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On Event Triggered Tracking for Nonlinear Systems
Pavankumar Tallapragada and Nikhil Chopra

Abstract—In this paper we study an event based control algo-
rithm for trajectory tracking in nonlinear systems. The desired
trajectory is modelled as the solution of a reference system with
an exogenous input and it is assumed that the desired trajectory
and the exogenous input to the reference system are uniformly
bounded. Given a continuous-time control law that guarantees
global uniform asymptotic tracking of the desired trajectory,
our algorithm provides an event based controller that not only
guarantees uniform ultimate boundedness of the tracking error,
but also ensures non-accumulation of inter-execution times. In the
case that the derivative of the exogenous input to the reference
system is also uniformly bounded, an arbitrarily small ultimate
bound can be designed. If the exogenous input to the reference
system is piecewise continuous and not differentiable everywhere
then the achievable ultimate bound is constrained and the result is
local, though with a known region of attraction. The main ideas
in the paper are illustrated through simulations of trajectory
tracking by a nonlinear system.

Index Terms—Event-triggered control, Sampled-data control

I. INTRODUCTION

Traditional computer based control systems rely on periodic
sampling of the sensors and computation/execution of the
control. The reason for the popularity of this paradigm is a
well developed theory and the ease of analysis of such systems.
However, such control algorithms may be very inefficient from
a computational perspective as the period for sampling and
control execution is determined by a worst case analysis and
the rate of control execution is independent of the system’s
state. On the other hand, in event based control systems,
timing of control execution is not necessarily periodic and
can be state dependent. Thus, event based control is useful
in systematically designing controllers that make better use
of computational and communication resources in a wide
variety of applications such as embedded control systems
and decentralized systems (a representative list of references
includes [1]–[5]).

While there have been some efforts in the past to study
event based control systems [6]–[8], their systematic design for
tasks such as stabilization has been undertaken only recently
[1], [9]–[12]. Of these, [1] has significantly influenced the
proposed controller in this paper. In [1], an event-triggering
algorithm was proposed that ensures global asymptotic stabil-
ity as well as a lower bound on the inter-execution times of
the control law for general nonlinear systems that are rendered
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Input-to-State Stable (ISS) with respect to measurement errors
by a continuous time controller.

In this paper, we investigate an event triggered control algo-
rithm for trajectory tracking. Tracking a time varying trajectory
or even a set-point is of tremendous practical importance
in many control applications. In these applications, the goal
is to make the state of the system follow a reference or
desired trajectory, which is usually specified as an exogenous
input to the system. In this paper, the reference trajectory is
generated by a reference system. To the best of our knowledge,
the majority of the previous works in the event-triggered
control literature assumed a state feedback control strategy
with no exogenous input, some exceptions being [9]–[15],
where unknown disturbances appear as exogenous inputs.
However, in this paper, we consider exogenous inputs that are
available to the controller through measurements, namely the
reference trajectory and the input to the reference system.

The main contribution of this paper is the design of
event-triggered controllers for trajectory tracking in nonlinear
systems, which is a special case of nonlinear systems with
exogenous inputs. It is assumed that the reference trajectory
and the exogenous input to the reference system are uniformly
bounded. Given a nonlinear system and a continuous-time
controller that ensures global uniform asymptotic tracking
of the desired trajectory, the proposed algorithm provides
an event based controller that guarantees uniform ultimate
boundedness of the tracking error and ensures that the inter-
execution times of the controller are bounded away from zero.
In the special case that the derivative of the exogenous input to
the reference system is also uniformly bounded, an arbitrarily
small ultimate bound for the tracking error can be designed. In
this paper, unlike in the event-triggered control literature, the
continuous-time control law is assumed to render the closed
loop system asymptotically stable rather than ISS with respect
to measurement errors. Although on compact sets the latter
condition can be arrived at from the former, our choice allows
a direct and clear procedure for designing an event-triggering
condition with time-varying components that results in fewer
controller executions. A preliminary version of the results in
this paper have been published in [16]. The results therein
have been expanded here.

The rest of the paper is organized as follows. In Section
II we set up the problem and introduce the notation used in
the paper. Subsequently, in Section III, the major assumptions
are stated and the event triggering condition is introduced.
The main analytical results are presented in Section IV.
The theoretical results in the paper are illustrated through
numerical simulations of a second order nonlinear system in
Section V. Finally, the results are summarized in Section VI.



