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Abstract— This paper deals with event-triggered param-
eterized control (ETPC) of nonlinear systems with external
disturbances. In this control method, between two suc-
cessive events, each control input to the plant is a linear
combination of a set of linearly independent scalar func-
tions. At each event, the controller updates the coefficients
of the parameterized control input so as to minimize the
error in approximating a continuous time control signal
and communicates the same to the actuator. We design an
event-triggering rule (ETR) that guarantees global uniform
ultimate boundedness of trajectories of the closed loop
system. We also ensure the absence of Zeno behavior by
showing the existence of a uniform positive lower bound
on the inter-event times (IETs). We illustrate our results
through numerical examples.

Index Terms— Networked control systems, event-
triggered control, parameterized control

I. INTRODUCTION

EVENT-TRIGGERED control (ETC) is a commonly used
control method in applications with resource constraints.

Most of the ETC literature designs zero-order-hold (ZOH)
sampled-data controllers. However, in many common com-
munication protocols, including TCP and UDP [1], there is
a minimum packet size. Thus, ZOH control may lead to an
increase in the total number of communication instances due
to under utilization of each packet. With this motivation, in
this paper, we propose a non-ZOH control method and design
it for control of nonlinear systems with external disturbances.

A. Literature Review

An introduction to ETC and an overview of the literature
on it can be found in [2]–[5]. Typically, in ETC and in the
closely related self-triggered control [6] and periodic ETC [7],
control input is applied in ZOH fashion, i.e., the control input
to the plant is held constant between any two successive
events. There are some exceptions though. For example, in
model-based ETC (MB-ETC) [8]–[12], both the controller and
the actuator use identical copies of a model of the system,
whose states are updated synchronously in an event-triggered
manner. The model generates a time-varying control input even
between two successive events. In event/self-triggered model
predictive control [13]–[15], the actuator applies a part of
an optimal control trajectory, which is generated by solving
a finite horizon optimal control problem at each triggering
instant. Recent studies in [16], [17] show that communication
resources can be utilized more efficiently by transmitting only
some of the samples of the generated control trajectory to the
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actuator, based on which a sampled data first-order-hold (FOH)
control input is applied. In event-triggered dead-beat control
(ET-DBC) [18], a control input sequence is transmitted to the
actuator in an event-triggered manner. The actuator stores this
control sequence in a buffer and applies it till the next packet
is received. In team-triggered control [19], [20] each agent
makes promises to its neighbors about their future states or
controls and informs them if these promises are violated later.

References [21]–[23] use generalized sampled-data hold
functions (GSHF) in the control of linear time-invariant sys-
tems. The idea of GSHF is to periodically sample the output
of the system and generate the control by means of a hold
function applied to the resulting sequence. To the best of
our knowledge, this idea was first explored in the context
of ETC only in our recent work [24], in which we propose
an event-triggered parameterized control (ETPC) method for
stabilization of linear systems. In [25], we use a similar idea to
design an event-triggered polynomial controller for trajectory
tracking by unicycle robots.

B. Contributions

The contributions of this paper are given below:
• We propose an ETPC method, for nonlinear systems

with external disturbances, that guarantees global uniform
ultimate boundedness of trajectories of the closed loop
system and non-Zeno inter-event times (IETs).

• Our approach requires fewer communication packets
compared to ZOH or FOH control, as our method can
be fine tuned to utilize the full payload of each packet.

• Compared to MB-ETC, our method requires less compu-
tational resources at the actuator and also provides greater
privacy and security.

• Compared to the ET-MPC or ET-DBC method, at each
event, our proposed method requires only a limited num-
ber of parameters to be sent irrespective of the time
duration of the signal.

• In this paper, we generalize the control method proposed
in our previous work [24] to nonlinear control settings
with external disturbances. In [24], the analysis heavily
relied on linear systems theory and closed form expres-
sions for the solutions. This approach is not applicable
to nonlinear systems, wherein there are also many non-
trivial technicalities that have to be taken care of. We also
allow for a wider choice for the set of basis functions of
the parameterized control input.

