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Abstract— This paper proposes an event-triggered param-
eterized control method using a control Lyapunov function
approach for discrete time linear systems with external distur-
bances. In this control method, each control input to the plant
is a linear combination of a fixed set of linearly independent
scalar functions. The controller updates the coefficients of the
parameterized control input in an event-triggered manner so
as to minimize a quadratic cost function subject to quadratic
constraints and communicates the same to the actuator. We
design an event-triggering rule that guarantees global uniform
ultimate boundedness of trajectories of the closed loop system
and non-trivial inter-event times. We illustrate our results
through numerical examples and we also compare the per-
formance of the proposed control method with other existing
control methods in the literature.

I. INTRODUCTION

Event-triggered control (ETC) is a promising control
method, especially in networked control systems, due to its
efficient utilization of resources compared to the classical
time-triggered control method. Recent studies in the ETC
literature try to explore the possibility of further improving
the efficiency of resource utilization by designing control
laws based on non-zero order hold (non-ZOH) techniques
instead of the popular ZOH technique, in which the control
input to the plant is held constant between two successive
communication times. However, most of the existing ETC
methods based on non-ZOH control either require more
computational capacity at the actuator or require transmitting
a larger amount of information over the communication
network at each communication time instant. An exception
to this is the event-triggered parameterized control (ETPC)
method proposed in [1]. In this paper, we extend this
idea using a control Lyapunov function (CLF) method for
discrete-time linear systems with external disturbances. This
is in contrast to the emulation based approach, which is far
more common in event-triggered control literature.

A. Literature Review

A fundamental overview of the ETC method, along with
relevant literature, is discussed in [2]-[5]. Generally, in
ETC and in other closely related approaches, such as self-
triggered control [6] and periodic event-triggered control [7],
the control input to the plant is held constant between
any two consecutive triggering instants. However, there are
some exceptions to this basic approach. For example, in
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model-based ETC [8]-[12], a time-varying control input is
applied to the plant even between two successive events by
using a model of the plant at the actuator. In event/self-
triggered model predictive control (MPC) [13]-[15], at each
triggering instant, the controller generates a control trajectory
by solving a finite horizon optimization problem and then
transmits it to the actuator, and the actuator applies the same
to the plant until the next event. As discussed in [16], [17],
the efficiency of communication resource utilization in MPC
can be improved by transmitting only some of the samples
of the generated control trajectory to the actuator, based on
which a sampled data first-order-hold (FOH) control input
is applied to the plant. Similar to the event-triggered MPC
method, in event-triggered dead-beat control [18], a sequence
of control inputs is transmitted to the actuator in an event-
triggered manner and the same is applied to the plant till the
next packet is received.

Our recent work [1] proposes a novel non-ZOH based
ETC method, called as event-triggered parameterized control
(ETPC) method, for stabilization of linear systems. In [19],
we extend this control method to nonlinear control settings
with external disturbances. In [20], we use a similar idea to
design an event-triggered polynomial controller for trajectory
tracking by unicycle robots. In all these works, we use an
emulation based approach for determining the parameters at
each event-triggering instant. There are also a few papers
that use a parameterized control law in MPC like problems
but not with even-triggering. For example, in our recent
work [21], we co-design a polynomial control law and a
communication scheduling strategy for multi-loop networked
control systems. Another example is [22] which introduces a
numerical algorithm that serves as a preliminary step toward
solving continuous-time MPC problems directly without
explicit time-discretization.

B. Contributions

The contributions of this paper are given below:

» We design an event-triggered parameterized control law
for discrete-time linear systems with external distur-
bances, using a control Lyapunov function approach.
For our proposed method, we guarantee global uniform
ultimate boundedness of trajectories of the closed loop
system and non-trivial inter-event times.