2

II. PROBLEM STATEMENT AND NOTATION

Consider a nonlinear system of the form

ẋ = f(x, u), x ∈ Rn, u ∈ Rm (1)

which has to track a reference trajectory defined implicitly by
the dynamical system

ẋd = fr(xd, v), xd ∈ Rn, v ∈ Rq (2)

where the external signal v and the initial condition of the
signal xd determine the specific reference trajectory. Let the
tracking error be defined as x̃ , x−xd. In general, a controller
for tracking a reference trajectory depends on both the tracking
error as well as the reference trajectory. Hence, we assume that
the control signal is of the form

u = γ(ξ), where ξ , [x̃;xd; v] (3)

where the notation [a1; a2; a3] denotes the column vector
formed by the concatenation of the vectors a1, a2 and a3.
Consequently, the closed loop system that describes the track-
ing error is given as

˙̃x = f(x̃+ xd, γ(ξ))− ẋd. (4)

Now, consider a controller that updates the control only
intermittently and not continuously in time. Let ti for i =
0, 1, 2, . . . be the time instants at which the control is computed
and updated. Then, the tracking error evolves as

˙̃x = f
(
x̃+ xd, γ(ξ(ti))

)
− ẋd, for t ∈ [ti, ti+1). (5)

The above dynamical system can also be viewed as a con-
tinuously updated control system, albeit with an error in the
measurement of the state and the exogenous input. By defining
the measurement error as

e ,

 ex̃exd

ev

 , ξ(ti)− ξ ,

 x̃(ti)− x̃
xd(ti)− xd
v(ti)− v

 , t ∈ [ti, ti+1) (6)

the system in (5) can be rewritten as

˙̃x =
[
f(x̃+ xd, γ(ξ))− ẋd

]
+
[
f(x̃+ xd, γ(ξ + e))− f(x̃+ xd, γ(ξ))

]
(7)

where we have expressed the above system as a perturbed ver-
sion of the dynamical system (4). Note that e is discontinuous
at t = ti, for each i, because e(ti) = ξ(ti)− ξ(ti) = 0 while
e(t−i ) , lim

t↑ti
e(t) = lim

t↑ti
(ξ(ti−1)− ξ(t)).

In time-triggered or periodic control systems, ti+1−ti = Ts
for all i ∈ {0, 1, 2, . . .}, where Ts > 0 is a constant sampling
time. On the other hand, in an event-triggered system the
time instants ti in general are not uniformly spaced, and are
determined dynamically by an event-triggering condition.

The objective of this paper is to develop an event based
controller for tracking a trajectory within a desired ultimate
bound. To this end, we assume that when the control is updated
continuously in time, the state x tracks the desired trajectory
asymptotically, that is, there exists γ such that system (4)
satisfies x̃ → 0 as t → ∞. In the next section, we specify
the main assumptions of the paper and develop an event-
triggering condition for tracking a given trajectory within a
desired bound.

III. EVENT-TRIGGERING CONDITION FOR EMULATION
BASED TRAJECTORY TRACKING CONTROL

There are two main requirements for an event based tra-
jectory tracking controller. It needs to (i) guarantee that the
tracking error is at least uniformly ultimately bounded, and
(ii) ensure that there is no accumulation of execution times. In
this section, an event-triggering condition that satisfies both of
these requirements is developed. We begin by formally stating
the main assumptions of this paper.

(A1) Suppose f(0, γ(0))− fr(0, 0) = 0 and that there exists a
C1 Lyapunov function for the dynamical system in (4),
V : Rn → R, such that for all admissible xd and v,

α1(‖x̃‖) ≤ V (x̃) ≤ α2(‖x̃‖)
∂V

∂x̃

[
f(x̃+ xd, γ(ξ))− fr(xd, v)

]
≤ −α3(‖x̃‖)

where α1(.), α2(.), and α3(.) are class K∞ functions1.
(A2) The functions f , γ and fr are Lipschitz on compact sets.
(A3) For all time t ≥ 0, ‖[xd; v]‖ ≤ d for some d ≥ 0 and v

is piecewise continuous.
(A4) For all time t ≥ 0, v is differentiable and ‖v̇‖ ≤ c for

some c ≥ 0.
The notation ‖.‖ denotes the Euclidean norm of a vector. In
the sequel, it is also used to denote the induced Euclidean
norm of a matrix. Note that the meaning of ‘admissible xd
and v’ in (A1) differs in each of our main results, where in
each case it is specified precisely. At this stage, it is enough
to know that (A3) is satisfied in each case. Now, consider the
following family of compact sets:

