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Distributed control of vehicle strings
under finite-time and safety specifications

Pavankumar Tallapragada Jorge Cortés

Abstract—This paper studies an optimal control problem for
a string of vehicles with safety requirements and finite-time
specifications on the approach time to a target region. Our prob-
lem formulation is motivated by scenarios involving autonomous
vehicles circulating on arterial roads with intelligent management
at traffic intersections. We propose a provably correct distributed
control algorithm that ensures that the vehicles satisfy the finite-
time specifications under speed limits, acceleration saturation,
and safety requirements. The safety specifications are such that
collisions can be avoided even in cases of communication failure.
We also discuss how the proposed distributed algorithm can be
integrated with an intelligent intersection manager to provide
information about the feasible approach times of the vehicle
string and a guaranteed bound of its time of occupancy of the
intersection. Our simulation study illustrates the algorithm and
its properties regarding approach time, occupancy time, and fuel
and time cost.

Index Terms—vehicle strings, distributed control, intelligent
transportation, networked vehicles, state-based intersection man-
agement

I. INTRODUCTION

In this paper we are motivated by the vision for urban traffic
with coordinated computer-controlled vehicles and networked
intersection managers. Emerging technologies in autonomy
and communication offer the opportunity to radically redesign
our transportation systems, reducing road accidents and traf-
fic collisions and positively impacting safety, traveling ease,
travel time, and energy consumption. For example, cruise
control and coordination of vehicles (e.g., platooning) could
ensure smoother (with reduced stop-and-go), safer and fuel-
efficient traffic flow. This vision involves, among many other
things, scheduling of vehicles’ usage of an intersection and
the vehicles optimally meeting those schedules under safety
constraints. Distributed algorithmic solutions are necessary
in order to produce real-time implementations under the
computationally-heavy tasks involved. To this end, here we
explore a generalized problem of distributed control of vehicle
strings under specifications of reaching a target in a fixed finite
time while respecting safety specifications.

Literature review: The control and coordination of multi-
vehicle systems in the context of transportation has a long
history starting with the platooning problem formalized in [2].
This classical and active area of research is so vast that a
fair and complete overview is beyond the scope of this paper.

A preliminary version of this work appeared as [1] at the 5th IFAC
Workshop on Distributed Estimation and Control in Networked Systems.
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The recent survey papers [3], [4], however, provide a good
introduction to the topic of vehicle platoon control and its
literature. The prototypical aim in vehicle platooning is to
asymptotically achieve a given constant inter-vehicular dis-
tance (or a given constant headway (time) between successive
vehicles [5]) while ensuring all vehicles move at a desired
speed. Hence the topic is often called ‘string stability’. The
problem is typically formalized as an asymptotic stabilization
problem or an infinite-horizon optimal control problem, with
non-collision constraints that ensure vehicles are separated by
at least a given fixed amount. With some exceptions [6]–[8],
constraints on acceleration control or on state variables, such
as speed limits, are not considered. Recent research on string
stability also seeks to address the challenges that arise due
to coordination via wireless communication channels such as
sampling [9], communication delays [10], [11] and limited
communication range [12]. The work [13] examines the ques-
tion of whether local feedback is sufficient to ensure coherence
of large networks under stochastic disturbances. Given that the
string stability problem has largely been motivated by cruise
control of vehicle platoons on highways, it is not surprising
that finite-time constraints on the states of the vehicles are
also usually not considered. This is a major difference with
respect to our treatment in this paper. Since we are motivated
by the problem of coordination of a group of vehicles on
arterial roads with intersections, the consideration of finite-
time constraints on the vehicle string is key.