• Our recent work [25] considers a similar control method
for the trajectory tracking by unicycle robots. In the cur-
rent paper, we consider a more generalized problem setup
and also incorporate the effect of external disturbances.



C. Notation
Let R, R≥0 and R>0 denote the set of all real numbers,

the set of non-negative real numbers and the set of positive
real numbers, respectively. Let N and N0 denote the set
of all positive and non-negative integers, respectively. For
any x ∈ Rn, ‖x‖ denotes the Euclidean norm. A continuous
function α : [0,∞)→ [0,∞) is said to be of class K∞ if it
is strictly increasing, α(0) = 0 and α(r) → ∞ as r → ∞.
For any right continuous function f : R≥0 → Rn and t ≥ 0,
f (t+) := lim

s→t+
f (s). For any continuous function f : R→ R,

D+ f (t) := limsup
h→0+

f (t +h)− f (t)
h

denotes the upper right hand derivative of f . For any two
functions v,w : [0,∞]→ R≥0, let

〈v,w〉T :=
∫ T

0
v(τ)w(τ)dτ.

Note that 〈v,w〉T is the inner product of the functions v(τ) and
w(τ) restricted to the domain of τ to [0,T ].

II. PROBLEM SETUP
In this section, we present the system dynamics, the param-

eterized control law and the objective of this paper.

System Dynamics and Control Law
Consider a nonlinear system with external disturbance,

ẋ = f (x,u,d), ∀t ≥ t0 = 0, (1)

where x∈Rn, u∈Rm, d ∈Rq and t ∈R≥0, respectively, denote
the system state, the control input, the external disturbance and
the time. In this paper, we consider event-triggered sampled
data non-ZOH control. We call our proposed method event-
triggered parametrized control (ETPC).

Specifically, consider a set of functions

Φ :=
{

φ j : [0,∞]→ R
}p

j=0 .

We let the ith control input, for i ∈ {1,2, . . . ,m}, between two
successive events be

ui(tk + τ) = g(ai(k),τ) :=
p

∑
j=0

a ji(k)φ j(τ), ∀τ ∈ [0, tk+1− tk).

Here (tk)k∈N0 is the sequence of communication time instants,
which are determined in an event-triggered manner. At tk, the
controller updates the coefficients of the parameterized control
input, a(k) := [a ji(k)] ∈ R(p+1)×m, and communicates them
to the actuator. Letting ai(k) denote the ith column of a(k),
and φ(τ) :=

[
φ0(τ) φ1(τ) . . . φp(τ)

]>
, we can write the

control law as,

u(tk + τ) = a>(k)φ(τ), ∀τ ∈ [0, tk+1− tk). (2)

The general configuration of the ETPC system is depicted
in Figure 1. Here, the system state is continuously available
to the controller which has enough computational resources
to evaluate the event-triggering condition and to update the
coefficients of the control input at an event-triggering instant.

Fig. 1: Event-triggered parameterized control configuration

Assumptions

We make the following assumptions throughout this paper.

(A1) There exist γ : Rn→ Rm and a continuously differ-
entiable Lyapunov-like function V : Rn→ R such that

α1(‖x‖)≤V (x)≤ α2(‖x‖),

∂V
∂x

f (x,γ(x)+ e,d)≤−α3(‖x‖)+ρ1(‖e‖)+ρ2(‖d‖)

where α1(.), α2(.), α3(.), ρ1(.), ρ2(.) are class K∞

functions and e∈Rm, e := u−γ(x) is the “actuation error”
between the control u and γ(x).

(A2) f (.) and γ(.) are Lipschitz on compact sets, with
f (0) = 0 and γ(0) = 0.

(A3) There exists D≥ 0 such that ‖d(t)‖ ≤ D, ∀t ≥ t0.

Note that, Assumption (A1) indicates that there exists a
continuous-time feedback controller that makes the system (1)
input-to-state-stable (ISS) with respect to the “actuation error”
e and the external disturbance d. Assumption (A2) is a
common technical assumption in the literature on nonlinear
systems. Finally, Assumption (A3) means that the disturbance
signal is uniformly upper bounded, which is again common in
the literature. Throughout this paper, we make the following
standing assumption regarding Φ.

