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Abstract—In this work, we consider the problem of event-
triggered implementation of control laws designed for the local
stabilization of nonlinear systems with center manifolds. We
propose event-triggering conditions which are derived from a
local input-to-state stability characterization of such systems.
The triggering conditions ensure local ultimate boundedness of
the trajectories and the existence of a uniform positive lower
bound for the inter-event times. The ultimate bound can be
made arbitrarily small, by allowing for smaller inter-event times.
Under certain assumptions on the controller structure, local
asymptotic stability of the origin is also guaranteed. Two sets
of triggering conditions are proposed, one for the case where the
exact center manifold is known and the other for the case where
only an approximation of the center manifold is computable.
Two illustrative examples representative of the two scenarios
are presented and the applicability of the proposed methods is
demonstrated. The second example concerns the event-triggered
implementation of a position stabilizing controller for the open-
loop unstable Mobile Inverted Pendulum (MIP) robot.

Index Terms—Event-triggered control, Center manifold theory,
Input-to-state stability, Mobile Inverted Pendulum Robot

I. INTRODUCTION

In the recent years, various methods for resource-aware
implementation of control laws have emerged, that try to
utilize the resources judiciously, while guaranteeing pre-
specified performance. Event-triggered control [1]–[3] is one
such resource-aware technique which has gained popularity
and presents an alternative to time-triggered control. In event-
triggered control, the control loop is closed when certain
events occur in a system and not periodically as in periodic
time-triggered control.

Although event-triggered controllers have been proposed for
a wide variety of settings (as surveyed in [3]), the case of
nonlinear systems with center manifolds has not been looked at
so far. Center manifold analysis is a crucial design and analysis
tool for nonlinear systems with degenerate equilibria and is
widely used in the areas of control theory, bifurcation theory
and multi-scale modelling [4]. The need for research in this
direction stems from the non-applicability of existing results,
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for systems such as the Mobile Inverted Pendulum (MIP) robot
[5] and tethered satellite system [6], where controllers are
designed in the presence of a center manifold. In this work, we
present a solution to the problem of event-triggered control of
nonlinear systems with center manifolds. This work builds our
work in [7], where Lyapunov-based characterisation of local
input-to-state stability (LISS) was derived for nonlinear sys-
tems with center manifolds, which is used in the present work
to design event-triggering conditions. In [7], hurdles in the way
of designing event-triggered controllers we identified, namely,
requirement of the exact knowledge of the center manifold in
checking the triggering conditions and the non-applicability
of existing ISS-based results [1], [8] for a large and practical
subset of nonlinear systems with center manifolds.

The main contributions of this work, with respect to the
state-of-the-art, are the following: In this work, event-triggered
implementation of control laws designed for local stabilization
of nonlinear systems with center manifolds is investigated.
The proposed methods ensure Zeno-free local ultimate bound-
edness of the trajectories. Under some assumptions on the
controller structure, Zeno-free local asymptotic stability of the
origin is ensured. The systems under consideration can be
categorized into two classes, differentiated by the availability
of exact and approximate knowledge of the center manifold.
We propose Zeno-free triggering conditions for both the cases.

The design approach presented in this article uses the LISS
characterization for nonlinear systems with center manifolds
that we proposed in [7]. For a subclass of the systems under
consideration, the LISS characterization meets the sufficient
conditions for Zeno-free triggering in [1] and [8] and trig-
gering conditions proposed in such works can be employed
directly. For systems which do not fall in this class, which
includes many practical systems such as the MIP robot, these
triggering conditions cannot be used, as Zeno-free triggering is
not guaranteed. For nonlinear systems with center manifolds,
the focus in on local stabilization of the origin, which helps us
overcome the challenges associated with the latter class in a
neighbourhood of the origin. In this article, we present Zeno-
free triggering conditions (inspired from [1] and [9], but with
necessary modifications) for local stabilization of the latter
class of nonlinear systems with center manifolds. As in [9],
for a large class of systems under consideration, the triggering
conditions presented in this work ensure ultimate boundedness
of the trajectories, to an ultimate bound that can be made
arbitrarily small. Under some assumptions on the controller
structure, this article also ensures Zeno-free local asymptotic
stability of the origin of the closed-loop system.
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II. NOTATIONS AND PRELIMINARIES

We denote by R the set of real numbers and by R+ the set of
non-negative real numbers. Given two vectors y and w, (y;w)
denotes the concatenation of the two vectors [y> w>]>. We
use the notation Br to denote a ball of radius r centered at the
origin. We denote by | · |, the absolute value of a real number
and by || · ||, the Euclidean norm of a vector or the induced
2-norm of a matrix, depending on the argument. The n × n
identity matrix is denoted by In. Given a matrix A ∈ Rn×n,
A � 0 denotes that A is a symmetric positive definite matrix.
A continuous function α : [0, a) → [0,∞), with a ∈ (0,∞),
is a class-K function if α(0) = 0 and it is strictly increasing.
The notations f(x) = O(||x||p) and f(x) ∈ O(||x||p), p ∈
R denote that |f(x)| ≤ c1||x||p for all x such that ||x|| <
ε, for some c1, ε > 0. The set of subgradients of a convex
function V at x is called the subdifferential [10], [11] of V
at x and is denoted by ∂V (x). The set-valued Lie derivative
[12] of a scalar convex function V : Rn → R with respect to
a vector field f : Rn → Rn, denoted as L̃fV : Rn → Rn is
defined as L̃fV (x) = {ζ>f(x) | ζ ∈ ∂V (x)}. When V (x) is
differentiable at x, L̃fV (x) = {∇V (x)}, the unique gradient
of V (x) at x.