* In this paper, we extend the control method proposed
in our previous works [1], [19], [20] to design an
optimal control law for discrete-time linear systems
with external disturbances. References [1], [19], [20]
use an emulation based approach for designing the
parameterized control law, where first a system model
is simulated for some time duration in the future and



then an ideal feedback control signal is approximated
optimally using a parameterized control. Whereas, this
paper uses a control Lyapunov function approach for
designing the parameterized control law, where the
control trajectory is directly optimized in the space of
the parameterized functions.

» Compared to the model-based control method, the pro-
posed parameterized control method requires less com-
putational resources at the actuator and also provides
greater privacy and security.

» Compared to the MPC-based control method, at each
event, our proposed method requires only a limited
number of parameters to be sent irrespective of the time
duration of the signal.

C. Notation

Let R denote the set of all real numbers. Let Z, N and
Np denote the set of all integers, positive and non-negative
integers, respectively. For a,b € R, let [a,b]z := [a,b]NZ
and [a,b)z = [a,b) NZ. For any x € R", ||x|| denotes the
euclidean norm. For a square matrix A € R**" with real
eigenvalues, let Amin(A) and Amax(A) denote the smallest
and the largest eigenvalues of A, respectively. Further, for
a symmetric matrix A € R"”", A >0, A > 0 and A <0 mean
that A is positive definite, positive semi-definite and negative
definite, respectively.

II. PROBLEM SETUP

This section describes the system dynamics, the parame-
terized control law and the objective of this paper.

System Dynamics and Control Law

Consider a discrete-time linear time-invariant system with
external disturbance,

x(t+1) =Ax(t) +Bu(t)+d(t), VreN, (1)

where x € R", u € R, and d € R", respectively, denote the
system state, the control input, and the external disturbance.
(A1) Assume that there exists D > 0 such that ||d(z)]| <

D, Vt € Ny.

Consider a parameterized controller, where each control
input to the plant is a linear combination of a set of
linearly independent scalar functions. The linear combination
is updated in an event-triggered manner. Specifically, we
consider a set of functions

@:={¢;:No > R},

which satisfies the following standing assumption.

(A2) d is a set of linearly independent functions when
restricted to [0,N]z where N € N is a fixed parameter,
ie., Z?zoch)j(t) =0, Vt € [0,N]z iff ¢; =0, Vj €
{0,1,...,p}.

Then, we consider the following control law,

u(ty + 1) =P(t)a(k), VT € (0,641 — 1)z, 2)
where
o' (t) 0 0
T
P(z) i 0 ¢ .(r) 0 "

and ¢ (1) == [go(7) ¢1(7) 9p(7)]. Here, a(k) €
R™P+1) is a column vector which contains the coefficients of
the parameterized control law. (#)rcn, denotes the sequence
of time instants at which the controller computes the coef-
ficients of the parameterized control law and communicates
them to the actuator. Note that, Assumption (A2) ensures
that there exists a unique choice of coefficients for a desired
control signal in the span of ®.

The general configuration of the event-triggered parame-
terized control system considered in this paper is depicted
in Figure 1. Here, the system state is continuously available
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Fig. 1: Event-triggered parameterized control configuration

to the controller which has enough computational resources
to evaluate the event-triggering condition and to update the
coefficients of the control input at an event-triggering instant.

Objective

The main objective of this paper is to design a parameter-
ized control law (2) using a control Lyapunov function ap-
proach, instead of the much more commonly used emulation
based approach, and an event-triggering rule for implicitly
determining the communication instants (f)en, so that the
trajectories of the closed loop system are globally uniformly
ultimately bounded.

ITII. DESIGN OF EVENT-TRIGGERED
CONTROLLER

This section discusses the design of a parameterized con-
trol law and an event-triggering rule to achieve the objective.

A. Design of Parameterized Control Law

At each triggering instant #, the controller determines the
new coefficients a(k) by solving the following finite horizon
optimization problem,

+N
a(k) € argr(nin) Z [V (%(t)) +u(t)" Ru(t)]
acRMP+) (=g
s.t. £(t+1)=A%(t) +Bu(t), £(tx) =x(t), 3
u(t) =P(t —ty)a, vt € [ty,tx + Nz,
VEE) < oV (3(1), Vit € [+ M.