(A4) Each function φ j ∈ Φ is continuously differentiable
and φ0 is a non-zero constant function. Let T be a fixed
parameter and suppose Φ is a set of linearly independent
functions when restricted to [0,T ], i.e., ∑

p
j=0 c jφ j(t) = 0,

∀t ∈ [0,T ] iff c j = 0, ∀ j ∈ {0,1, . . . , p}.

Objective

Our aim is to design a parameterized control law (2) and
an event-triggering rule (ETR) for implicitly determining the
communication instants (tk)k∈N0 so that the trajectories of the
closed loop system are globally uniformly ultimately bounded
while ensuring a uniform positive lower bound on the IETs.

III. DESIGN AND ANALYSIS OF
EVENT-TRIGGERED CONTROLLER

In this section, we first design a parameterized control law
and an ETR to achieve our objective. Then, we analyze the
designed control system.



A. Control Law

The proposed control method is based on the idea of
emulating a continuous time model based control signal using
a parametrized time-varying signal as in (2). In particular,
consider the following model for some time horizon T ,

˙̂x = f (x̂,γ(x̂),0), ∀t ∈ [tk, tk +T ], x̂(tk) = x(tk), k ∈N0. (3)

Here x̂ is the state of the model, which is the same as (1) but
with u = γ(x̂) and d = 0. The model state is reinitialized with
x̂(tk) = x(tk) at each event time tk for k ∈ N0. Now consider
the open-loop control signals

ûi(τ) := γi(x̂(tk + τ)), ∀i ∈ {1,2, . . . ,m},

where γi(x̂(tk + τ)) is the ith component of γ(x̂(tk + τ)).
One way to potentially reduce the number of communication
instances is to transmit the whole control signal û(τ) for
τ ∈ [0,T ]. For example, this is what is done in ET-DBC [18]
and ET-MPC [13], [14]. However, transmitting the whole
control signal γ(x̂(tk + τ)) for τ ∈ [0,T ) in a communication
packet at tk may be too costly.

So, in our proposed idea, we approximate ûi(τ) for each i in
the linear span of Φ. Specifically, we solve the following finite
horizon optimization problem to determine the coefficients
of the parameterized control signal (2) that is to be applied
starting at tk. For i ∈ {1,2, . . . ,m},

ai(k) ∈ argmin
a∈Rp+1

∫ T

0
|g(a,τ)− ûi(τ)|2dτ,

s.t. |g(a,0)− ûi(0)| ≤ η(‖x̂(tk)‖)
(4)

for a function η : R≥0→ R≥0 with η(0) = 0 and for a finite
time horizon T > 0. The function η and the time horizon T
are to be designed. Note that, we require the signal û(τ) for
τ ∈ [0,T ] to solve the optimization problem (4). This signal
can be obtained by numerically simulating the x̂ dynamics (3).

Remark 1. (Control input for τ > T ). With the parameters
a(k) obtained by solving (4), the control input applied by the
actuator is as given in (2). Since tk’s are implicitly determined
by an ETR online, it may happen that tk+1− tk > T . However,
even though we find a(k) by using û(τ) for τ ∈ [0,T ], g(ai,τ),
for each i, is well defined ∀τ ∈ [0,∞]. Hence, the control input
u(tk + τ) for τ is well defined for the entire interval [tk, tk+1)
even if tk+1− tk > T . •

Note that, we can rewrite the optimization problem (4) as,

min
a∈Rp+1

Ji(a) :=
1
2

a>Ha−b>i (k)a+ci(k), s.t. y>a−zi(k)≤ 0,

(5)
where,

H = 2


〈φ0,φ0〉T 〈φ0,φ1〉T . . . 〈φ0,φp〉T
〈φ1,φ0〉T 〈φ1,φ1〉T . . . 〈φ1,φp〉T

. . . . . . . . . . . .