III. PROBLEM SETUP

In this section, we introduce nonlinear systems with center
manifolds and present essential preliminaries from center
manifold theory. Consider the nonlinear dynamical system

ẋ = f(x, u), x(t0) = x0 (1)

where x ∈ Rn, u ∈ Rm and f : Rn × Rm → Rn is a C2

function with f(0, 0) = 0. The Taylor series expansion of f
about x = 0 and u = 0 yields

ẋ = Ax+Bu+ f̃(x, u) (2)

where A ∈ Rn×n, B ∈ Rn×m and f̃(x, u) constitutes the
higher-order terms and satisfies f̃(0, 0) = 0, ∂f̃

∂x (0, 0) =

0 and ∂f̃
∂u (0, 0) = 0. In this work, we focus on nonlinear

systems whose linearized models have uncontrollable modes
on the imaginary axis. For such systems, there exists a linear
transformation x = T (y; z), T ∈ Rn×n such that system (2)
is transformed into

ẏ = A1y + g̃1(y, z, u)

ż = A2z +B2u+ g̃2(y, z, u)
(3)

where A1 ∈ Rk×k, A2 ∈ R(n−k)×(n−k), B2 ∈ R(n−k)×m,
g̃1, g̃2 are the nonlinearities, the real parts of the eigenvalues
of A1 are zero and the pair (A2, B2) is controllable. Center
manifold theory provides a model-reduction technique to de-
termine the stability of the origin (y, z) = 0 of system (3), by
assessing the stability of a reduced system, which governs the
dynamics on the invariant center manifold.

A. Controllers for nonlinear systems with center manifolds

In the rest of the work, we use the control structure u =
K(y; z) = K11z+K12y+Kn(y), introduced in [13], for the
stabilization of nonlinear systems with center manifolds. The

subspace z = 0 of system (3) can be locally asymptotically
stabilized by the term K11z,K11 ∈ Rm×(n−k), under the
assumptions of stabilizability of the pair (A2, B2). The term
K12y and the pseudo-control term Kn : Rk → Rm, which
is a C1 nonlinear function of y are chosen to stabilize the
dynamics on the center manifold. Denoting A2 + B2K11 by
AK , we arrive at the closed-loop system

ẏ = A1y + g̃1(y, z,K(y; z))

ż = AKz +B2K12y +B2Kn(y) + g̃2(y, z,K(y; z)).
(4)

For the results from center manifold theory to hold, the
cross-coupling linear term, B2K12y between the y and z
subsystems in (4) must be eliminated. The cross-coupling term
is eliminated using the change of variables v , z−Ey, where
the matrix E is found by solving the equation

AKE − EA1 +B2K12 = 0. (5)

As the sum of any eigenvalue of A1 and any eigenvalue of
AK is non-zero, we use the result from [14] which states that
there exists a unique matrix E ∈ R(n−k)×k such that (5) holds.
Using this change of variables [7], we arrive at

ẏ = A1y + g1(y, v + Ey,K(y; v + Ey))

v̇ = AKv + g2(y, v + Ey,K(y; v + Ey))
(6)

where g1 and g2 satisfy conditions

gi(0, 0, 0) = 0,
∂gi
∂y

,
∂gi
∂v

,
∂gi
∂u

∣∣∣∣
(0,0,0)

= 0, for i = 1, 2. (7)

The assumption stated next is a standing assumption in this
article and encodes conditions for the existence of a center
manifold [15].

Assumption 1. The functions g1(y, v) and g2(y, v) are C2

functions and satisfy conditions in (7). The eigenvalues of A1

have zero real parts and the matrix AK is Hurwitz.

When system (6) satisfies Assumption 1, there exists a local
k-dimensional center manifold v = h(y), where the smooth
function h(y) is found by solving the partial differential
equation

0 =AKh(y) + g2(y, h(y) + Ey,K(y;h(y) + Ey))

− ∂h(y)

∂y
(A1y + g1(y, h(y) + Ey,K(y;h(y) + Ey))).

(8)
The dynamics on the center manifold is governed by

ẏ = A1y + g1(y, h(y) + Ey,K(y;h(y) + Ey)) (9)

which is referred to as the reduced system. If system (6)
satisfies Assumption 1, then the Reduction Theorem [15]
guarantees that if the origin y = 0 of the reduced system (9)
is locally asymptotically stable (unstable), then the origin of
the full system (6) is locally asymptotically stable (unstable).