Here, M <N €N and o € (0, 1) are design parameters. R > 0
and V(x) := x' Px is a Lyapunov-like function with P > 0.
Note that, the optimization problem (3) may have more than
one optimizer and one among them is chosen as a(k).

Note also that, given the dynamics, the closed form
expression for £(¢) can be written as follows,

)?(l‘) = F(l‘ —tk)x(tk) +G(t —tk)a, Vt € [tk,tk —|—N]Z,



where F(1) := A" and G(7) := Y7 A" '"/BP(j). By using
the above expression, the optimization problem (3) can be
rewritten as the following quadratically constrained quadratic
optimization problem,

a(k) € argmin  J(a),
acRm(p+1) (4)
s.t. He(a) <0, YT €[0,M]z,

where
N
)= a" | ¥ (6" (@PG(0) + BT (0RP(0)) | a
=0
L) | L (P61 | a
7=0
N
7 (0) [Z FT(r)PF<r>] (o).
7=0

H:(a) = a' G (1)PG(t)a+2x" (tt)F ' (¢)PG(T)a
+x (1) [FT(T)PF(T) - afp} (1)

Remark 1. The quadratically constrained quadratic opti-
mization problem (4) is a convex optimization problem as
G'(1)PG(t) = 0 and P (7)RP(7) = O for all T € [0,N]z. e

Remark 2. In the emulation based approach used in [1],
[19], [20], we first simulate the system for some time
duration in the future and then optimally approximate the
ideal feedback control signal using a parameterized control.
In contrast, in this paper, we use a control Lyapunov function
approach for designing the parameterized control law. The
major advantages of this approach are that it directly opti-
mizes the control trajectory in the space of the parameterized
functions and we can also incorporate a greater variety of
cost functions and constraints in the problem. )

Remark 3. Compared to the event-triggered model pre-
dictive control and dead-beat control, the ETPC method
allows for having inter-event times strictly greater than the
prediction horizon length N. Once the coefficients a(k) are
determined at t,, the control law u(t) is well defined for
the interval [ty,t;1 1)z even if tyr1 —t > N. In addition, in
ETPC, since only the parameters of the control signal need
to be communicated, the communication load is significantly
decreased even for long horizons N. .

Remark 4. Compared to the model-based control methods,
the proposed method provides greater privacy and security
as it requires a model of the system only at the controller
and not at the actuator. °

Next we provide a sufficient condition to ensure the
feasibility of (4).

Proposition 5. (Sufficient condition to ensure the feasibility
of (4)). The optimization problem (4) is feasible if there exists
a solution C € R™PDX" for the following linear matrix
inequality (LMI), ¥t € [0,M]z,

L()(T) JrZC,’jL,‘j(T) =0, 5)
L]

o
where c¢;; denotes the {i,j}" element of C,

{ a’pP! (F(T)P_l)q 7

LO(T): F(’C)Pil p-1

" Lj— [ 0 (Qij(T))T] .
0ij(7) 0

Here, Q;j(t) is the matrix formed by multiplying the i
column of G(t) with the j™ row of P~

Proof. First, note that, the linear matrix inequality (5) can
be rewritten in the following matrix form,

[ otp!

(F(1)+G()C) P! P!

1T
[(F(2)+G(0)C)P] ] 0.
Now, by using Schur complement lemma, we can say that
the above inequality is true if and only if,

T

ot P! = [(F() +G(r)O)P~'] P[(F(2)+G(r)C) P~'] - 0.

This implies that,
[F(t)+G(7)C]" P[F(1)+G(1)C] — a™P < 0.

