 3.48 sec.

Social utility order Rate Social utility order Rate

U1
ss ≥ U2

ss ≥ U3
ss 22.8% U2

ss ≥ U3
ss ≥ U1

ss 17.2%

U1
ss ≥ U3

ss ≥ U2
ss 18.6% U3

ss ≥ U1
ss ≥ U2

ss 4.8%

U2
ss ≥ U1

ss ≥ U3
ss 0.8 % U3

ss ≥ U2
ss ≥ U1

ss 35.8%

TABLE I: Trends in steady-state social utility of SSD, NBRD
and NRPM. Steady state social utility of SSD, NBRD and
NRPM are respectively denoted by U1

ss, U
2
ss and U3

ss.

The simulation results are provided in Figures 4(c) - 4(f).
The time axis in each of these diagrams is represented as
a log scale, i.e. each tick on the horizontal axis represents
log(k−1t+ 1) rather than t (the value of k is given in Figure
4). This is done to magnify the initial time frame where the
main redistribution occurs and shrink the later time frame.
The average time taken to solve the optimization problems for
NBRD and NRPM were ≈ 0.32 sec and ≈ 0.16 sec respec-
tively. The total time required to complete the simulations for
SSD, NBRD and NRPM were ≈ 108.43 sec, ≈ 3.19×104 sec
and ≈ 1.6×104 sec respectively. The upper and lower bounds
obtained were −3.17 and −7.58 respectively while the actual
steady-state social utility for SSD, NBRD and NRPM were
−5.16, −5.01 and −4.17 respectively.

2) Performance of Bounds with Varying Graph Sparsity: We
studied the performance of the bounds by varying the graph
sparsity. We chose 5 cases where the probability of an edge
between two nodes takes values 0.1, 0.2, 0.3, 0.4 and 0.5. Then
for each probability value, we randomly selected 10 connected
graphs with 10 nodes and for each graph we ran SSD,
NBRD and NRPM for 10 uniformly randomly selected initial
conditions from S10

1 . For each graph, p(.)’s were randomly
chosen from a class of strictly concave polynomials of degree
2, 4 or 6. We then compared the steady state utility for all three
dynamics with the bounds Umax, Umin and max{Umin, U(x0)}.
The data from these 500 simulations is shown in Figure 5. We
also provide the percentage of sims a particular ordering of the
steady-state social utility of SSD, NBRD and NRPM appeared
in these 500 sample simulations in Table I. We provide an
intuitive reasoning behind this data in Remark 5.1.

Remark 5.1: (Intuitive Reasoning behind data in Table I).
From Table I, it is visible that in majority of the sims NRPM
performs better than NBRD and NBRD performs better than
SSD. This is to be expected as SSD, NBRD and NRPM show
an increasing level of coordination. However, surprisingly,
the reverse ordering takes the second position. This means
that quite often myopic coordination is worse than myopic
selfishness (see Section V-A). It should also be noted that
very few times SSD ends up between NBRD and NRPM.
We believe that this happens because both NBRD and NRPM
have similar optimization problems at their core; whereas
SSD redistributes the population selfishly based on what is
available. Further analysis needs to be done to rigorously talk
about the ordering percentages. •
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Fig. 3: Evolution of population state on a QCH. The plots share a common label and a common legend. (a) Evolution of
population state under SSD. (b) Evolution of population state under NBRD. (c) Evolution of population state under NRPM.
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Fig. 4: Simulation with pi(xi) := −αi x2
i − βi xi. The last three plots share a common label and a common legend. Here

k ≈ 5 × 10−5. (a) Graph structure with 18 nodes. The tuple (.,.) around each node i represents (αi, βi). (b) Corresponding
ICRG. Nodes in same D-QCH components have same color and have been grouped together. Nodes in different D-QCH
components are colored differently. (c) Evolution of social utility and bounds on steady-state social utility. (d) Evolution of
population state under SSD. (e) Evolution of population state under NBRD. (f) Evolution of population state under NRPM.

VI. CONCLUSION

We provided sufficient conditions on the network under
which there exists a unique Nash equilibrium for the stratified
population game. We also provided algorithms to reduce
the graph using the initial condition without affecting the
population evolution. We then provided algorithms to partition

the reduced graph and utilized the conditions for unique Nash
equilibrium to provide upper and lower bounds on the steady-
state social utility for SSD, NBRD and NRPM.