In the literature on coordination-based intersection man-
agement, the explicit control of platoons has been rarely
considered with some notable exceptions. The works [14],
[15] describe a hierarchical setup, with a central coordina-
tor verifying and assigning reservations, and with vehicles
planning their trajectories locally to platoon and to meet
the assigned schedule. The proposed solution is based on
multiagent simulations, an important difference with respect to
our approach. In [16], a polling-systems approach is adopted to
assign schedules, and then optimal trajectories for all vehicles
are computed sequentially in order. Such optimal trajectory
computations are costly and depend on other vehicles’ detailed
plans, and hence the system is not robust. In this literature
too, a non-collision constraint is imposed on the vehicles. The
work [17] is an exception in that it requires the minimum
separation between any two consecutive vehicles to be a
function of the vehicles’ velocities. We call such a constraint as
a safety constraint, which is a generalization of a non-collision
requirement.

Statement of contributions: Motivated by intelligent man-
agement of traffic intersections, we formulate an optimal
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control problem for a vehicular string with safety requirements
and finite-time specifications on the approach time to a target
region. The first contribution is the design of a distributed
control algorithm for the vehicle string that ensures that the
vehicles satisfy the finite-time specifications, while guarantee-
ing system-wide safety and subject to speed limits and acceler-
ation saturation. Additionally, each vehicle seeks to optimally
control its trajectory whenever safety is not immediately at
risk. The algorithm design combines three main elements:
an uncoupled controller ensuring that a vehicle arrives at the
intersection at a designated time when the preceding vehicle
is sufficiently far in front; a safe-following controller ensuring
that the vehicle follows the preceding vehicle safely when the
latter is not sufficiently far in front; and a policy to switch
between these two controllers. The second contribution is
the analysis of the convergence and performance properties
of the vehicle string under the proposed distributed control
design. We provide guarantees on vehicle safe following and
the approach times to the target region. The safe-following
specifications are such that each vehicle maintains at all times
sufficient distance from its preceding vehicle so as to have
the ability to come to a complete stop without collisions
irrespective of the preceding vehicle’s control action. This
notion has the advantage of ensuring safety even in cases
of communication failures, which may not be the case for a
solution computed with only non-collision constraints. We also
establish that the prescribed approach time of a vehicle can
be met provided it is sufficiently far from the actual approach
time of the previous vehicle in the string. If this is not the
case, then we also provide an upper bound on the difference
between the actual approach times of consecutive vehicles.
The third contribution is the application to traffic intersection
management of our distributed control design. We describe
how the various constraints and parameters of the problem
can be integrated with an intelligent intersection manager to
provide it with information about the approach time of the first
vehicle in the string and a guaranteed bound of the occupancy
time of the intersection by the string. Our simulation study
illustrates the results and provides insights on the algorithm
executions and their dependence on the problem parameters.

Organization: The rest of the paper is organized as follows.
Section II details the problem formulation and discusses its
connection with intelligent intersection management. Sec-
tion III presents the design of the distributed control for
the vehicle string and Section IV derives convergence and
performance guarantees on its executions. Section V illustrates
our results in a simulation study. Finally, Section VI contains
concluding remarks and our ideas for future work.

Notation: We present here some basic notation used
throughout the paper. We let R, R<0, Z, N, and N0 denote
the set of real, negative real, integer, positive integer, and
nonnegative integer numbers, respectively. Given a ≤ b, [u]ba
denotes the number u lower and upper saturated by a and b
respectively, i.e.,

[u]ba ,


a, if u ≤ a,
u, if u ∈ [a, b],

b, if u ≥ b.

II. PROBLEM STATEMENT

Consider a string of vehicles on its way to a target region as
in Figure 1. The vehicles are labeled {1, . . . , N} and all have
the same length L. The line segment represents a road and the
target region is the interval [0,∆], representing an intersection.
The position of the (front of the) jth vehicle is xj . We assume
that initially the vehicles are yet to approach the target and
hence their initial positions belong to R<0. Without loss of
generality, vehicles are indexed in ascending order starting
from the vehicle closest to the target region at the initial time.

Fig. 1. A string of vehicles, each of length L, on a road to a target at 0. The
position of the (front of the) jth vehicle is xj .