If there exists a C € R™P+D>" which satisfies the above
inequality for all T € [0, M]z, then we can say that a = Cx(#;)
is a feasible solution of the optimization problem (4). O

Remark 6. Assume that ¢ is a non-zero constant function
and ¢;(0)=0, Vje{1,2,...,p}. If the pair (A,B) is control-
lable, then there always exists an M € N and C € Rm(p+1)xn
that satisfy the LMI (S) for the choice of P >~ 0 which
is a solution of the Lyapunov equation (A + BK)TP(A +
BK)—P=—-Q and a €[l — f{:;‘;((g;,l), for some Q = 0
and K € R™" such that A+ BK is Schur stable and which
satisfies the desired convergence rate constraint. Specifically
C e R™PH%1 sych that P(0)C = K is guaranteed to satisfy
the LMI (5) for M = 1. °

B. Design of Event-Triggering Rule

Next, let us design an event-triggering rule that implicitly
determines the time instants at which the controller updates
the coefficients of the parameterized control input and com-
municates the same to the actuator. But first, we define the
following predictor function

V(t+ 1z) :=[Ax(¢) + Bu(t|t)] " P[Ax(¢) + Bu(t|t,)]
+ Amax (P) (D* +2D || Ax(t) + Bu(t|t)|]) »

where u(t|ty) := P(t —t)a(k) is the control trajectory com-
puted at ;. As we will see in the next result, the predictor
function provides an upper bound on V(x(t 4+ 1)), over
all possible disturbances, if at time ¢ the control input
u(t) = u(t|ty). Thus, the predictor function could help us
evaluate the necessity of replanning and updating the control
trajectory at each timestep.

Lemma 7. Forallt € [ty,ty41]z, and Yk € Ny, if u(t) = u(t|t;)
then V(x(t+1)) < V(t+1t).



Proof. For any t € [ty,t41]z, and Vk € N, if u(t) = u(t|t),
then we can say that

V(x(t4+1) =x"(t+1)Px(t+1)
= [Ax(r) + Bu(t|tx) +d(t)] " P[Ax(r) + Bu(t|t) +d (1))
Simplifying this, and by using Assumption (A1), we obtain
V(x(t+1)) = [Ax(t) + Bu(t|t)] " P[Ax(t) + Bu(t|t)]+
d" (t)Pd(t)+2d" (t)P[Ax(t) + Bu(t|t;)]
= [Ax(t) + Bu(t|t)] " P[Ax(t) + Bu(t|t)] +
Ao (P) (1 (1) 1> +2 1l () | 11Ax(2) + Bu( 1) |

<V(t+ ). O

Note that as per (2), u(t) = u(t|t), for all ¢ € [ty t+1)z, and
Vk € Ng. However, in Lemma 7, we consider the hypothetical
scenario u(t) = u(t|t;) for t =t4,. This is because at #;1, in
order to first decide if a replanning of the control trajectory
is required at f;41, we need to evaluate the usefulness and
the likely effect of the previously computed input, u(¢|#;).

Now, we present the event-triggering rule below

iy =min{t >t : V(e + 1) > H(t, %)}, 6)
H(t,5) = max{ez,ﬁ’_’kHV(x(tk))}, @)

where ) =0 and € := 2. Here § € (0,1) and o > 0 are
design parameters.

In summary, the closed loop system, 8, is the combina-
tion of the system dynamics (1), the parameterized control
law (2), with coefficients chosen by solving (4), which are
updated at the events determined by the event-triggering

rule (6). That is,

S: (1),(2),(4),(6). ®)

IV. ANALYSIS OF THE EVENT-TRIGGERED
CONTROLLER

This section analyzes the proposed event-triggered param-
eterized controller. First, we present a lemma that helps to
prove the main result of this paper.

Lemma 8. Consider the closed loop system (8). If 0 < o0 <
B <1 and 6 < & where

_ . \/ ToinP) T \/ Tl# T o (7

6 := min ,
e[1,M]y, 1+ HAHA(’C— 1)

A(T) = Z;_éAjl with A(0) =0, and M € N is same as
in (3), then the fo lowing Statements are true.