S(R) = {ξ : V (x̃) ≤ α2(R), ‖[xd; v]‖ ≤ d}
δS(R) = {ξ : V (x̃) = α2(R), ‖[xd; v]‖ ≤ d} (8)

Note that for each R ≥ 0, the sets S(R) and δS(R) include all
the admissible reference signals, xd and v. For each set S(R)
there exists, by assumption (A2), a vector L(R) ∈ R2n+q ,
with each of its components greater than zero such that

‖f(x̃+ xd, γ(ξ + e))− f(x̃+ xd, γ(ξ))‖ ≤ L(R)T |e|
≤ ‖L(R)‖‖e‖, ∀ ξ, (ξ + e) ∈ S(R) (9)

where |e| denotes the vector of the absolute values of the
components of e. Without loss of generality, it may be assumed
that each component of L(R) is a non-decreasing function of
R. In the sequel, we use the notation Si, δSi and Li to denote
S(‖x̃(ti)‖), δS(‖x̃(ti)‖) and L(‖x̃(ti)‖), respectively. Next,
we define a continuous function, β(.), that satisfies

β(R) ≥ max
‖w‖≤R

∣∣∣∣∣∣∣∣∂V (w)

∂w

∣∣∣∣∣∣∣∣, ∀R ≥ 0 (10)

We now derive the triggering condition that determines the
time instants ti at which the control is updated.

Consider the Lyapunov function, V (.), in assumption (A1)
as a candidate Lyapunov function for the system (5). The time
derivative of V (x̃), along the flow of the tracking error system,

1A continuous function α : [0,∞) → [0,∞) is said to belong to the class
K∞ if it is strictly increasing, α(0) = 0 and α(r) → ∞ as r → ∞ [17].
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V̇ = (∂V/∂x̃) ˙̃x, may be obtained through the measurement
error interpretation, (7).

V̇ =
∂V

∂x̃

[
f(x̃+ xd, γ(ξ))− ẋd

]
+
∂V

∂x̃

[
f(x̃+ xd, γ(ξ + e))− f(x̃+ xd, γ(ξ))

]
≤ −α3(‖x̃‖) +

∂V

∂x̃

[
f(x̃+ xd, γ(ξ + e))− f(x̃+ xd, γ(ξ))

]
≤ −α3(‖x̃‖) + β(‖x̃‖)L(R)T |e|, ∀ ξ, (ξ + e) ∈ S(R) (11)

where the second last equation is obtained from assumption
(A1), and (11) is then obtained from (8)-(10). Then, (11)
suggests a triggering condition.

Consider the following triggering condition (for the sake
of clarity, the complete system description including the state
equation and the triggering condition are given).

˙̃x = f
(
x̃+ xd, γ(ξ(ti))

)
− ẋd, ∀t ∈ [ti, ti+1) (12)

t0 = min{t ≥ 0 : ‖x̃‖ ≥ r > 0}, and

ti+1 = min{t ≥ ti : LTi |e| −
σα3(‖x̃‖)
β(‖x̃‖)

≥ 0, ‖x̃‖ ≥ r} (13)

where 0 < σ < 1 and r > 0 is a design parameter that
determines the ultimate bound of the tracking error. It is
necessary to update the control only when ‖x̃‖ ≥ r, for some
r > 0, else it may result in the accumulation of control update
times. Notice that each update instant ti+1 is defined implicitly
with respect to ti. Hence, the initial update instant t0 has been
specified separately. As the proposed triggering condition does
not allow the control to be updated whenever ‖x̃‖ < r, the
first update instant, t0, need not be at t = 0. Therefore, it
is assumed that u = 0 for 0 ≤ t < t0. In the next section
the triggering condition (13) is shown to guarantee uniform
ultimate boundedness of the tracking error for the reference
trajectories considered in this paper.