B. Event-triggered control

In event-triggered implementation, the control is updated
at discrete instants ti, i = 0, 1, 2, . . ., called the event times.
Between two events, in the interval [ti, ti+1), the control is
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held constant to u = K(y(ti); v(ti) +Ey(ti)). With the mea-
surement error ey(t) , y(ti)− y(t) and ev(t) , v(ti)− v(t),
the control can be rewritten as u = K(y+ ey; v+ ev +E(y+
ey)). For further analysis of the system, we introduce the
transformation w = v − h(y). The trajectories of system (6)
tend to the center manifold (v = h(y)) asymptotically. This
qualitative nature of the trajectories is captured by the variable
w, with w = 0 implying the system is on the center manifold.
With control u = K(y+ ey, w+ h(y) + ev +E(y+ ey)) and
K1 = [K12 +K11E K11] and e = (ey, ev), the dynamics (6)
in the (y;w) coordinates is

ẏ = fy(y, w, e) ,A1y + g1(y, h(y) + Ey,

K(y;h(y) + Ey)) +N1(y, w, e)

ẇ = fw(y, w, e) ,AKw +B2K1e+N2(y, w, e)

(10)

where the functions N1 and N2 are such that Ni(y, 0, 0) =
0, ∂Ni

∂w ,
∂Ni

∂e

∣∣
(0,0,0)

= 0, and therefore there exists a constant
δyw > 0 such that, in the set

S = {(y;w) | ||(y;w)|| < δyw} (11)

we have for i = 1, 2,

||Ni|| ≤ ki||(w; e)|| ≤ ki(||w||+ ||e||) (12)

where the constants ki > 0 can be made arbitrarily small by
decreasing δyw [15].

C. LISS of nonlinear systems with center manifolds

In this work, the design of event-triggering conditions uses
the ISS based approach proposed in [1] and generalized in [8].

Definition 1 (Local input-to-state stability [16]). The system
ẋ = f(x, d), x ∈ Rn and d ∈ Rm with f being locally
Lipschitz and f(0, 0) = 0, is said to be locally input-to-
state stable in the domain Dx ⊂ Rn with respect to input
d in the domain Dd ⊂ Rm, if there exists a Lipschitz
continuous function V : Dx → R+ and class-K functions
α, α1, α2 and β such that α1(||x||) ≤ V (x) ≤ α2(||x||) and
ζ>f(x, d) ≤ −α(||x||)+β(||d||) hold for all x ∈ Dx, d ∈ Dd

and ζ ∈ ∂V (x).

The function V satisfying the above conditions is called an
LISS Lyapunov function. Motivated by the unavailability of
explicit characterization of input-to-state stability for nonlinear
systems with center manifolds, in terms of the class-K func-
tions α and β in Definition 1, we investigated this scenario in
our recent work [7]. The proposition presented next establishes
that a controller that locally asymptotically stabilizes system
(6), renders (10) LISS with respect to measurement errors.

Proposition 1 ( [7]). Under Assumption 1, if the origin y = 0
of the reduced system (9) is locally asymptotically stable, then
the overall system (10) is locally input-to-state stable with
respect to the error e = (ey; ev).

Proposition 1 generalizes the Reduction Theorem, as in the
absence of the error e, local asymptotic stability of the overall
system is recovered. Note that the stability properties of system
(10) are the same as that of system (1) in view of the sequence

of smooth transformations w = v − h(y), v = z − Ey and
x = T (y; z) relating the two systems. As part of the proof of
Proposition 1, the following explicit LISS characterization was
derived in terms of functions αD and βG, which are class-K
functions of ||(y;w)|| and ||e|| respectively.

L̃(fy ;fw)V ≤ −α4(||y||)− (1− sf )
λmin(Q)

2
√
λmax(P )

||w||︸ ︷︷ ︸
−αD(||(y;w)||)

+

(
kvk1 + k2

λmax(P )√
λmin(P )

+
||PB2K1||√
λmin(P )

)
||e||︸ ︷︷ ︸

βG(||e||)
(13)

where α4 is a class-K function, L̃(fy ;fw)V is the set valued
Lie derivative of V with respect to the vector field (fy; fw) as
defined in (10), k1, k2 are constants from (12) and sf ∈ (0, 1).

IV. EVENT-TRIGGERED CONTROL

In this section, we use the LISS characterization of nonlin-
ear systems with center manifolds to propose event-triggered
control implementations. In [1] and [8], a relative threshold
based event-triggered control was proposed, where the events
are triggered when

βG(||e||) ≥ σαD(||(y;w)||), σ ∈ (0, 1) (14)

is satisfied at event times ti, i = 0, 1, 2, . . .. In event-triggered
implementation, for t > ti, the input u(t) evolves as

u(t) =

{
K(y(ti); z(ti)) if βG(||e||) < σαD(||(y;w)||)
K(y(t); z(t)) if βG(||e||) ≥ σαD(||(y;w)||).

(15)
From (13) and (15), we have L̃(fy ;fw)V ≤ −(1 −
σ)αD(||(y;w)||) < 0, ∀ (y;w) 6= 0 and local asymptotic
stability of the origin of system (10) is guaranteed.

Two major hurdles can be seen in the checking of the
triggering condition (14). 1) The triggering rule (14) can
be accurately checked only when w = v − h(y) is exactly
computable. The center manifold h(y) is found by solving (8)
and there are systems for which h(y) is exactly computable
(one such system is presented in Example 1). However, for
most systems, only an approximation of h(y) can be found. 2)
Sufficient conditions that rule-out Zeno behaviour by showing
that the inter-event times ti+1 − ti are lower bounded by
a positive constant for all i ≥ 0, have been proposed in
[1], [8] and these conditions require that the comparison
functions αD and βG in (13) are such that α−1

D ◦ βG is
Lipschitz continuous over compact sets. This assumption on
the comparison functions has since been made in [17], [18],
among many others. In our case, this assumption holds only
when α4 ∈ O(||y||p), p ≤ 1. When α4 ∈ O(||y||p), p > 1,
the sufficient conditions from [1], [8] are not satisfied and thus
no conclusion can be drawn regarding the existence or non-
existence of Zeno behaviour under the implementation (15).
In this article, we propose Zeno-free triggering conditions for
this class of systems.
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A. Triggering rule guaranteeing Zeno-free asymptotic stability
of the origin of the closed-loop system