〈φp,φ0〉T 〈φp,φ1〉T . . . 〈φp,φp〉T

 , (6)

b>i (k) := 2
[
〈ûi,φ0〉T · · · 〈ûi,φp〉T

]
, ci(k) := 〈ûi, ûi〉T

y> :=
[

φ>(0)
−φ>(0)

]
, zi(k) =

[
ûi(0)+η(‖x̂(tk)‖)
−ûi(0)+η(‖x̂(tk)‖)

]
,

where recall that φ(τ) =
[
φ0(τ) φ1(τ) . . . φp(τ)

]>
.

Proposition 2. Problem (5) is a strictly convex optimization
problem and it is always feasible. Problem (5) always has
exactly one optimal solution.

Proof. The Hessian of Ji(.) for all i∈ {1,2, . . . ,m}, is H. Note
that H is twice the Gram matrix for the functions in Φ. Also,
Φ is a set of linearly independent functions when restricted to
[0,T ]. Thus, we can say that H is a positive definite matrix.
Hence, the cost function in (5) is strictly convex. Note that
the only constraints in the optimization problem (5) are two
linear inequality constraints in a. Thus, (5) is a strictly convex
optimization problem. Problem (5) is always feasible as the
choice a0φ0(0) = ûi(0) and ai = 0 for i ∈ {1, . . . , p}, which
gives g(ai(k),τ) as the zero order hold signal, satisfies the
constraints. The final claim is now obvious.

Remark 3. (Algebraic method to solve Problem (5)). While
one may simply rely on standard optimization solvers to solve
Problem (5), one may also choose to solve a set of algebraic
equations to obtain the unique solution to it, specially if
the number of functions p+ 1 in Φ is small. Moreover, the
algebraic method provides useful properties of the solutions
of Problem (5) as a function of x̂(tk) = x(tk). This is necessary
for the analysis of the overall ETC system.

The Lagrangian corresponding to Problem (5) is Li(a,µ) =
Ji(a)+µ>i (y>a− zi(k)), where µi ∈ R2 is the Lagrange mul-
tiplier. Since the Problem (5) is a strictly convex quadratic
program with two linear inequality constraints, strong duality
holds for problem (5) and any optimal primal-dual solution
(ai(k),µi(k)) must satisfy the Karush-Kuhn-Tucker (KKT) con-
ditions. The stationarity conditions can be represented as,

Hai(k)−bi(k)+ yµi(k) = 0.

Further, the complementary slackness conditions are

µi j(k)(y>j ai(k)− zi j(k)) = 0, j ∈ {1,2},

where y j denotes the jth column of y for j ∈ {1,2}.
Now, we have three different cases. Case 1: both the

constraints are inactive. Case 2: Only the first constraint is
active. Case 3: Only the second constraint is active. Note
that, in problem (5), both the constraints can not be active
at the same time. In Case 1, ai(k) = H−1bi(k) as µi(k) = 0.
In Case 2, y>1 ai(k) = zi1(k) and Hai(k)−bi(k)+ y1µi1(k) = 0
as µi2(k) = 0. By using these facts, we can write,[

ai(k)
µi1(k)

]
=

[
H y1

y>1 0

]−1 [
bi(k)
zi1(k)

]
=: M

[
bi(k)
zi1(k)

]
.

Note that the matrix M depends only on the set of functions
Φ and not on x̂(tk) = x(tk). We can find a similar closed form
expression of ai(k) in Case 3. In general, one can compute
the candidate solutions for each of the three cases and pick
the one that satisfies the corresponding constraints. •



B. Event-Triggering Rule
We consider the following ETR, which includes two condi-

tions. The first one is a relative thresholding condition on the
actuation error e and the second condition helps to guarantee
global uniform ultimate boundedness of the trajectories of the
closed loop system under unknown disturbances.

tk+1 = min{t > tk : ρ1(‖e‖)≥
σ

2
α3(‖x‖) and V (x)≥ ε}, (7)

where e=u− γ(x), ε := α2(α
−1
3 ( 2ρ2(D)

σ
)) ≥ 0 and σ ∈ (0,1)

is a design parameter. Here ρ1(.), ρ2(.), α2(.), and α3(.) are
the same class K∞ functions given in Assumption (A1). Note
that, here, e denotes the error between the actual control input
u and the “ideal” feedback control input γ(x). This error is
different from the approximation error u− û as the dynamics
of x and x̂ are different.