IV. UNIFORM ULTIMATE BOUNDEDNESS OF THE
TRAJECTORY TRACKING ERROR

The following lemma demonstrates, under (A1)-(A3), that
the event-triggering condition (13) ensures ξ ∈ Si for all t ∈
[ti, ti+1), for each i. Moreover, the lemma also demonstrates
that the event-triggering condition (13) renders the tracking
error ultimately bounded, provided the sequence of control
execution times does not exhibit Zeno behavior (accumulation
of inter-execution times), in other words either the sequence
of control execution times is finite or lim

i→∞
ti =∞.

Lemma 1: Consider the system (4). Suppose that assump-
tions (A1), (A2) and (A3) are satisfied. Then, in the event-
triggered system (12)-(13), for each i, ξ ∈ Si for all t ∈
[ti, ti+1). Further, if the initial condition is bounded and the
sequence of control execution times does not exhibit Zeno
behavior, then the tracking error, x̃, is uniformly ultimately
bounded by a ball of radius r1 = α−11 (α2(r)).

Proof: First, we establish by contradiction that for each
i, ξ ∈ Si for all t ∈ [ti, ti+1). Note that by definition,
(ξ + e) = ξ(ti) ∈ Si and the triggering condition enforces
‖x̃(ti)‖ ≥ r. Further, since ‖x̃(ti)‖ ≥ r, the open r-ball is a
proper subset of and is contained within the interior of Si (that

is, its intersection with δSi is an empty set). Also note that sets
Si and δSi (see (8) and the text following (9)) are essentially
a sub-level set and a level set, respectively, of the Lyapunov
function V . Now, let us assume that ξ does escape Si during
the interval [ti, ti+1). Then, since the tracking error x̃ is
continuous as a function of time, there exists a t∗i ∈ [ti, ti+1)
such that ξ(t∗i ) ∈ δSi ⊂ Si and V̇ |t=t∗i > 0 (where V̇ |t=t∗i
denotes V̇ evaluated at t = t∗i ). However, as ξ(t∗i ) ∈ δSi ⊂ Si,
(11) and (13) imply V̇ |t=t∗i ≤ −(1 − σ)α3(‖x̃(t∗i )‖) < 0.
Thus, having arrived at a contradiction, we conclude that no
such t∗i exists and that the first claim of the lemma is true.
Consequently, (11) and (13) again imply that the derivative V̇
along the flow of the system satisfies

V̇ ≤ −(1− σ)α3(‖x̃‖) < 0, ∀t ∈ [ti, ti+1), ‖x̃(t)‖ ≥ r (14)

and further, for each R ≥ r it is true that any solution that
enters the set S(R) does not leave it subsequently.

The assumption that x̃(0) is bounded and the definition of
t0 imply that x̃(t0) is also bounded. Then, the assumption that
the sequence of control execution times does not exhibit Zeno
behavior implies that the triggering condition, (13), is well
defined and that V̇ ≤ −(1 − σ)α3(‖x̃‖) < 0, ∀t ∈ [0,∞)
s.t. ‖x̃(t)‖ ≥ r (if there are finitely many control updates,
that is i ∈ {0, 1, . . . , N}, then tN+1 = ∞). Then, in fact, it
is true that S(R) is positively invariant for each R ≥ r. In
particular, S0 is positively invariant. Then, (14) implies that
V̇ ≤ −(1 − σ)α3(r) < 0 for all ξ ∈ S0 such that ‖x̃‖ ≥ r.
Hence all solutions, ξ, with bounded initial conditions enter
the set S(r) in finite time and as S(r) is positively invariant,
the solutions stay there. Therefore the tracking error, x̃, is
uniformly ultimately bounded by the closed ball of radius r1 =
α−11 (α2(r)).

Looking back at (13), it is clear that the functions α3 and
β play a crucial role in determining how often an event is
triggered or in computing a lower bound for the inter-execution
times. Specifically, the following definition is useful.

∆s2
s1 , min

s1≤‖x̃‖≤s2
σα3(‖x̃‖)/β(‖x̃‖) (15)

where s2 ≥ s1 > 0 are any positive real numbers, the functions
α3 and β are as defined in (A1) and (10), respectively. Since
α3 and β are continuous positive definite functions, ∆s2

s1 is
well defined and positive for any given s2 ≥ s1 > 0.

Now we present the first main result of the paper. It demon-
strates, for a particular class of reference trajectories, that in
the event-triggered system (12)-(13) the inter-execution times
are uniformly bounded away from zero while the tracking error
is uniformly ultimately bounded.