« If V(x(ty)) > €%, for some k € Ny, then V(t +1|t) <
BV (xt)), Ve € [1 Mz _

« IfV(x(t)) < €2, for some k € Ny, then V (t; +t|ty) < €2,
V1 € [I,M]Z.

Proof. First, consider the function
- 2
(1) == (aw/lmax(P) (1+[|A]|A(z 1)) 02) n

af

szax(P> (1+HA”A(171)) A'min(P)

c.

Then ¢ < & and the definition of & imply that
y(t) <B%, Vre[l,M]z. 9)
The definition of V(¢ + 1|t;) can be rewritten as follows,
=[R(t + 1)tg) +Ae(t|t)] T PIR(2 + 1]tx) + Ae(t]12)]
+ Amax (P) (D? +2D || (t + 1) + Ae(t]10) )

where e(t|ty) := x(t) — £(¢|t;) and £(¢|t;) is the nominal state
trajectory which follows the dynamics

V(t+1t)

£t +1t)
Then, V7 € [1,M]z,

= AR(t|tx) + Bu(t|te), £(telte) = x(tx).

V(e + i) =

V(& + 7lin)) + 28" (i + 7lin) PAe (e + 7 — 1)+

e (i +1—1|5)AT PAe(ty + 7 — 1))+

Amax (P)(D* 42D || (1 + t|t) + Ae(tp + 7 — 1) |])-
Note that, for any ¢ € [tg,#11]z, and Vk € Ny, if u(r) = u(t|t.),
then e(t + 1]tx) = Ae(t|t) +d(t) and hence [le(t; + |t)|| <
A(t)D. By using the fact that, for any k € Ny and V7 €

[0,M]z, V(£ + t|tx)) < a®V(x(f)) from the constraints
in (3), we can say that

V(6 + tl) < @V (x(1)) + Amax (P) (Al A(z — 1)D)* +

2 (P) “,:i(( )” JAlA(z—1)D +
o™V (x(1)) ]
Amax (P) D2+2D< Mﬁn(Pk)JrHA|A(Tl)D>

This implies that,
_ = 2
V(1 +7lt) <AV (x(tk)) + Amax (P)D* (1+ A A(T— 1))+

DY
(10)

2Amax (P)D (1 + [|A[|A(7 —

Note that, in the first statement of this lemma, as D? <
o2V (x(t;)) we can say from (9) that

V(e +tlte) < 1(2)V (x(t) < BTV (x()),

This completes the proof of the first statement of this lemma.
Next note 2that, in the second statement of this lemma, as
Vix(t)) < %, we can say from (10) that

V1 e [LM]Z'

_ D? 02
Ve + 7)) < y(t ) 52 = BT ?’ vVt e [1,M]z.

where the last inequality follows from the fact that f7 <
1, V1 € [1,M]z. This completes the proof of the second
statement of this lemma. O

Next, we present the main theorem of this paper.

Theorem 9. (Lower bound on inter-event times and global
uniform ultimate boundedness of trajectories). Consider the
closed loop system (8). Let M > 1 in (3) and let the conditions
of Lemma 8 be satisfied. Then,



o The inter-event times ty| —ty > M, Yk € Ng and if M >
2 then the inter-event times are non-trivial, i.e., ty41 —
t > 1, Yk € No.

« If V(x(t)) < €* for some k € Ny, then V(x(t)) < €2,
Vit € [tk )z

« If V(x(t)) > €2, then there exists a k € N such that
Vx(t)) < €%

e The trajectories of the closed loop system (8) are
globally uniformly ultimately bounded with €* being the
ultimate bound on V (x).