Constraints: The constraints on the vehicles’ motion arise
from their dynamics, specifications regarding their approach to
the target region, and safety requirements. We describe them
next. The dynamics of vehicle j is the fully actuated second-
order system,

ẋj(t) = vj(t), (1a)
v̇j(t) = uj(t), (1b)

where vj ∈ R is the velocity and uj(t) ∈ [um, uM ], with
um ≤ 0 ≤ uM , is the input acceleration. The vehicles must
respect a maximum speed limit, vM , imposed on the road
(vj(t) must belong to [0, vM ] for all t ≥ 0).

Each vehicle j is given an exogenous prescribed approach
time τj – the time at which vehicle j is to reach the beginning
of the target region, i.e., the origin. Clearly, an arbitrary set
of {τj}Nj=1 may not be feasible. We let T aj denote the actual
approach time of vehicle j at target region, i.e., xj(T aj ) = 0.
Further, we require that the velocity of each vehicle j at its
approach time T aj and subsequently be at least νnom. Finally,
vehicles are required to maintain a safe distance between them
at all times. Specifically, the minimum separation of vehicles
at any given time must be such that there always exists a
control action for each vehicle to come to a stop safely even
without coordination. Clearly, such a safe-following distance
needs to be a function of the vehicles’ velocities, which we
denote by D(vj−1(t), vj(t)) for the pair of vehicles j− 1 and
j. The formal definition of this function is postponed to the
next section. Then, the safety constraint for j ∈ {2, . . . , N} is

xj−1(t)− xj(t) ≥ D(vj−1(t), vj(t)), ∀t ≥ 0.

Remark II.1. (Safety constraints are more robust to loss of
coordination than non-collision constraints). Typically in the
literature, with the exception of [17], non-collision constraints
are imposed. These take the form xj−1(t) − xj(t) ≥ L.
However, non-collision constraints are not robust to loss of
coordination due to communication failures or otherwise. On
the other hand, the stricter safety constraints guarantee a higher
degree of robustness in that there always exists a control action
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for each vehicle to come to a stop safely even with a loss of
coordination. •

Objective: Under the constraints specified above, we seek a
design solution that minimizes the cost function C modeling
cumulative fuel cost,

C ,
∑

j∈{1,...,N}

∫ T exit
j

0

|uj |dt, (2)

where T exit
j is the time at which the vehicle j completely exits

the target region, i.e., xj(T exit
j ) = ∆ + L. This is an optimal

control problem with bounds on the state and control variables
and inter-vehicular safety requirements. We seek to design a
strategy that allows the vehicle string to solve it in a distributed
fashion. By distributed, we mean that each vehicle j receives
information only from vehicle j − 1, so that collisions can be
avoided and the algorithm is implementable in real time. We
envision the resulting distributed vehicular control to be a part
of a larger traffic management solution.

Given the distributed and real-time requirements on the
algorithmic solution, we do not insist on exact optimality
and instead focus on obtaining sub-optimal solutions based
on switching between an optimal control mode and a safe-
following mode. In addition, we also seek to characterize
conditions under which the approach time of each vehicle
is equal to its prescribed approach time (i.e., T aj = τj for
j ∈ {1, . . . , N}). Failing feasibility (T aj 6= τj for some j), we
aim for our solution to minimize the intersection’s occupancy
time T exit

N − T a1 of the vehicle string and seek to provide an
upper bound for it.

Remark II.2. (Connection with intelligent intersection man-
agement). The motivation for the problem considered here is
to enable control of a string of computer-controlled, networked
vehicles on roads with intersections. By networked vehicles,
we mean vehicles equipped with vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) communication capabilities. We
envision a system where vehicles communicate their state to an
intersection manager (IM), which then prescribes a schedule
for the usage of the intersection by the vehicles. In this paper,
we do not address the communication and decision making
aspects related to the interaction between the intersection
manager and the vehicles. In the problem posed here, the target
region corresponds to an intersection, the prescribed approach
times are given by the IM to the vehicles, and the constraint
of a minimum approach velocity ensures efficient usage of the
intersection. The finite-time specifications, bounded controls,
speed limits, and explicit safety constraints distinguish this
work from the literature on string stability, which instead
focuses on asymptotic stability or infinite horizon optimal
control with only non-collision constraints [3], [4]. We see the
solution to the problem formulated here as one of the many
necessary building blocks towards the development of such
intelligent intersection management capabilities. •