Theorem 1: Consider the system (4). Suppose that assump-
tions (A1), (A2), (A3) and (A4) are satisfied. Then, for
the event-triggered system (12)-(13), the tracking error, x̃,
is uniformly ultimately bounded by a ball of radius r1 =
α−11 (α2(r)), and the inter-execution times (ti+1 − ti) for
i ∈ {0, 1, 2, . . .} are uniformly bounded below by a positive
constant that depends on the bound of the initial tracking error.

Proof: Uniform ultimate boundedness of the tracking
error follows from Lemma 1. Only the existence of a positive
lower bound for the inter-execution times remains to be shown.
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Note that for each i, ‖e(ti)‖ = 0 and ‖x̃(ti)‖ ≥ r. Hence, the
triggering condition (13) implies that the ith inter-update time,
(ti+1 − ti), is at least equal to the time it takes ‖Li‖‖e‖ to
grow from 0 to σα3(‖x̃‖)/β(‖x̃‖). Recall from the proof of
Lemma 1 that every solution, ξ, stays in the set S0 for all
t ∈ [t0, ti), for each i. Thus, ‖Li‖ ≤ ‖L0‖ for each i. Notice

S0 ⊂ {ξ : ‖x̃‖ ≤ µ0, ‖[xd; v]‖ ≤ d} (16)

where µ0 = α−11 (α2(‖x̃(t0)‖)). Then, (15) implies ti+1 −
ti ≥ T , where T is the time it takes ‖e‖ to grow from 0 to
∆µ0
r /‖L0‖. If we show that T > 0, then the proof is complete.
From (7), and triangle inequality property, we observe that

‖ ˙̃x‖ ≤ ‖f(x̃+ xd, γ(ξ))− ẋd‖
+ ‖f(x̃+ xd, γ(ξ + e))− f(x̃+ xd, γ(ξ))‖ (17)

From (9), the second term is bounded by LT0 |e| ≤ ‖L0‖‖e‖ on
the set S0. Since, according to (A1), f(0, γ(0))−fr(0, 0) = 0,
(A2) then implies that there exist Lipschitz constants P1 ≥ 0
and P2 ≥ 0 such that

‖ ˙̃x‖ ≤ P1‖x̃‖+ P2‖[xd; v]‖+ LT0 |e|
≤ P1µ0 + P2d+ ‖L0‖‖e‖

where the second inequality is obtained from (16). Assump-
tions (A2)-(A3) imply that there exists a constant P3 ≥ 0
such that ‖ẋd‖ ≤ P3d and (A4) implies ‖v̇‖ ≤ c. Then,
by letting P0 = P1µ0 + (P2 + P3)d and from the definition
ė = −[ ˙̃x; ẋd; v̇] it follows that

d‖e‖
dt
≤ ‖ė‖ ≤ ‖L0‖‖e‖+ P0 + c (18)

Note that for ‖e‖ = 0, the first inequality holds for all
the directional derivatives of ‖e‖. Then, according to the
Comparison Lemma [17]

‖e‖ ≤ P0 + c

‖L0‖
(e‖L0‖(t−ti) − 1), for t ≥ ti. (19)

Thus, the inter-execution times are uniformly lower bounded
by T , which satisfies

T ≥ 1

‖L0‖
log

(
1 +

∆µ0
r

P0 + c

)
. (20)

As ‖L0‖ is finite and ∆µ0
r > 0, we conclude that the inter-

execution times have a uniform positive lower bound, T .
In the next result, the conditions on the reference trajectory

are relaxed by no longer requiring it to satisfy assumption
(A4). Instead, to ensure the absence of Zeno behavior, a new
assumption is made - that dv , the uniform bound on ‖v‖, is
no larger than a quantity determined by ∆µ0

r and L0. The new
assumptions, in contrast to Theorem 1, lead to a constraint on
the choice of the radius r in the triggering condition and ensure
only local uniform ultimate boundedness of the trajectory
tracking error. Let L(R) , [Q(R);M(R)] and Li , [Qi;Mi]
where Q(R), Qi ∈ R2n and M(R),Mi ∈ Rq . Now, the second
main result is presented.