In summary, the closed loop system, S, is the combination
of the system dynamics (1), the control law (2), with coeffi-
cients chosen by solving (4), which are updated at the events
determined by the ETR (7). That is,

S : (1), (2), (4), (7). (8)

Remark 4. (Computational requirement of the controller).
We suppose that the controller has enough computational
resources to evaluate the ETR (7) and to solve the finite
horizon optimization problem (5) at any triggering instant.
Note that, ET-MPC or ET-DBC methods also have similar
computational requirements at the controller. •

C. Analysis of the event-triggered control system
Next, we show that the trajectories of the closed loop

system (8) are globally uniformly ultimately bounded and the
IETs have a uniform positive lower bound that depends on the
initial state of the system. First, let

εk :=V (x(tk)), k ∈ N0, ε̄ := max{ε,ε0}.

Following lemmas help to prove the main result of this paper.

Lemma 5. Consider system (8) and let Assumptions (A1) -
(A4) hold. Let η(.) := 1√

m ρ
−1
1 (r σ

2 α3(.)) with r ∈ [0,1). Then,
V (x(t))≤ εk ≤ ε̄,∀t ∈ [tk, tk+1) and ∀k ∈ N.

Proof. Let us first calculate the time derivative of V (.) along
the trajectories of system (8) as follows,

V̇ =
∂V
∂x

f (x,u,d) =
∂V
∂x

f (x,γ(x)+ e,d),

≤−α3(‖x‖)+ρ1(‖e‖)+ρ2(D),

≤−(1−σ)α3(‖x‖)−
(

σ

2
α3(‖x‖)−ρ1(‖e‖)

)
,∀V (x)≥ ε.

The first inequality follows from Assumptions (A1) and (A3).
The last inequality follows from the fact that V (x) ≥ ε

implies ‖x‖ ≥ α
−1
2 (ε) = α

−1
3

(
2ρ2(D)

σ

)
. Note that e may

be discontinuous at tk as the control input u is updated
at tk and according to the inequality constraint in (4),∥∥e(t+k )

∥∥ ≤ √mη(
∥∥x(t+k )

∥∥), ∀k ∈ N0. From the definition of
η(.) and the fact that r ∈ [0,1), we see that ρ1(

∥∥e(t+k )
∥∥) <

σ

2 α3(
∥∥x(t+k )

∥∥), ∀k ∈ N0. Further, the ETR (7) implies that

V (x(tk)) = εk ≥ ε, ∀k ∈ N and as x(t) is continuous for all t,
V̇ (x(t+k ))≤−(1−σ)α3(

∥∥x(t+k )
∥∥)< 0, ∀k ∈ N.

Now, let us prove the statement that V (x(t)) ≤ εk, ∀t ∈
[tk, tk+1) and ∀k ∈ N by contradiction. Suppose that this
statement is not true. Then, as V (x(t)) is a continuous function
of time, there must exist t̄ ∈ (tk, tk+1), for some k ∈ N, such
that V (x(t̄)) = εk and V̇ (x(t̄))> 0. However, since εk ≥ ε and
the ETR is not satisfied at t = t̄, ρ1(‖e(t̄)‖) < σ

2 α3(‖x(t̄)‖),
which means that V̇ (x(t̄))≤−(1−σ)α3(‖x(t̄)‖)< 0. As there
is a contradiction, we conclude that there does not exist such
a t̄ and hence V (x(t))≤ εk, ∀t ∈ [tk, tk+1) and ∀k ∈ N.

Finally, if ε0 ≤ ε then according to the ETR (7), ε1 = ε = ε̄ .
If ε0 > ε then following similar arguments as before we can
show that V (x(t)) ≤ ε0, ∀t ∈ [t0, t1) and hence ε1 ≤ ε0 = ε̄ .
Thus, the claim that εk ≤ ε̄, ∀k ∈N follows by induction.