III. DESIGN OF LOCAL VEHICULAR CONTROLLER

In this section we design the distributed vehicle control
termed local vehicular controller. To do this, we begin

by introducing two useful notions: safe-following distance, as
a way of ensuring safety at present as well as in the future, and
relaxed feasible approach times ignoring safety constraints.

A. Safe-following distance

The following notion of safe-following distance plays an
instrumental role in guaranteeing the inter-vehicle safety re-
quirement in our forthcoming developments.

Definition III.1. (Safe-following distance). The maximum
braking maneuver (MBM) of a vehicle is a control action that
sets its acceleration to um until the vehicle comes to a stop, at
which point its acceleration is set to 0 thereafter. A quantity
D(vj−1(t), vj(t)) is a safe-following distance at time t for
the consecutive vehicles j − 1 and j if xj−1(t) − xj(t) ≥
D(vj−1(t), vj(t)) ≥ L and, if each of the two vehicles were
to perform the MBM, then they would be safely separated,
xj−1 − L ≥ xj , until they come to a complete stop. •

Given the notion of safe-following distance, we ensure inter-
vehicular safety by requiring for all j ∈ {2, . . . , N} that

xj−1(t)− xj(t) ≥ D(vj−1(t), vj(t)), ∀t. (3)

According to Definition III.1, a safe-following distance is not
uniquely defined, which in fact provides a certain leeway
in designing the local vehicle control. The following result
identifies a specific safe-following distance.

Lemma III.2. (Safe-following distance as a function of vehi-
cle velocities). Let j − 1 and j be a pair of vehicles, with j
following j − 1. Then, the continuous function D defined by

D(vj−1(t), vj(t)) =

L+ max
{

0,
1

−2um

(
(vj(t))

2 − (vj−1(t))2
)}
, (4)

provides a safe-following distance at time t for the pair of
vehicles j − 1 and j.

Proof. If a vehicle j with dynamics (1) were to perform the
MBM at the current time t until it comes to a complete stop
at tstop

j = −vj(t)/um, then

xj(t
stop
j ) = xj(t) +

(vj(t))
2

−2um
.

If vj(t) ≥ vj−1(t) ≥ 0, then the safe-following distance is
found by setting

xj−1(tstop
j−1)− xj(tstop

j ) ≥ L.

If on the other hand vj−1(t) ≥ vj(t) ≥ 0, then the vehicles are
in fact closest at time t and the condition xj−1(t)−xj(t) ≥ L
is sufficient to ensure subsequent safety. Hence (4) provides a
safe following distance.

The safe-following distance function D defined in (4)
has the following useful monotonicity properties: if the first
argument is fixed, then the function is monotonically non-
decreasing; instead, if the second argument is fixed, then the
function is monotonically non-increasing.
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Remark III.3. (Intra-branch safety under communication
failure). Note that the safety constraint (3) for each pair of
consecutive vehicles on the same branch is more than just
non-collision constraint. The safety constraints always ensure,
for each vehicle, the existence of a control action that can
safely bring the vehicle to a complete stop irrespective of
the actions of the vehicle preceding it. Thus, in particular,
if communication were to break down between any pair of
consecutive vehicles and if the communication failure were
detected then the following vehicle can safely come to a stop.
•

B. Feasible approach times ignoring safety constraints

Here we provide bounds on the feasible approach times by
ignoring the safety constraints. We rely on these bounds in our
controller design later to ensure the existence of an optimal
controller that guarantees a vehicle arrives at the intersection
at a designated time when the preceding vehicle is sufficiently
far in front.