Future work includes utilizing the dynamics to further
reduce the graph and refine the bounds on the steady-state
social utility. We would also like to extend the ideas further
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Fig. 5: Absolute relative error of bounds. The plots share a
common legend. (a) Absolute relative error of upper bound
Umax. (b) Absolute relative error of lower bounds. Upper plot
considers Umin and lower plot considers max{Umin, U(x0)}.

to compute conditions under which the bounds coincide and
utilize this knowledge to compute the steady-state state.

REFERENCES

[1] N. Mandal and P. Tallapragada, “Dynamics of a stratified population of
optimum seeking agents on a network–Part I: Modeling and convergence
analysis,” arXiv preprint arXiv:2012.12599, 2020.

[2] W. H. Sandholm, Population games and evolutionary dynamics. MIT
press, 2010.

[3] N. Quijano, C. Ocampo-Martinez, J. Barreiro-Gomez, G. Obando,
A. Pantoja, and E. Mojica-Nava, “The role of population games and
evolutionary dynamics in distributed control systems: The advantages
of evolutionary game theory,” IEEE Control Systems Magazine, vol. 37,
no. 1, pp. 70–97, 2017.

[4] J. Barreiro-Gomez, G. Obando, and N. Quijano, “Distributed population
dynamics: Optimization and control applications,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 47, no. 2, pp. 304–314,
2016.

[5] J. Martinez-Piazuelo, G. Diaz-Garcia, N. Quijano, and L. F. Giraldo,
“Distributed formation control of mobile robots using discrete-time
distributed population dynamics,” IFAC-PapersOnLine, vol. 53, no. 2,
pp. 3131–3136, 2020.

[6] E. Lieberman, C. Hauert, and M. A. Nowak, “Evolutionary dynamics
on graphs,” Nature, vol. 433, no. 7023, p. 312, 2005.
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APPENDIX I
EXAMPLES FOR SECTION IV

The nodes of the graphs in Figures 6 and 7-(a) are arranged
in a way that the MPDP’s or ai’s increase in the vertical
direction. This makes it easier to verify the definitions.
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Fig. 6: Example of A-DQCH and NA-DQCH components
of a directed graph. Different components are given in dif-
ferent colors. A-DQCH component is made up of the nodes
{2, 6, 9, 10}. There are three NA-DQCH components, with the
node sets {1, 7, 8, 11}, {3, 4} and {5}, respectively.
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Fig. 7: MAC partition and MAC-SG (a) A MAC partition of
the directed graph in Figure 6. Different components are in
different colors. (b) Corresponding MAC-SG.

APPENDIX II
PROOFS OF RESULTS

A. Proof of Lemma 2.2

The fact that SSD, NBRD and NRPM satisfy Assumptions
(A2) - (A4) can be found in the results in [1]. Positive
invariance of S |V|ρ follows form the fact that all the three
dynamics are flow balanced dynamics. The rest follows from
Remark 4.1, Theorem 4.2, Theorem 5.5, Lemma 6.8 and
Theorem 6.9 in [1].

Next, we prove that SSD and NBRD satisfy Assumption
(A5). Since ui(.) is strictly decreasing ∀i ∈ V , we can say
that ∀(i, j) ∈ A such that ui(θi) ≥ uj(0)

ui(xi) ≥ ui(θi) ≥ uj(0) ≥ uj(xj), ∀xi ∈ [0, θi], ∀xj ≥ 0.

Thus, (6) follows from strong positive correlation of SSD and
NBRD with u(.) as described in [1].

Note that for NRPM, Fi(x) + x = z∗(x), where z∗ comes
from an optimizer of P3. Also recall that, if (z∗,d∗) is an
optimizer of P3, then

uj(z
∗
j ) ≥ ui(z∗i ), ∀j ∈ N i s.t. d∗ij > 0 . (13)

Moreover, (z∗,d∗) satisfies the feasibility constraints,

z∗i = xi +
∑
j∈N i

(d∗ji − d∗ij), ∀ i ∈ V, (14a)

∑
j∈N i

d∗ij = xi, ∀ i ∈ V, (14b)

d∗ij ≥ 0, ∀ (i, j) ∈ A := A ∪ {(i, i) | i ∈ V}. (14c)

Now, we prove Assumption (A5) for NRPM by contradiction.
Suppose ∃x ∈ S |V|ρ with xi, z

∗
i (x) ∈ [0, θi] and (i, j) ∈ A

such that ui(θi) ≥ uj(0) but d∗ij > 0 for some d∗ that
optimizes P3. Then by (13), we get

ui(θ) ≤ ui(z∗i ) ≤ uj(z∗j ) < uj(0) .