Note that Lemma 5 does not impose any restrictions on
x(t0). In particular, it is possible that V (x(t0))< ε . Lemma 5
only makes a claim about V (x(t)), ∀t ∈ [tk, tk+1), ∀k ∈ N.

Lemma 6. Consider system (8) and let Assumptions (A1) -
(A4) hold. Let η(.) := 1√

m ρ
−1
1 (r σ

2 α3(.)) with r ∈ [0,1). Then,
there exist β1,β2 > 0 such that ‖u(t)‖ ≤ β1 and ‖u̇(t)‖ ≤ β2,
∀t ∈ [tk,min{tk+1, tk +T}), ∀k ∈ N0.

Proof. Recall that, ∀i ∈ {1,2, . . . ,m} and ∀k ∈ N0, ui(t) for
t ∈ [tk, tk+1) is chosen by solving the problem (4), which is
equivalent to (5). Now, we consider the compact set R := {x∈
Rn : V (x)≤ ε̄}. According to Lemma 5, for any k∈N0, x̂(tk) =
x(tk) ∈ R, which implies that x̂(t) ∈ R for all t ∈ [tk, tk +T ) as
V̇ (x̂)≤−α3(x̂)≤ 0. Now, note that,

|ûi(τ)| ≤ ‖γ(x̂(tk + τ))‖ ≤ Lγ ,

for some Lγ > 0. The last inequality follows from the fact
that γ(.) is Lipschitz on the compact set R with γ(0) = 0
and ‖x̂‖ ≤ α

−1
1 (ε̄) for all x̂ ∈ R. The fact x̂(tk) = x(tk) ∈ R,

∀k ∈N0, further implies that η(‖x(tk)‖) and |ûi(0)| are upper
bounded, ∀k ∈ N0 and thus, ‖bi(k)‖ and ‖zi(k)‖ are also
uniformly, ∀k ∈ N0, upper bounded by some constants. This
along with the algebraic solution of ai(k) given in Remark 3,
implies that ‖ai(k)‖ is upper bounded by a constant for each
i ∈ {1,2, ..,m}, ∀k ∈N0. Since each φ j(.) ∈Φ is continuously
differentiable on [0,T ], we can say that there exist β ′1,β

′
2 >

0 such that ‖φ(t− tk)‖ ≤ β ′1 and
∥∥∥∥ d

dt
φ(t− tk)

∥∥∥∥ ≤ β ′2, ∀t ∈
[tk,min{tk+1, tk + T}], ∀k ∈ N0. Putting it all together along
with (2) proves the result.

Now, we present the main result of this paper.

Theorem 7. (Absence of Zeno behavior and global uniform
ultimate boundedness). Consider system (8) and let Assump-
tions (A1) - (A4) hold. Let η(.) := 1√

m ρ
−1
1 (r σ

2 α3(.)).

• If r ∈
[

0, α3(α
−1
2 (ε)

α3(α
−1
1 (ε̄))

)
, then the IETs, tk+1− tk, ∀k ∈ N,

are uniformly lower bounded by a positive number that
depends on the initial state of the system.

• The trajectories of the closed loop system are globally
uniformly ultimately bounded with global uniform ulti-
mate bound α

−1
1 (ε).



Proof. Let us prove the first statement of this theorem. First,
note that Assumption (A1) implies α1(‖x‖)≤α2(‖x‖) ∀x∈Rn

and then by the definition of ε̄ , we can say that r ∈ [0,1).
Now, we consider the compact set R := {x ∈ Rn : V (x) ≤
ε̄}. Lemma 5 implies that x(t) ∈ R, ∀t ∈ [tk, tk+1),∀k ∈ N.
Note that according to the proof of Lemma 5,

∥∥e(t+k )
∥∥ ≤

ρ
−1
1 (r σ

2 α3(
∥∥x(t+k )