We start by defining the earliest and latest times of approach
of each vehicle at the target region, ignoring other vehicles.
Formally, let τej be the earliest time vehicle j can reach
the target region while ignoring the safety constraints (3).
This time can be computed by considering the trajectory
with the initial condition (xj(0), vj(0)) and the control policy
with maximum acceleration (uj = uM ) until vj(t) = vM
and zero acceleration thereafter. It can be easily verified that
τej = T (−xj(0), vj(0)), where

T (d, v) ,{√
2uMd+v2−v

uM
, 2uMd ≤ (vM )2 − v2,

vM−v
uM

+ 2uMd−(vM )2+v2

2uMvM
, 2uMd ≥ (vM )2 − v2.

(5)

Similarly, let τ lj be the latest time vehicle j can reach the
target region ignoring the safety constraints by considering
trajectories with maximum deceleration. Note that this could
possibly result in τ li =∞.

An important observation is that there might not exist any
approach time T aj during the interval [τej , τ

l
j ] such that the

minimum approach velocity constraint vj(T aj ) ≥ νnom is
satisfied (even when safety constraints are ignored). The fol-
lowing result presents a sufficient condition that guarantees the
existence of such approach times even when safety constraints
are considered.

Lemma III.4. (Existence of a feasible approach time). Sup-
pose the initial position of vehicle j ∈ {1, . . . , N} satisfies

xj(0) ≤ (vM )2

2um
− (νnom)2

2uM
, (6)

then τ lj = ∞, and for any τ ∈ [τej ,∞) there exists a control
action that, ignoring the safety constraints (3), ensures that
xj(τ) = 0 and vj(τ) ≥ νnom. Furthermore, if the safety
constraints (3) are satisfied initially at time 0, then the set
of feasible approach times [τ̄ej ,∞) is non-empty and τ̄ej ≥ τej
for all j ∈ {1, . . . , N}.

Proof. The condition on xj(0) implies that vehicle j can come
to a complete stop, wait for an arbitrarily long time and then

accelerate to a speed of at least νnom before arriving at the
beginning of the target region so that τ lj = ∞. Further, it
also means that v(τej ) ≥ νnom under the control action used
for computing τej . Thus, for any τ ∈ [τej ,∞) there exists a
control action that, ignoring the safety constraints (3), ensures
that xj(τ) = 0 and vj(τ) ≥ νnom.

If in addition, safety constraints (3) are satisfied initially,
then existence of a feasible approach time is guaranteed
because vehicle j can safely decelerate at the maximum rate
until it comes to a complete stop while ensuring safety with
vehicles j − 1 and j + 1, then wait for enough time to avoid
collision with vehicle j−1 and accelerate back to νnom before
reaching the target region at T aj . Finally, if T aj = t1 is
feasible, then so is T aj = t2 for all t2 ≥ t1 by increasing
the deceleration time or the wait time.

Note that [τ̄ej ,∞), the actual set of feasible approach
times for vehicle j, depends on all the constraints, the initial
conditions and τi for all the vehicles i ∈ {i, . . . , N}. As a
result, it is not readily computable. In contrast, the relaxed
bound [τej ,∞) is easy to compute and depends only on the
data related to vehicle j, which makes it useful in the control
design procedure.

In the rest of the paper we assume that conditions of
Lemma III.4 are satisfied for all vehicles j ∈ {1, . . . , N} (so
that feasible approach times satisfying the minimum velocity
requirement are guaranteed to exist) and that τj ∈ [τej ,∞), for
all j ∈ {1, . . . , N}.

C. Controller design

Here we introduce our distributed controller design, which is
composed by three main elements: (i) an uncoupled controller
ensuring that the vehicle arrives at the intersection at a desig-
nated time if the presence of all other vehicles is ignored. This
controller is applied when the preceding vehicle is sufficiently
far in front, (ii) a safe-following controller ensuring that the
vehicle follows the preceding vehicle safely when the latter is
not sufficiently far in front; and (iii) a rule to switch between
the two controllers.