The last strict inequality can be obtained by combining the
feasibility constraints (14a) for j, (14b) and (14c) of P3; along
with the assumption that d∗ij > 0. But this is a contradiction
and hence (A5) must hold for NRPM. �

B. Proof of Results on Unique Nash Equilibrium
1) Proof of Lemma 3.3: (By contradiction) Suppose ∃ k ∈

[1, n]Z, p ∈ [1, k − 1]Z and q ∈ [k + 1, n]Z such that aπ(p) >
aπ(p+1) and aπ(q−1) < aπ(q). But π(p), π(q) ∈ P(i, j)
which is a path of quasi-concave MPDP’s and one of the
previous inequalities violates the condition that ∀ r ∈ [p, q]Z,
aπ(r) ≥ min{aπ(p),aπ(q)}. This is a contradiction and hence
the assumption was incorrect. �

2) Proof of Lemma 3.5: Choose any i, j ∈ supp(x) and let
P(i, j) be a path between i and j with quasi-concave MPDP’s.
Existence of such a path is guaranteed as the graph G is a
QCH. Let π(k) := Pk(i, j). As π(k) ∈ P(i, j), by Lemma 3.3
ai ≤ aπ(2) ≤ · · ·aπ(k) or aπ(k) ≥ · · · ≥ aπ(n−1) ≥ aj . With-
out loss of generality, suppose that ai ≤ aπ(2) ≤ · · ·aπ(k).

Now, consider the nodes π(1) = i and π(2). As xi > 0 and
ai ≤ aπ(2), we have

uπ(2)(0) ≥ ui(0) > ui(xi) ≥ uπ(2)(xπ(2)),

where we have used the fact that uk(.) is a strictly decreasing
function ∀ k, which implies uk(0) > uk(y) iff y > 0.
Further, the last inequality comes from the fact that x ∈
NE |V|ρ . Collapsing the intermediate inequalities, we thus have
uπ(2)(0) > uπ(2)(xπ(2)), which again implies xπ(2) > 0. Now,
repeating this argument for every pair of nodes (π(r), π(r+1))
for r ∈ {1, . . . k − 1}, we conclude that xπ(k) > 0, that is
π(k) ∈ supp(x).

Thus, ∀π(k) ∈ P(i, j), π(k) ∈ supp(x). Then as x ∈
NE |V|ρ , uπ(k)(xπ(k)) = uπ(l)(xπ(l)) ∀π(k), π(l) ∈ P(i, j).
Thus ui(xi) = uj(xj). As i and j were chosen arbitrarily, the
proof of the lemma is complete. �

3) Proof of Theorem 3.6: First note that U(x) is a strictly
concave function in x and P1 is always feasible as S |V|ρ is
non-empty. Also P1 is a strictly convex program and hence
has a unique optimizer [23]. Thus, it suffices to show that if
x ∈ NE |V|ρ then x also optimizes P1.

If ρ = 0 then the result is trivially true. So, now suppose
ρ > 0. The Lagrangian for P1 can be written as

L1 =
∑
i∈V

pi(xi)− λ
(∑
i∈V

xi − ρ
)

+
∑
i∈V

µixi,

where λ and {µi ≥ 0}i∈V are the Lagrange multipliers. The
KKT conditions for P1 include

ui(xi)− λ+ µi = 0, ∀i ∈ V, (15a)
µixi = 0, ∀i ∈ V . (15b)

Now, let x ∈ NE |V|ρ . Since the graph is a QCH, we know
from Lemma 3.5 that

ui(xi) = H, ∀ i ∈ supp(x), (16)
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for some H . Clearly, if ρ > 0, problem P1 satisfies Slater’s
condition. Thus, we will show that x ∈ NE |V|ρ is the unique
optimizer of P1 by showing that for x there exist Lagrange
multipliers that satisfy (15) and the feasibility constraints. As
x ∈ NE |V|ρ , x is a feasible solution for P1. Now, we set

λ∗ = H, µ∗i = 0, ∀i ∈ supp(x),

µ∗j = H − uj(0), ∀j /∈ supp(x).