In this subsection, we overcome the identified hurdles and
begin with systems for which the center manifold can be
exactly computed and try to overcome the second difficulty
by proposing triggering conditions which are different from
(14). The class of systems for which, α4 ∈ O(||y||p), p > 1
in (13) arises when the function g1 in the reduced system (9)
has a polynomial approximation in a neighbourhood of the
origin, that is, ||g1|| ≤ k5||y||p, p > 1 in a neighbourhood of
the origin. For simplicity, in the rest of this work, we use g1

to denote g1(y, h(y) + Ey,K(y;h(y) + Ey)).

Assumption 2. a) For the system (6), the matrix A1 = 0.
In the dynamics of the reduced system (9), the function
g1(y, v) is such that ||g1(y, v)|| ≤ k5||y||p and y>g1(y, v) ≤
−k6||y||p+1, with p > 1 for some k5, k6 > 0 in a neigh-
bourhood of the origin. The origin y = 0 of the reduced
system (9) is locally asymptotically stable. b) The controller
u = K(y; z) = K11z + K12y + Kn(y) = K1(y; v) + Kn(y)
considered in subsection III-A is such that Kn(y) = 0 and the
matrix K1 , [K12 + EK11 K11] = [0 K11].

Models and controllers of Example 1 and the Mobile
Inverted Pendulum robot considered in this work satisfy the
conditions of Assumption 2.

Lemma 1 ( [10, page 181]). Let P ∈ Rn1×n1 be a symmetric
positive definite matrix and P = M>DM be its eigen-
decomposition, where M ∈ Rn1×n1 is an orthonormal matrix
and D ∈ Rn1×n1 is a diagonal matrix. The subdifferential of
the convex function fP =

√
x>Px : Rn1 → R+ at x = 0 is

∂fP (0) = {ζ ∈ Rn1 : ||ζ>MD−
1
2 || ≤ 1}.

Proposition 2. Consider the system (6). If the conditions in
Assumptions 1 and 2 are satisfied, then the origin of the overall
system (10) is locally asymptotically stable under the event-
triggering condition

||ev|| ≥ σ(||w||+ ||y||(p+1))

0 < σ ≤ (1− sf )λmin(Q)

2||PBK1||

√
λmin(P )√
λmax(P )

(16)

where sf ∈ (0, 1). Moreover, the inter-event times ti+1 − ti
are lower bounded by a positive constant for all i ≥ 0.

Proof. Consider the LISS Lyapunov function candidate V :
Rn → R+

V = ||y||+
√
w>Pw. (17)

The function V is continuously differentiable everywhere
except on the set Ne = {(y;w) ∈ Rn : w = 0 or y = 0}.
The functions α1(||(y;w)||) = min

{
1,
√
λmin(P )

}
||(y;w)||

and α2(||(y;w)||) =
√

2 max
{

1,
√
λmax(P )

}
||(y;w)|| are

class-K functions satisfying α1(||(y;w)||) ≤ V ((y;w)) ≤
α2(||(y;w)||). Taking the time derivative of V along the
trajectories of the system (10) on the set Rn \Ne, we obtain

V̇ =
y>ẏ

||y||
+

1

2
√
w>Pw

(
ẇ>Pw + w>Pẇ

)
.

By Assumption 2, A1 = 0, the function g1 is such that y>g1 ≤
−k6||y||p+1, the control u = K11(v+ev), B2K1e = B2K11ev
in (10) and the functions N1 and N2 are functions of y, w and
ev . This leads us to

V̇ ≤ −k6||y||p +
y>N1(y, w, ev)

||y||

+
1

2
√
w>Pw

(
(AKw +B2K11ev +N2(y, w, ev))

>Pw

+w>P (AKw +B2K11ev +N2(y, w, ev))
)

≤ −k6||y||p + ||N1(y, w, ev)|| −
w>Qw

2
√
w>Pw

+
1√

w>Pw
(w>PB2K11ev + w>PN2(y, w, ev))

≤ −k6||y||p −
λmin(Q)

2
√
λmax(P )

||w||+ k1(||w||+ ||ev||)

+
||PB2K11||√
λmin(P )

||ev||+
k2λmax(P )√
λmin(P )

(||ev||+ ||w||).

With sf ∈ (0, 1),

V̇ ≤ −k6||y||p − (1− sf )
λmin(Q)

2
√
λmax(P )

||w||

+

(
k1 + k2

λmax(P )√
λmin(P )

− sf
λmin(Q)

2
√
λmax(P )

)
||w||

+

(
k1 + k2

λmax(P )√
λmin(P )

+
||PB2K11||√
λmin(P )

)
||ev||.

(18)

Using the notation mp2 , ||PB2K11||√
λmin(P )

and m̄p2 ,(
k1 + k2

λmax(P )√
λmin(P )

+ ||PB2K11||√
λmin(P )

)
and with the event-

triggering rule ensuring ||ev|| ≤ σ(||w|| + ||y||p+1) between
any two events (that is ∀ t ∈ [ti, ti+1)), we have

V̇ ≤− k6||y||p + m̄p2σ||y||p+1 − (1− sf )
λmin(Q)

2
√
λmax(P )

||w||

+mp2σ||w||+

(
(1 + σ)

(
k1 + k2

λmax(P )√
λmin(P )

)

−sf
λmin(Q)

2
√
λmax(P )

)
||w||.