1) Uncoupled controller: We let

(t, xj , vj) 7→ guc(τj , t, xj , vj)

be a feedback controller that ensures xj(τj) = 0 for the
dynamics (1) starting from the current state (xj(t), vj(t)) at
time t, respecting the control and velocity constraints, but
not necessarily the inter-vehicle safety constraints. We refer
to it as the uncoupled controller. Here, we let guc be the
optimal feedback controller that is obtained in the sense of
receding horizon control (RHC) [18]. The cost function that
is minimized in an open-loop manner as part of RHC is∫ τj

t

|uj(s)|ds.

For simplicity we restrict the candidate velocity profiles, each
of which determines uniquely a control trajectory uj , to the
two classes shown in Figure 2. Thus, the optimization variables
in RHC are a1, a2 (the areas of the indicated triangles),
vj(τj), νl and νu. The constraints are νl ∈ [0, vj(t)], νu ∈
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[vj(t), v
M ], vj(τj) ∈ [νnom, vM ], a1, a2 ≥ 0 and that the total

area under the curve (corresponding to the distance traveled)
is equal to −xj(t).

Remark III.5. (Alternative implementation of the uncoupled
feedback controller). In contrast to the receding horizon ap-
proach, the uncoupled controller guc may also be implemented
as a feedback controller. This may be done by analytically
solving off-line the initial optimal control action as a function
of τj , t, xj , vj . In our particular problem, due to the specific
structure of the candidate solutions, shown in Figure 2, this
analytical computation could be done exhaustively. Such com-
putations would result in a guc that is a switched controller
(with analytical expressions) as a function of τj , t, xj , vj . Fur-
ther, as a vehicle’s state (xj , vj) and time t evolve continuously
with time t, there are only a few modes to which guc could
switch to at any given time. Thus, in practice, such a switched
feedback controller guc could be implemented quite efficiently.
•

(a)

(b)

Fig. 2. (a) and (b) show the two classes of open-loop candidate velocity
profiles. The optimal profile takes one of the two forms depending on the
velocity vj(t), νnom, vM , τj and the distance to go −xj(t). The uncoupled
feedback controller guc may be obtained by executing the open-loop optimal
control in a receding horizon manner.

Remark III.6. (Optimality of the controller). Assuming there
exists a feasible controller that ensures the vehicle j ap-
proaches the intersection at τj with a minimum velocity of
νnom, ignoring the safety constraints and given the current
time t and the vehicle state (xj(t), vj(t)), then there exists an
optimal solution with piecewise-constant-rate velocity profiles
as shown in Figure 2. We can see this statement to be true
by observing that in a given time τj − t, the minimum and
maximum travel distances are obtained with velocity profiles
belonging to the family depicted in Figure 2, and that every
other intermediate travel distance is obtained by a continuous
variation of the velocity profiles within the family. •

It is worth noticing that the control guc assumes the presence
of no other vehicles. Thus, the actual approach time, T aj , of
the vehicle j may be later than τj . Note that T aj could not
be earlier than τj because each vehicle j receives information

only from vehicle j − 1 and it never attempts to approach the
intersection before τj .

Note that a feasible guc exists for each vehicle at t = 0. This
is because under the conditions of Lemma III.4, the feasible
approach times ignoring the safety constraints is [τej ,∞) and
we assume that τj ∈ [τej ,∞). However, at a future time t,
such a feasible guc might not exist because the vehicle is
slowed down by preceding vehicles and no control exists to
ensure T aj = τj along with the other constraints. Additionally,
for t > T aj , i.e., after the vehicle enters the target region,
the optimal controller is not well defined and does not exist.
As a shorthand notation, we use ∃Fj (respectively @Fj) to
denote the existence (respectively, lack thereof) of an optimal
uncoupled control. In order for the control guc to be well
defined at all times and for all states, we extend it as

guc(τj , t, xj , vj) , uM , if @Fj .