∥∥)), ∀k ∈ N0. Now, by using the fact that
α
−1
2 (ε)≤ ‖x(tk)‖ ≤ α

−1
1 (ε̄),∀k ∈ N, we can say that the IET

must at least be equal to the time it takes ‖e‖ to grow from
e1 := ρ

−1
1 (r σ

2 α3(α
−1
1 (ε̄))) to e2 := ρ

−1
1 (σ

2 α3(α
−1
2 (ε))). Note

that, if r is chosen as in the statement of the result, then we can
guarantee that e1 < e2. Next, we give a uniform upper-bound
on D+ ‖e(t)‖ , ∀t ∈ [tk, tk+1),∀k ∈N. Note that ∀i∈ {1, . . . ,m},

|D+
γi(x(t))| ≤ limsup

h→0+

|γi(x(t +h))− γi(x(t))|
h

≤ limsup
h→0+

L‖x(t +h)− x(t)‖
h

≤ L limsup
h→0+

‖ f (x(t +h),u(t +h),d(t +h)‖ ≤ β3,

where we have used the fact x(t) ∈ R, ∀t ∈ [tk, tk+1),∀k ∈ N
from Lemma 5, and L is a Lipschitz constant for γi on
the compact set R and the final inequality follows from the
additional facts of boundedness of ‖u(t)‖ from Lemma 6 and
Assumptions (A2) and (A3). We then have

D+ ‖e‖ ≤ ‖u̇‖+mβ3 ≤ β , ∀t ∈ [tk, tk+1),∀k ∈ N,

for some β > 0. The last inequality follows from the uniform
boundedness of ‖u̇‖ from Lemma 6. This implies that tk+1−
tk ≥ e2−e1

β
, for any k ∈ N, which completes the proof of the

first statement of this result.
Next, since the IETs have a uniform positive lower bound,

tk→ ∞ as k→ ∞. Thus, for all t ≥ t0 = 0,

V̇ ≤−(1−σ)α3(‖x‖)< 0, ∀V (x)≥ ε,

which implies the second statement of the result.

IV. NUMERICAL EXAMPLES

We illustrate our results with two numerical examples.
Example 1: (Controlled Lorenz model with disturbances)

ẋ1 =−ax1 +ax2 +d1,

ẋ2 = bx1− x2− x1x3 +u+d2,

ẋ3 = x1x2− cx3 +d3, (9)

where a,b,c ∈ R>0 and d :=
[
d1 d2 d3

]>
is the ex-

ternal disturbance. We set the parameter values a =
10, b = 28 and c = 8/3. We can show that Assump-
tion (A1) and Assumption (A2) hold with V (x) = 1

2 ‖x‖
2

and γ(x) = −(a + b)x1 − 1
2 x2. We consider the disturbance

d(t) = 0.1√
3

[
sin(50t) sin(20t) sin(10t)

]>
. Note that As-

sumption (A3) holds with D = 0.1. In this example, we
consider the control input as a linear combination of the set of
functions {1,τ,τ2, . . . ,τ p}. Here, we compare the performance
of the proposed ETPC method with the zero-order-hold control
based ETC (ETC-ZOH) method. In ETC-ZOH method, we

(a) Control input signal (b) Evolution of V (x(t))

Fig. 2: Simulation results of Example 1 for p = 3, T = 0.1
and x(0) = [0 1 0]>.

choose the same ETR (7) without further tuning of the pa-
rameters, but the control law is u(t) = γ(x(tk)), ∀t ∈ [tk, tk+1).
Figure 2 presents the simulation results with p = 3, T = 0.1
and x(0) = [0 1 0]>. Figure 2a presents the evolution of
control input to the plant for the proposed ETPC method
and zero-order-hold ETC (ETC-ZOH). Figure 2b shows the
evolution of V (x) along the system trajectory for both the
methods. Note that, V (x) converges to the ultimate bound
ε = 0.05 in both the cases.

Next, we consider 100 initial conditions uniformly sampled
from the unit sphere and we calculate the average IET (AIET)
and the minimum IET (MIET) over 100 events for each initial
condition with T = 0.3, and p = 3. The average of AIET over
the set of initial conditions is observed as 0.0138 and 0.3649
for ETC-ZOH and ETPC, respectively. The minimum of MIET
over the set of initial conditions is observed as 8.2744×10−4

and 0.0141 for ETC-ZOH and ETPC, respectively. Note that,
for the given choice of control law and the ETR, the proposed
ETPC method performs better, in terms of the AIET and
MIET, compared to the ETC-ZOH method.