With sy ∈ (0, 1),

V̇ ≤− k6(1− sy)||y||p + (m̄p2σ||y||p+1 − k6sy||y||p)

− (1− sf )
λmin(Q)

2
√
λmax(P )

||w||+mp2σ||w||

+

(
(1 + σ)

(
k1 + k2

λmax(P )√
λmin(P )

)

−sf
λmin(Q)

2
√
λmax(P )

)
||w||.

(19)

With σ chosen as in (16), in a small neighbourhood S in (11),
the constants k1, k2 from (12) can be chosen such that the
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last term in Equation (19) is less than or equal to zero and
(m̄p2σ||y||p+1 − k6sy||y||p) ≤ 0. For (y;w) ∈ S, we have

V̇ ≤ −k6(1− sy)||y||p − (1− sf )
λmin(Q)

2
√
λmax(P )

||w||

, −ws((y;w)) < 0,

(20)

where ws((y;w)) is a positive definite function of (y;w).
It can be verified that, on the set Ne where the Lyapunov
function (17) is non-differentiable, the inequality (20) holds,
that is, ζ>(fy; fw) ≤ −ws((y;w)), for all ζ ∈ ∂V and
∂V is found through Lemma 1. Therefore, L̃(fy ;fw)V ≤
−ws((y;w)), ∀ t ∈ [ti, ti+1).

Next, we prove the existence of a uniform positive lower
bound for the inter-event times ti+1 − ti, when the system is
initialized in the positively invariant set Sv . The error ev(t)
is defined to be v(ti) − v(t) = (w(ti) + h(y(ti))) − (w(t) +
h(y(t))) = ew(t) + eh(t). Consider

d

dt

(
||ev||

||w||+ ||y||p+1

)

=
e>v ėv

(||w||+ ||y||p+1) ||ev||
−

(
w>ẇ
||w|| + (p+1)||y||py>ẏ

||y||

)
||ev||

(||w||+ ||y||p+1)
2

≤ ||ėv||
(||w||+ ||y||p+1)

+
(||ẇ||+ (p+ 1)||y||p||ẏ||) ||ev||

(||w||+ ||y||p+1)
2

≤ ||ėw||+ ||ėh||
(||w||+ ||y||p+1)

+
(||ẇ||+ (p+ 1)||y||p||ẏ||) ||ev||

(||w||+ ||y||p+1)
2 .

(21)

From Assumption 2, ||g1|| ≤ k5||y||p for some k5 > 0.
As ||h(y)|| ∈ O(||y||2) and ||∂h(y)

∂y || ∈ O(||y||), there exist
constants k7 > 0, k8 > 0 such that ||h(y)|| ≤ k7||y||2 and
||∂h(y)

∂y || ≤ k8||y|| in a small neighbourhood of y = 0. From
equations (10) and (12), we have ||ẏ|| ≤ k5||y||p + k1||w||+
k1||ev||, ||ẇ|| ≤ (||Ac||+k2)||w||+(||B2K11||+k2)||ev|| and
||ėh|| = ||ḣ(y)|| ≤ ||∂h∂y ||||ẏ|| ≤ k8k5||y||p+1 +k8k1δyw||w||+
δywk1k8||ev|| (||y|| ≤ δyw has been used as (y;w) ∈ S).
Consider the numerator of the first term in the right-hand side
of (21). Using the inequalities derived so far, we have

||ėw||+ ||ėh|| ≤ a1

(
||w||+ ||y||p+1

)
+ a2||ev|| (22)

where, a1 , max{||Ac|| + k2 + k8k1δyw, k8k5} and a2 ,
||B2K11|| + k2 + δywk1k8. For the numerator of the second
term in (21), we have

||ẇ||+ (p+ 1)||y||p||ẏ||
≤ a3

(
||w||+ ||y||p+1

)
||e||+ a4||ev||2

(23)

where a3 , max{||Ac|| + k2 + (p + 1)δpywk1, δ
(p−1)
yw k5} and

a4 , ||B2K11||+ k2 + (p+ 1)δpywk1. From (22) and (23), we
obtain

d

dt

(
||ev||

||w||+ ||y||p+1

)
≤ a1 +

(
(a2 + a3)||ev||
||w||+ ||y||p+1

)
+ a4

(
||ev||

||w||+ ||y||p+1

)2

.

Denoting ||ev||/(||w|| + ||y||p+1) by es, we have ės ≤ a1 +
(a2 + a3)es + a4e

2
s. Using the Comparison lemma [15], it

follows that es(t) ≤ φ(t), where φ(t) is the solution of φ̇ =
a1 + (a2 + a3)φ + a4φ

2, initialized at φ(0) = 0. When an
event occurs (when es rises from zero to meet σ), the control
is updated and es(t) is reset to zero. Let τ1 be the time taken by
φ(t) to evolve from 0 to σ. As es(t) ≤ φ(t), the time taken by
es(t) to reach σ is greater than τ1. By the Comparison lemma,

es(t) ≤ φ(t) = b tan

(
b

2
(t+ c)

)
− (a2 + a3)/(2a4).

where b =
√

4a1a4 − (a2 + a3)2 and c = (2/b) tan−1((a2 +
a3)/b). φ(τ1) = σ implies

τ1 =
2

b

(
tan−1

(
2a4σ + (a2 + a3)

b

)
− tan−1

(
a2 + a3

b

))
> 0.