Theorem 2: Consider the system defined by (4). Suppose
that the assumptions (A1), (A2) and (A3) hold. Also, for some
R0 ≥ r suppose that ∆µ0

r − 2dv‖M(R0)‖ > 0, where µ0 =
α−11 (α2(R0)), ∆µ0

r is given by (15) and dv is the uniform

bound on ‖v‖. If ‖x̃(0)‖ ≤ R0, then in the event-triggered
system (12)-(13), the tracking error, x̃, is uniformly ultimately
bounded by a ball of radius r1 = α−11 (α2(r)), and the inter-
update times (ti+1 − ti) for i ∈ {0, 1, 2, . . .} are uniformly
bounded below by a positive constant that depends on R0.

Proof: The proof is very similar to that of Theorem 1, and
hence only the essential steps are described here. According
to Lemma 1 each solution, ξ, with ‖x̃(0)‖ ≤ R0 stays in the
set S(R0). Hence, ‖Mi‖ ≤ ‖M(R0)‖ and ‖Qi‖ ≤ ‖Q(R0)‖
for each i. Since ‖v‖ is uniformly bounded by dv it follows
that for each i, MT

i |ev| ≤ ‖Mi‖‖ev‖ ≤ 2dv‖M(R0)‖, where
ev = v(ti)− v and |ev| denotes the component-wise absolute
value of the vector ev . The definitions of Qi and Mi imply
that LTi |e| = QTi |[ex̃; exd

]| + MT
i |ev| ≤ QTi |[ex̃; exd

]| +
2dv‖M(R0)‖.

Note that for each i, r ≤ ‖x̃(ti)‖ ≤ µ0. Thus, the triggering
condition in (13) implies that for each i, LTi−1|e(t

−
i )| ≥ ∆µ0

r ,
or equivalently, QTi−1|[ex̃(t−i ); exd

(t−i )]| ≥ δ , ∆µ0
r −

2dv‖M(R0)‖ > 0, the last inequality being one of the
assumptions. Hence, the inter-execution times ti+1 − ti ≥ T ,
where T is the time it takes ‖[ex̃; exd

]‖ to grow from 0
to δ/‖Q(R0)‖. If we show that T > 0, then the proof is
complete.

Following steps similar to those in the proof of Theorem
1, we know that there exists a finite P0 ≥ 0 such that
d‖[ex̃; exd

]‖
dt

≤ ‖Q0‖‖[ex̃; exd
]‖ + P0 + 2dv‖M(R0)‖. Note

that for ‖[ex̃; exd
]‖ = 0, the inequality holds for all the

directional derivatives. Thus, the inter-execution times are
uniformly lower bounded by T , which satisfies

T ≥ 1

‖Q0‖
log

(
1 +

∆µ0
r − 2dv

P0 + 2dv‖M(R0)‖

)
. (21)

As ‖Q0‖ is finite, we conclude that the inter-execution times
have a lower bound, T , that is greater than zero.

Theorem 2 is somewhat conservative because only the
uniform bound on ‖v‖ is utilized in determining the ultimate
bound and the lower bound on the inter-execution times. A
more useful result is obtained by imposing only slightly stricter
constraints on v - that jumps in v are separated in time by
Tv > 0, that the magnitude of each jump is upper bounded
by a known constant and that v is Lipschitz between jumps.
This is expressed formally in the following assumption.

(A5) There exist constants c ≥ 0, Tv ≥ 0 and Jv ≥ 0 such
that for all t, s ≥ 0, the following holds: ‖v(t)−v(s)‖ ≤
c|t− s|+

⌈
|t−s|
Tv

⌉
Jv , where d.e is the ceiling function.

Now the final result is presented, without a proof because of
space constraints and since the proof is based on a simple
combination of the proofs of Theorems 1 and 2.

Theorem 3: Consider the system defined by (4). Suppose
that the assumptions (A1), (A2), (A3) and (A5) hold. Also,
for some R0 ≥ r suppose that ∆µ0