As x ∈ NE |V|ρ , we can say from (16) that µ∗j ≥ 0, ∀j /∈
supp(x). Thus for each i ∈ V , µ∗i ≥ 0 and satisfies (15b).
Also, we can directly verify that (x, λ∗, µ∗) satisfy (15a). Thus
x must be the unique optimizer of P1. This proves the theorem.

�

C. Proof of Results on Bounds on Social Utility

1) Proof of Theorem 4.2: From Remark 4.1 it is clear that θ
estimated using x0 in reduceGraph() has the property that
x(t) ≤ θ and z∗(x(t)) ≤ θ, ∀t ≥ 0 and hence the evolution
on G is same as that on F̂ . Suppose x is the steady-state from
the initial condition x0. Then notice that x can be expressed
as xi = wi =

∑
j∈ inRi rji, ∀i ∈ V for some (w, r) which is

a feasible solution of P4. Thus U(x) ≤ Umax. �
2) Proof of Lemma 4.11: (By contradiction) Suppose ∃ i ∈
V̂ , such that (i, j) ∈ Â and (j, i) /∈ Â but xi 6= 0 for some
x ∈ L+. Then,

uj(xj)
a
≥ uj(θj)

b
≥ ui(0)

c
> ui(xi)

d
≥ uj(xj) .

Here, inequalities a and c comes from the strict decreasing
nature of ui(.) and uj(.). Inequality c is strict as xi 6= 0.
Inequality b comes from the fact that (j, i) /∈ Â. Inequality d
comes from the fact that (i, j) ∈ Â and x ∈ NE |V|ρ . This is a
contradiction and the claim of the lemma is hence true. �

3) Proof of Lemma 4.12: Consider an arbitrary but fixed
super node q ∈ Λ. First we address the trivial cases. If
Mq = Wq , then (12) is satisfied with ρmax

q = 0 by Lemma
4.11. Also as the total population is one, then ρmax

q = 1 is
always a valid upper bound on the total fraction in q.

Next we address the case when Wq ⊃Mq 6= ∅. As Hq is
a DQCH component of F̂ , by Lemma 3.5 if xi 6= 0 for some
i ∈ Wq \Mq then ui(xi) ≥ uj(0) = aj , ∀j ∈Mq and hence
ui(xi) ≥ amax

q . Thus, (12) comes from applying this condition
to all nodes i ∈ Wq \Mq such that xi 6= 0. �

4) Proof of Lemma 4.13: By contradiction Suppose
∃ ρ1, ρ2 ≥ 0 and σ ∈ (0, 1) such that

fV′

(
σρ1 + (1− σ)ρ2

)
< σfV′(ρ1) + (1− σ)fV′(ρ2) . (17)

We ignore the trivial cases where σ = 0 or σ = 1. Let x1 and
x2 be the optimizers of P1(V ′, ρ1) and P1(V ′, ρ2) respectively.
Thus, fV′(ρ1) = U(x1) and fV′(ρ2) = U(x2). Then it is
easy to see that σx1 + (1 − σ)x2 is a feasible solution of
P1(V ′, σρ1 + (1− σ)ρ2). Then,

U
(
σx1 + (1− σ)x2

)
≤ fV′

(
σρ1 + (1− σ)ρ2

)
< σfV′(ρ1) + (1− σ)fV′(ρ2) = σU(x1) + (1− σ)U(x2).

Here the first inequality comes from the fact that fV′

(
σρ1 +

(1 − σ)ρ2

)
is the optimum of P1(V ′, σρ1 + (1 − σ)ρ2). The

second strict inequality comes from (17). This contradicts the
strict concave nature of U(.) and hence completes the proof.

�
5) Proof of Theorem 4.14: Note that the main steps of the

process are illustrated in Algorithm 5. By Remark 4.1, we
know that F̂ in Step 1 computes an ICRG of G and that the
evolution of the population is unaffected by it. Next Step 2
computes a MAC partition of F̂ , the accuracy of which is
demonstrated in Remark 4.8. Γ in Step 3 is the corresponding
MAC-SG. By Lemma 4.12, ρmax

q is an upper bound on the
population fraction in each super node for every state in the
positive limit set (say L+) of the trajectory starting from x0.
Thus, every x ∈ L+ can be written as a feasible solution for
P5. Moreover, inside each super node, the steady-state social
utility is given by P1. Hence the lower bound holds. �
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