Proof. Let us prove the first statement of this theorem. Note
that, according to the event-triggering rule (6), an event is
triggered at t > #; if and only if V(¢4 1|tx) > € and V (r +
1tx) > B %"V (x(t)). Lemma 8 shows that, for any t €
[tk + M — 1]z, at least one of the two conditions given
above is not satisfied. This implies that ;.| —#; > M for
Vk € Ny. This completes the proof of the first statement.

Now, let us prove the second statement by contradiction.
Let there exist 7 € [ty + 1,00)7 such that V(x(7)) > &> and
V(x(t)) < €* for all € [t,7 — 1]z. Let t; > t; be such that
7€ [tg,t4+1]. Then, by Lemma 7, V (7|t,) >V (x(7)) > €. This
implies, according to the event-triggering rule (6), that an
event must be triggered at t =7—1, ie., 1,1 =7—1, ie.,
f=ty1+1¢[ty,t441]z. Similarly, by using the second state-
ment of Lemma (8), we can say that V (x(7)) <V (flty41) =
V(tqH +1jtg41) < €2, which is a contradiction. Thus, there
does not exist such a 7 and this completes the proof of the
second statement.

Next, we prove the third statement. As M > 1, accord-
ing to the event-triggering rule (6) and Lemma 7 and
Lemma 8, if V (x(t)) > € for any k € Ny, then V (x(fi41)) <
max{BMV (x(t;)),e?}. Thus {V(x(#))} is a monotonically
decreasing sequence, with a uniform bound S < 1 on the
rate of decrease, as long as V(x(fx;1)) > €%. Hence, there
must exists a ¢ € N such that V(x(t,)) < €.

Now, by using the second and the third statements, we
can say that for any initial state x(fo) there exists a 7 € Ny
such that V(x(¢)) < € for all ¢ € [T,c0)z. This completes the
proof of this theorem. O

V. NUMERICAL EXAMPLES

This section presents a numerical example to illustrate the
theoretical results.
Example 1: Consider the system,

0.7 —-0.1 -0.1 0
xt+1)=10 08 —04|x(t)+ [0 u(r)+d(r),
0 0 1.2 1

for all + € Ny. In this example, we consider the con-
trol input as a linear combination of the set of functions
{1,1,’52,...,7”}. That is each control input to the plant
is a polynomial of degree p. We consider the external

disturbance d(t) = 0'—\%1 [sin(50¢)  sin(20¢) sin(lOt)]T that
satisfies Assumption (A1) with D = 0.01. We choose the
quadratic Lyapunov function V (x) := x" Px, where P >~ 0 is
chosen such that it satisfies the Lyapunov equation (A +
BK)'P(A+BK) — P = —Q, with Q = 0.011 where I is a
3 x 3 identity matrix and K = [0 0 70.3] According
to Proposition 5 and Remark 6, we can verify that the

optimization problem (4) has a feasible solution for any
M € [1,8]z. We choose the design parameters M =2, R =
I, a=0.952, B =0.99, and o = 0.01 which satisfy the
conditions given in Lemma 8.

We compare the performance of the proposed CLF based
ETPC method (ETPC-CLF) with the emulation based ETPC
method (ETPC-emulation) proposed in our previous work [1]
and with the typical ZOH based event-triggered control
method (ETC-ZOH). In the emulation based ETPC method,
we consider the same parameterized control law (2) and the
event-triggering rule (6). However, at each triggering instant,
the coefficients of the parameterized control law are updated
by solving the following optimization problem.

t+N
a(k) € argmin |lu(t) — K£(2) ||,
acRMp+) 1=t
s.t. R(t+1)=(A+BK)X(t), £(t) = x(tx),
u(t) =Pt —ty)a, vt € [te,tx + Nz,

P(0)a = Kx(t).