r −Jv‖M(R0)‖ > 0, where
µ0 = α−11 (α2(R0)) and ∆µ0

r is given by (15). If ‖x̃(0)‖ ≤
R0, then in the event-triggered system (12)-(13), the tracking
error, x̃, is uniformly ultimately bounded by a ball of radius
r1 = α−11 (α2(r)), and the inter-update times (ti+1 − ti) for
i ∈ {0, 1, 2, . . .} are uniformly bounded below by a positive
constant that depends on R0.
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Remark 1: Notice from (9) that in order to compute Li =
L(‖x̃(ti)‖) it is necessary to compute the set Si = S(‖x̃(ti)‖)
or at least a set of which Si is a subset, such as Bi ,
{ξ : ‖x̃‖ ≤ α−11 (α2(‖x̃(ti‖)), ‖[xd; v]‖ ≤ d}. However, if
‖x̃(ti)‖ ≥ ‖x̃(ti−1)‖ then clearly some components of Li
may be greater than those of Li−1. But from Lemma 1, we
know that Si ⊂ Si−1 for each i, so at time instant ti instead of
computing Li based on Bi, we can let Li = Li−1. Following
this rule, the sequence {Li} can be chosen to be component-
wise non-increasing.

In the next section our theoretical results are illustrated
through simulations of a second order nonlinear system.

V. EXAMPLES AND SIMULATION RESULTS

The theoretical results developed in the previous sections are
illustrated through simulations of the following second order
nonlinear system.

ẋ =

[
ẋ1
ẋ2

]
=

[
0 1
0 −1

]
x+

[
0
−x31

]
+

[
0
1

]
u

= Ax+

[
0
−x31

]
+Bu (22)

The desired trajectory is a solution of the system [ẋd,1; ẋd,2] =
[xd,2; v], where v is an exogenous input, which along with
the initial conditions of the state of the reference system,
xd = [xd,1;xd,2], determines the specific trajectory. The
control function is chosen as

γ(ξ) = Kx̃+ v + (x̃1 + xd,1)3 + xd,2 (23)

where K = [k1; k2]T is a 2 × 1 row vector such that
Ã = (A + BK) is Hurwitz, and x̃ = [x̃1; x̃2] is the tracking
error. Then, the closed-loop tracking error system with event-
triggered control can be written as

˙̃x1 = x̃2
˙̃x2 = −(x̃2 + xd,2)− (x̃1 + xd,1)3 + γ(ξ + e)− v. (24)

Now, consider the quadratic Lyapunov function V = x̃TPx̃
where P is a positive definite matrix that satisfies the Lya-
punov equation PÃ + ÃTP = −H , where H is a given
positive definite matrix. The time derivative of V along the
flow defined by (24) can be shown to satisfy

V̇ ≤ −x̃THx̃+ 2x̃TPB[γ(ξ + e)− γ(ξ)]

≤ −σa‖x̃‖2 + β(‖x̃‖)L(R)T |e|, ∀ξ, (ξ + e) ∈ S(R) (25)

where a > 0 is the minimum eigenvalue of H , β(‖x̃‖) =
2‖PB‖‖x̃‖ and

L(R) =
[
3(µ+ d1)2 + |k1|; |k2|; 3(µ+ d1)2; 1; 1

]
(26)

where µ = α−11 (α2(R)) and d1 ≤ d is the uniform bound
on xd,1. If d1 is not known explicitly then d from assumption
(A3) may be used instead. Note that B has been absorbed in
β rather than in L(R), as it should have been according to
their definitions. This makes the β function point-wise lower.
The vectors Li were computed according to the procedure
in Remark 1. Finally, given a desired ultimate bound for the
trajectory tracking error, the parameter r in the triggering

condition can be designed. Next, we present simulation results
for two cases corresponding to the two main classes of
reference trajectories considered in this paper.

Case I: The signals xd,1, xd,2, and v were chosen as
sinusoidal signals with peak-to-peak amplitude 2. This was
done by choosing [xd,1(0), xd,2(0); v(0)] = [π/3; 1; 0] and
v̇ = − cos(t). The initial condition of the plant was
[x1(0);x2(0)] = [5;−1]. The parameter d1 was chosen as
2.5 while the actual uniform bounds on xd,1 and ‖[xd; v]‖
were observed to be around 2 and 2.28, respectively. The
parameters in the controller were chosen as K = −[20; 20]T ,
σ = 0.95 and H was chosen as the identity matrix. According
to Theorem 1, we chose r = 0.0154 in the triggering condition
to achieve an ultimate bound of r1 = 0.1 in the tracking error.