We repeat the procedure for different values of T and p, and
the observations are tabulated in Table I. In Table I, we can
see that there is a decreasing trend in the values of AIET and
MIET as T increases. Note that choosing a larger T can lead
to a greater fitting error in the short-term just after tk and hence
leads to smaller IETs. Whereas, there is an increasing trend in
AIET and MIET as p increases. Note that choosing a larger
p helps to find a better approximation of the continuous time
model based control signal and hence leads to larger IETs.

TABLE I: Average of AIET and minimum of MIET, over a
set of initial conditions, for different values of T and p.

T
0.4 0.6 0.8

p AIET MIET AIET MIET AIET MIET
3 0.2552 0.0073 0.1389 0.0036 0.0919 0.0024
4 0.3686 0.0209 0.2691 0.0068 0.1662 0.0042
5 0.3698 0.0224 0.3668 0.0166 0.3043 0.0071

Next, for the system (9) with no disturbance, we compare
the performance of the ETPC method against dynamic ETC
(DETC) with the following dynamic ETR proposed in [26],

tk+1 = min{t > tk : ν(t)+θ

(
σ

2
α3(‖x‖)−ρ1(‖e‖)

)
≤ 0},

(10)



where the dynamic variable ν(t) follows the dynamics,

ν̇(t) =−ω(ν)+
σ

2
α3(‖x‖)−ρ1(‖e‖), ν(0) = ν0.

Here, ω(.) is a class K∞ function, ν0≥ 0 and θ ≥ 0 are design
parameters. We choose ω(ν) = 0.5ν and ν0 = 0. In Table II,
we compare the performance of DETC method based on ZOH
control, ETPC method with static ETR (7) and ETPC method
with dynamic ETR (10). We can see that, for the given choice

TABLE II: Average of AIET and minimum of MIET, over a
set of 100 initial conditions for DETC and ETPC.

DETC-ZOH ETPC-static ETPC-dynamic
AIET 0.0066 0.0534 0.2550
MIET 8.7633×10−4 0.0010 0.0191

of the dynamic variable ν , the proposed ETPC method (with
T = 0.3 and P = 5) performs better in terms of the AIET and
MIET compared to the DETC method.
Example 2: (Forced Van der Pol oscillator with disturbances)

ẋ1 = x2 +d1, ẋ2 = (1− x2
1)x2− x1 +u+d2,

where d :=
[
d1 d2

]>
is the external disturbance. We can

show that Assumption (A1) and Assumption (A2) hold

with V (x) = x>Px where P =

[
4.5 1.5
1.5 3

]
and γ(x) =

−x2 − (1 − x2
1)x2. We consider the disturbance d(t) =

0.1√
2

[
sin(10t) sin(20t)

]>
. Note that Assumption (A3) holds

with D = 0.1. In this example also, we consider the con-
trol input as a linear combination of the set of functions
{1,τ, . . . ,τ p}. The average of AIET over a set of 100 initial
conditions is observed as 0.0938 and 1.6948 for ETC-ZOH
and ETPC (with T = 1 and p= 3), respectively. The minimum
of MIET over the set of initial conditions is observed as
9.93×10−4 and 0.0096 for ETC-ZOH and ETPC, respectively.

V. CONCLUSION
In this paper, we proposed the ETPC method for control of

nonlinear systems with external disturbances. We designed a
parameterized control law and an ETR that guarantee global
uniform ultimate boundedness of the trajectories of the closed
loop system and non-Zeno behavior of the generated IETs.
We illustrated our results through numerical examples. Future
work includes the generalization of this control method to
distributed control setting, analytical method to determine an
optimal time horizon for function fitting, systematic methods
for choosing the basis functions, control under model un-
certainty, quantization of the parameters, time delays, and a
control Lyapunov function or MPC approach to ETPC.
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