In ETC-ZOH method, the control input to the plant is
held constant between two successive communication time
instants, i.e., u(t) = ug, Vt € [ty,tx+1)z. We use the same
event-triggering rule (6) to determine the sequence of com-
munication time instants and at each communication time
instant the control input to the plant is updated by solving
the following optimization problem,

Y

+N
ug €argmin Y. [V(£(1)) +u" Ru] ,
ucR™ 1=ty

s.t. £(t+1)=AR(t) +Bu, Vt € [tg,ty +N]z, (12)

xA(tk) :x(tk)v
V(£(2)) < a7V (2(tr)), Yt € [ty tx +M]z.

4 6
—ETPC —ETPC

= ETPC-emulation % 4 ETPC-emulation
2 —ETC-ZOH = —ETC-ZOH
= « A S’Z i * Ultimate bound
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0 100 200 0 100 200
t t

(a) Control input (b) Evolution of V (x(z))

Fig. 2: Simulation results of Example 1.

Figure 2 presents the simulation results with p =3, N =25
and x(0) =[2 5 6]". Figure 2a presents the evolution
of norm of u(r) and it shows that the proposed ETPC-
CLF method offers smaller values for ||u(r)|| at most of the
time instants compared to the other two methods. Figure 2b
presents the evolution of V (x) along the system trajectory and
it shows that V(x) converges to the ultimate bound &> = 1
in all the three cases. Even though u(r) and V(x(z)) are
discrete-time signals, for ease of visualization, we plot them
as continuous-time signals.

Next, we consider 100 initial conditions uniformly sam-
pled from a sphere with a specific radius and we calculate



the average inter-event time (AIET) and the minimum inter-
event time (MIET) over 100 events for each initial condition
with N =30, and p = 3. These observations are tabulated in
Table I. Note that, for the given choice of control law and

TABLE I: Average of AIET and minimum of MIET, over
a set of initial conditions, for ETPC-CLF, ETPC-emulation
and ETC-ZOH with N =30 and p =3.

Average of AIET | Minimum of MIET
ETPC-CLF 35.2348 32
ETPC-emulation 25.7287 25
ETC-ZOH 9.2121 2

the event-triggering rule, the proposed ETPC-CLF method
performs better, in terms of the AIET and MIET, compared to
the ETC-ZOH method and ETPC-emulation based method.
Note also that, in the ETPC-CLF method, both the AIET and
the MIET are greater than N. This shows that the proposed
method performs better, in terms of the AIET and MIET,
compared to the event-triggered model predictive control
method [13], [14] in which the maximum inter-event time
is typically chosen as the prediction horizon length N.

We repeat the procedure for the proposed ETPC-CLF
method for different values of N and p, and the observations
are tabulated in Table II. In Table II, we can see that there is
an increasing trend in the values of AIET and MIET as N or
p increases. Note that as N increases, the finite horizon length
of the optimization problem (3) increases and hence leads to
larger inter-event time. This is an advantage compared to
the ETPC-emulation method proposed in [1] where there is
a decreasing trend in inter-event times as N increases. Also
that choosing a larger p helps to choose a control input from
a larger input space and hence leads to better performance.

TABLE II: Average of AIET and minimum of MIET, over a
set of initial conditions, for ETPC-CLF for different values
of N and p.

N
10 20 30
p AIET MIET AIET MIET AIET MIET
2 | 14.1268 13 23.6609 23 33.1982 31
3 | 15.2476 15 24.6605 23 35.2348 32
4 | 16.0283 16 25.3624 25 36.62655 33

VI. CONCLUSION

In this paper, we proposed an event-triggered parame-
terized control method using a control Lyapunov function
approach for discrete time linear systems with external dis-
turbances. We designed a parameterized control law and an
event-triggering rule that guarantee global uniform ultimate
boundedness of the trajectories of the closed loop system
and non-trivial inter-event times. We illustrated our results
through numerical examples. We observed that for the given
choice of control law and event-triggering rule, the proposed
control method performs better in terms of the AIET and the
MIET compared to other existing methods such as emulation
based ETPC, ZOH based ETC and event-triggered MPC.
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