The simulation results are shown in Figure 1a. The Figure
shows the norm of the tracking error, the radius r in the
triggering condition, the desired ultimate bound r1 and WT

i |e|,
where Wi = (2‖PB‖Li)/(σa). The figure demonstrates that
the tracking error is ultimately bounded, and well below the
desired bound. We recall that according to the triggering
condition (13), the control is not updated when ‖x̃‖ < r.
Hence, as long as ‖x̃‖ ≥ r, the weighted measurement error,
WT
i |e|, is bounded above by the norm of the tracking error,
‖x̃‖, and an event is triggered (control is updated) each time
WT
i |e| ≥ ‖x̃‖. However, when ‖x̃‖ < r, WT

i |e| may exceed
‖x̃‖. A zoomed version of the plot in Figure 1a is shown in
Figure 1c, where it is clearly seen that the tracking error is
only ultimately bounded.

The number of control executions in the simulated time
duration was 301, and the minimum inter-execution time was
observed to be 0.005s. The observed average frequency of
control updates was around 30Hz. Since most of the updates
occur before x̃ first enters the ball of radius r, it is important
to also consider the average frequency for this time period,
and in this simulation it was found to be around 46Hz. If L is
kept constant then these average frequencies are much higher
at 943Hz and 1586Hz, respectively, with almost no change
in the rate of convergence. The theoretical estimate of the
minimum inter-execution time is around 6× 10−8s, which is
orders of magnitude lower than the observed value.

Case II: In this case the result in Theorem 3 is illustrated,
where the input signal v is piecewise continuous. In the
simulations it was defined as the piecewise constant function,
taking values in the set Q = {0,±0.1,±0.2, . . .} and defined
as v(t) = arg mink∈Q{| − sin(t)− k|}. For the time instants
when (− sin(t)) equals an odd multiple of 0.05, v(t) is
chosen as the higher or the lower of the two possible values
based on whether the time derivative of (− sin(t)) is positive
or negative, respectively. In the context of Theorem 3, the
constants c = 0 and Jv = 0.1.

The initial condition of the reference system was
[xd,1(0);xd,2(0); v(0)] = [1; 1.003; 0]. From Theorem 3, we
know that ∆µ

r has to be greater than Jv = 0.1, which implies
that r has to be greater than 0.0075. For the example system
here, R0 in Theorem 3 can assume any value. Thus, as in
CASE I, r = 0.0154 was chosen. The rest of the parameters
were the same as in Case I. Figure 1b shows the simulation
results. The number of control updates were observed to be
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Fig. 1: Simulation results for the two reference trajectories.

304, with the minimum execution time at around 0.005s. The
observed average frequencies of control updates were found to
be around 30Hz and 46Hz for the simulated time duration and
the time duration that x̃ takes to first enter the ball of radius
r, respectively. These average frequencies are comparable to
those in Case I. The theoretical estimate of the minimum inter-
execution time is around 3×10−8s, which is very conservative.

VI. CONCLUSIONS

In this paper, we developed an event based control algorithm
for trajectory tracking in nonlinear systems. Using three main
results, it was demonstrated that given a nonlinear dynamical
system, and a continuous-time controller that ensures uniform
asymptotic tracking of the desired trajectory, an event based
controller can be designed that not only guarantees uniform
ultimate boundedness of the tracking error, but also ensures
that the inter-execution times for the control algorithm are
uniformly bounded away from zero. The first result demon-
strated that uniform boundedness with an arbitrary ultimate
bound for the tracking error can be achieved, provided the
reference trajectory, the exogenous input to the reference
system, and its derivative are all uniformly bounded. However,
the minimum guaranteed inter-execution time decreases along
with the ultimate bound. In the second and third results, we
relaxed the assumption on the derivative of the input to the
reference system, and demonstrated that the tracking error is
uniformly ultimately bounded. In these cases, the analytical
results show that it may not be feasible to reduce the ultimate
bound below a certain threshold and moreover, the result is
only local in general.

The theoretical results were demonstrated through simu-
lations of a second order nonlinear system. The theoretical
lower bounds on inter-update times have been found to be very
conservative. This is partially due to the fact that the estimates
are based on the rate of change of ‖e‖ (made necessary by the
presence of exogenous signals) rather than that of ‖x̃‖/‖e‖
as in [1]. Thus, there is significant room for improvement
in these estimates and how they are computed. Numerical
simulations indicated that the ultimate bound on the tracking
error is much lower than the desired value, which is another
area for improvement of the theoretical predictions. Finally, it
is important to extend these results to output feedback systems.
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