(24)
Thus, for all initializations (y(0);w(0)) ∈ Sv , there exists
a uniform positive lower bound for the inter-event times.
Moreover, by (20), local asymptotic stability of the origin is
guaranteed for all x(0) ∈ Sv , where

Sv = {(y;w) ∈ S | V ((y;w)) ≤ α1(δyw)} (25)

is the largest, connected sub-level set of V contained in S. �

B. Triggering rule guaranteeing Zeno-free local ultimate
boundedness of the trajectories of the closed-loop system

In Assumption 2, the restriction on the matrix K1 was
needed to ensure both asymptotic stability and non-existence
of Zeno behaviour. We now relax this assumption on the
controller structure and show that under the implementation

u(t) =

{
0 if t1 6= t0, ∀ t ∈ [t0, t1)

K(y(ti); z(ti)) if t ∈ [ti, ti+1), i ≥ 1

t1 = min{t ≥ t0 | (y(t);w(t)) ∈ Sv \ S2}
ti+1 = min{t ≥ ti | ||e|| ≥ σ(||w||+ ||y||(p+1))

and (y(t);w(t)) ∈ Sv \ S2}, i ≥ 1

(26)

where the set Sv is as defined in Equation (25) and

S2 = {(y;w) | ||(y;w)|| < α−1
2 ◦ α1(rs) = r1}, (27)

the trajectories of the closed-loop system are ultimately
bounded by a ball of radius rs. If (y(0);w(0)) ∈ Sv \ S2, the
first event instant t1 = t0 and the second case defining u(t)
in Equation (26) is active for all t ≥ t0. If (y(0);w(0)) ∈ S2,
then t1 6= t0 and the first case defining u(t) is active for
t ∈ [t0, t1) before the second case takes over for all t ≥ t1.

Proposition 3. Consider system (6). If the conditions in
Assumptions 1 and 2 hold and Brs ⊂ Sv , then the trajectories
of the system (10) are locally ultimately bounded by Brs ,
under the event-triggered implementation (26), with σ chosen
according to (16). Moreover, the inter-event times ti+1 − ti
are lower bounded by a positive constant for all i ≥ 0.

Proof. From (20), (27) and implementation (26), we have
L̃(fy ;fw)V ≤ −ws((y;w)), ∀ ||(y;w)|| ≥ α−1

2 ◦ α1(rs), and
∀ t ∈ [ti, ti+1).

Next we show that the inter-event times ti+1 − ti are
uniformly lower bounded by a positive constant for all
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(y(t0);w(t0)) ∈ Sv . Under the implementation rule (26),
events are triggered only in Sv \ S2 and the control is not
updated when the trajectory enters S2. When the system is
initialized in S2, the control is set to zero until the system
leaves S2. For each i, ||(y(ti);w(ti))|| ≥ r1 and e(ti) = 0.
The next event occurs at ti+1, when ||e|| rises from zero
and meets σ(||w|| + ||y||p+1) in Sv \ S2. In Sv \ S2, σl ,
σ(r1 + rp+1

1 ) ≤ σ(||w|| + ||y||p+1) ≤ σ(δyw + δp+1
yw ) , σu.

Next, consider the evolution of ||e|| along the trajectories of
the event-triggered closed-loop system (6)-(26), between two
consecutive event instants d||e||

dt ≤ ||ė|| = || − (ẏ; ẇ)||. The
function f(x, u) in (1) is twice continuously differentiable
and due to the sequence of smooth coordinate transformations
relating x and (y;w), there exists a constant L1 in S1 such
that ||(ẏ; ẇ)|| ≤ L1||(y;w; e)|| ≤ L1||(y;w)|| + L1||e|| ≤
L1δyw + L1||e||. Using the notation δ , L1δyw,

d||e||
dt
≤ || − (ẏ; ẇ)|| ≤ L1δyw + L1||e|| = L1||e||+ δ.

Using the Comparison lemma with e(0) = 0, we arrive at
||e(t)|| ≤ δ

L1
(eL1t − 1). The time taken by δ

L1
(eL1t − 1) to

rise from 0 to σl serves as a lower bound for the inter-event
times. The lower bound τ3 is found by solving

δ

L1
(eL1τ3 − 1) = σl =⇒ τ3 =

1

L1
ln

(
1 +

σlL1

δ

)
> 0.

(28)

Thus, we have shown that the inter-event times are uniformly
lower bounded by τ3 > 0. By [15, Theorem 4.18], we
conclude that the trajectories of the closed-loop system (6)-
(26) are locally ultimately bounded by Brs ⊂ Sv and this ball
is reached in finite time. �

The radius rs of the ultimate bound is a user-specified
parameter and can be made arbitrarily small, but this leads to
small estimates of inter-event times, as τ3 in (28) is a function
of σl, which grows small as the size of S2 decreases.

V. EVENT-TRIGGERED CONTROL WITH APPROXIMATE
KNOWLEDGE OF THE CENTER MANIFOLD

The triggering conditions in Propositions 2 and 3 can be
accurately checked only when the variable w = v − h(y)
is exactly computed. In this section, we present triggering
conditions, that do not require the exact knowledge of the
center manifold. The triggering conditions are of the form
||ev|| ≥ σ(||wa|| + ||y||(p+1)), which possess the same
structure as the triggering conditions in Propositions 2 and
3 respectively, but with w = v − h(y) replaced by the
approximation wa = v − ha(y). Here, ha(y) is a polynomial
approximation of h(y) of degree r, found by solving (8) and
they are related by h(y) = ha(y) +O(||y||s) with s > r.

Proposition 4. Consider the system (6). If the conditions in
Assumptions 1 and 2 are satisfied, then the origin of the overall
system (10) is locally asymptotically stable under the event-
triggered implementation with relative thresholding ||ev|| ≥
σ(||wa|| + ||y||p+1), with σ chosen as in (16). Moreover, the
inter-execution times ti+1−ti are lower bounded by a positive
constant for all i ≥ 0.

Proposition 5. Consider the system (6). If the conditions in
Assumptions 1 and 2 are satisfied, then the trajectories of
the system (10) are locally ultimately bounded by Brs ⊂
Sv (a sub-level set of (17) where (29) holds), under the
event-triggered implementation (26) with relative thresholding
||e|| ≥ σ(||wa||+ ||y||(p+1)) and σ chosen according to (16).
Moreover, the inter-execution times ti+1−ti are lower bounded
by a positive constant for all i ≥ 0.

Propositions 4-5 are analogues of Propositions 2-3 from
Section IV. The proofs are omitted, as they follow along
similar lines as the proofs of Propositions 2-3, but with
a crucial difference described next. Consider (18) in the
proof of Proposition 2. With the proposed event-triggering
condition, the inequality ||ev|| ≤ σ(||wa|| + ||y||(p+1)) is
ensured throughout the implementation. Using the inequality
||wa|| = ||w+ (h(y)−ha(y))|| ≤ ||w||+ ||(h(y)−ha(y))|| ≤
||w||+O(||y||s), we arrive at

L̃(fy ;fw)V ≤− k6(1− sy)||y||p − (1− sf )
λmin(Q)

2
√
λmax(P )

||w||

+O(||y||s).
(29)

The difference between (29) and (20) in the proof of Proposi-
tion 2, is the presence of O(||y||s). In a neighborhood of the
origin, the sum of the first and third term, which can be any
polynomial in O(||y||s), is less than zero. Therefore V̇ < 0 in
a neighborhood of the origin and local asymptotic stability of
the origin is guaranteed. The proof of non-existence of Zeno
behaviour in Propositions 4 and 5 remains the same as in the
proofs of Propositions 2 and 3 respectively.

VI. SIMULATION RESULTS

In this section, we present two examples to demonstrate the
application of the triggering conditions presented in Proposi-
tion 2 and Proposition 4 respectively.

A. Example 1

Consider the system

ẏ = −yv, v̇ = v + u+ y2 − 2v2. (30)

The center manifold of the closed-loop system with the
controller u = −2v, can be computed exactly [19] and is
found to be v = y2. The dynamics on the center manifold
is ẏ = g1(y, h(y)) = −y3. We have ||g1|| = |y|3 and
y>g1 ≤ −|y|4 with k5, k6 = 1. Therefore, Assumption 2
is satisfied. With the change of variables w = v − y2, and
introducing the measurement error ev = v(ti) − v(t) as in
subsection III-B, we obtain

ẏ = −y3 − yw, ẇ = −w − 2ev − w(w + y2). (31)

Now N1 = −yw and N2 = −w(w + y2). In the set
S1 = {(y, w) | ||y|| ≤ 1√

6
and ||w|| ≤ 1

6}, we have ||N1|| ≤
1√
6
||w|| and ||N2|| ≤ 1

6 ||w||, with k1 = 1√
6

and k2 = 1
6 .

Using the triggering condition ||ev|| ≥ σ(||w|| + ||y||4),
σ = 1/16 (according to (16)) through Proposition 2, local
asymptotic stability of the origin of (31) is guaranteed with
Zeno-free event-triggering.
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In Figure 1, simulation results of the event-triggered closed-
loop system are presented. Trajectories from three initial
conditions are plotted in Figure 1a along with the center
manifold v = y2. The trajectories tend to the center mani-
fold quickly and the evolution along the center manifold is
significantly slower in comparison. The mechanism of event-
triggering is shown in Figure 1b, by plotting the evolution
of the error ||ev|| and the threshold 1

16 (||w|| + ||y||4). The
evolution of inter-event times for three initial conditions are
shown in Figure 1c. The inter-event times are lower bounded
by 30.3 ms. The estimates of minimum inter-event times from
(24) and (28) are conservative, as they depend on Lipschitz
constants and bounds on polynomial functions. To get a better
estimate, the event-triggered closed-loop system was simu-
lated for ten initial conditions

(
0.1 cos( 2πkt

10 ), 0.1 sin(2πkt
10 )

)
,

kt = 0, 1, 2, . . . , 9 for 25 s. The minimum inter-event time
in these simulations (MIETs) was found to be 30.3 ms. To
assess the performance of event-triggered control with respect
to time-triggered control, we choose MIETs as the sampling
time for time-triggered control. From Figure 1d, we see that
the performances of time-triggered and event-triggered control
are a close match. However, the number of control updates is
much higher in time-triggered control, thus making a case for
the use of event-triggered control.

B. Example 2 : Position stabilization of MIP robot

The MIP robot is a four degrees-of-freedom robot with
two independently driven wheels and a pendulum-like central
body that has unstable pitching motion under the influence of
gravity. For event-triggered implementation, we consider the
reduced attitude stabilizing controller [5] that asymptotically
drives the robot to the origin of the (x, y) plane, while
maintaining an upright position.

1) Modelling and Control: The state-space model of the
MIP robot was presented in [5] with the state x ∈ Qc ,
(−1, 1)2 × S1 × R3. The control inputs of the robot are
u = (u1, u2). It can be verified that the linearized model
of the system about (x;u) = (0; 0) satisfies conditions in
Assumption 1. A linear state-feedback control law

u1 = −K1[x2 x3 x4 x5]>, u2 = −K2[x6 x1]> (32)

where, K1 = [k1i]i=1,...,4 ∈ R4,K2 = [k2j ]j=1,2 ∈
R2 was proposed in [5] to achieve the control objec-
tive of reduced attitude stabilization. The MIP system, fol-
lowing the change of variables p1 = x1 and p̄2 ,
(x2, x3, x4, x5, x6 + (k22/k21)x1), satisfies Assumption 1 and
there exists locally, a smooth map h : R → R5 such
that p̄2 = h(p1) is a center manifold for the MIP system,
with h(p1) = (c1p

2
1 + O(|p1|4),O(|p1|4),O(|p1|4),−c2p2

1 +
O(|p1|4), c3p

3
1+O(|p1|4)) (derived in [5]), where the constants

c1, c2 and c3 are functions of the robot parameters and the
controller gains kij .

2) Event-triggered implementation: For simulations, the
gains in (32) are chosen to be

u1 = 0.1091x2 + 7.0089x3 + 1.0014x4 + 0.4302x5

u2 = −0.1929x6 − 0.09645x1.
(33)
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(a) Phase portrait of the event-
triggered closed-loop system
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(b) Evolution of the error and the
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(d) Performance of time-triggered
and event-triggered control

Fig. 1: Simulation results for event-triggered implementation
of a controller designed for system (30), with the triggering
rule ||ev|| ≥ σ(||w||+ y4) for σ = 1

16 .

For the controller chosen, it can be checked Assumption 2
is satisfied and we use the relative thresholding ||ep̄2 || ≥
σ(||p̄2−ha(p1)||+ ||p1||4) from Proposition 4 with ha(p1) ,
(c1p

2
1, 0, 0, −c2p2

1, c3p
3
1) for event-triggered implementa-

tion. The bound on the thresholding parameter σ from (16)
is found by solving the Lyapunov equation with Q = I5
and is found to be σ ≤ 10−4. Under this implementation,
asymptotic stability and the non-existence of Zeno behaviour
is guaranteed through Proposition 4. With σ = 10−4, the
simulation results of event-triggered position stabilization of
the MIP robot are presented in Figures 2 and 3. The MIP
robot is initialized at (x, y, θ) = (2, 2, π2 ) with the pitch
upright, that is, x3 = x4 = 0 and x5 = x6 = 0. The
evolution of the position of the robot is shown in Figure
2a. The robot asymptotically reaches the origin of the (x, y)
plane. In Figure 2b, the evolution of the norm of the error
||ep̄2 || and the threshold 10−4(||p̄2 − ha(p1)|| + ||p1||4) are
shown. An event occurs when the norm of the error rises
from zero to meet the threshold. In Figure 2c, we see that
the pitch angle x3 = α and pitch velocity x4 = α̇ tend
to zero asymptotically, as guaranteed by Proposition 4. The
evolution of the inter-event times is shown in Figure 2d. The
inter-event times are lower bounded by 2.4 ms. Considering
ten initial conditions inside a circle of radius 3 m in the
(x, y) plane, it is found that the minimum time between two
events (MIETs) is 2.4 ms. With MIETs as the sampling time
for time-triggered control, the simulations results are shown
in Figure 2a. The performance of event-triggered control is
a close match to the performance of time-triggered control.
However, event-triggered control requires fewer closings of
the control-loop than time-triggered control. From Figures 3a,
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(a) Position (x, y) of the robot.
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(b) Evolution of the error and the
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Fig. 2: Simulation results for the event-triggered position
stabilization of the MIP robot.
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(a) Evolution in (x1, x2) plane
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(b) Evolution in (x1, x5) plane
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(c) Evolution in (x1, p̄2(5))
plane

Fig. 3: The trajectories of the states x2, x5 and p̄2(5) = x6 +
(k22/k21)x1 of the event-triggered closed-loop system.

3b and 3c, we see that the trajectories of the event-triggered
closed-loop system converge rapidly to the center manifold,
while evolving slowly along the center manifold.

VII. CONCLUSIONS

In this work, we presented event-triggered implementation
of control laws designed for nonlinear systems with center
manifolds. The proposed methods ensured Zeno-free local

ultimate boudedness of the closed-loop trajectories, and un-
der some assumptions on the controller structure, Zeno-free
asymptotic stability of the origin. Systems for which the
center manifold is exactly computable were considered first
and triggering conditions were presented, the checking of
which requires the exact knowledge of the center manifold.
Then, we considered systems for which the center manifold
can only be approximately computed and showed that the
same triggering conditions could be used with the available
approximate knowledge of the center manifold. We presented
two examples, where the minimum inter-event time from
multiple simulations (MIETs) was used as sampling time for
time-triggered control and it was found that event-triggered
control yields similar performance as time-triggered control
but with significantly fewer control updates.
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