2) Controller for safe following: As mentioned earlier, this
controller is applied only when a vehicle is sufficiently close to
the vehicle preceding it. Besides maintaining a safe-following
distance, the controller must also ensure that the resulting
evolution of the vehicles does not result in undue delays in
approach times. Here, we present a design to achieve these
goals. For a pair of vehicles j − 1 and j, we define the safety
ratio as

σj(t) ,
xj−1(t)− xj(t)
D(vj−1(t), vj(t))

, (7)

which is the ratio of the actual inter-vehicle distance to the
safe-following distance. Hence, the requirement (3) can be
equivalently expressed as stating that σj(t) should remain
above 1 at all times. Notice from the definition (4) of the
safe-following distance that, if vj−1(t) > vj(t), then σj(t)
increases at time t and safety is guaranteed. Thus, it is suffi-
cient to design a controller that ensures safe following when
vj(t) ≥ vj−1(t). For vehicle j, we denote ζj , (vj−1, vj , σj).
Define the unsaturated controller gus by

gus(ζj ,uj−1) ,{
uj−1, if vj = 0,(
vj−1

vj

(
1 + σj

uj−1

−um

)
− 1
)(
−um
σj

)
, if vj > 0.

The rationale behind this definition is as follows. Since it is
sufficient to design a controller that ensures safe following
when vj(t) ≥ vj−1(t), if vj = 0, then we need to consider
only the case vj−1 = 0. In this case, the definition of gus
ensures that the vehicle j stays at rest as long as vehicle j−1 is
at rest, and starts moving only when j−1 starts moving again.
Further, since the relative velocity and acceleration in this case
would be zero, we see that σj stays constant. On the other
hand, if the vehicle is moving, vj > 0, then guc is designed
to make sure that σj stays constant (we show this formally
in Lemma IV.1), thus ensuring safety. However, in this latter
case, gus might cause vj to exceed vM . Further, we would like
the vehicle to continue using the optimal uncoupled controller
if it does not affect the safety by decreasing σj . These
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considerations motivate our definition of the safe-following
controller as

gsf (t, ζj , uj−1) ,

min{guc(τj , t, xj , vj), gus(ζj , uj−1)}. (8)

3) local vehicular controller: Here, we design the
local vehicle controller by specifying a rule to switch be-
tween the uncoupled controller guc and the safe-following
controller gsf . To make precise whether two vehicles are
sufficiently far from each other, we introduce the coupling
set Cs defined by

Cs , {(v1, v2, σ) : v2 ≥ v1 and σ ∈ [1, σ0]}, (9)

where σ0 > 1 is a design parameter. The value of this
parameter marks when the safety ratio is considered to be
sufficiently close to 1 that action is required to prevent inter-
vehicle collision. This criteria is more conservative (resp.
aggressive) the further (resp. closer) σ0 is to 1. If ζj ∈ Cs,
then vehicle j is going at least as fast as the vehicle in front of
it, and their safety ratio is sufficiently close to 1 that action is
required. With this in mind, we define the local vehicular

controller for vehicle j, to make sure it uses the safe-following
controller when it is in the coupling set, and the uncoupled
controller otherwise. Formally,

uj(t) =


guc, if ζj /∈ Cs, vj < vM ,

[guc]
0
um , if ζj /∈ Cs, vj = vM ,

gsf , if ζj ∈ Cs, vj < vM ,

[gsf ]0um , if ζj ∈ Cs, vj = vM .

(10)

Note that [guc]
0
um 6= guc only if @Fj .

IV. EVOLUTION OF THE VEHICLE STRING

In this section, we analyze the evolution of the vehicle string
under the distributed controller designed in Section III-C.
Specifically, we characterize to what extent the controller
allows the vehicles to meet the specifications on the vehicle
string regarding safety and approach to the target region.

A. Vehicle behavior under safe following

Here, we study the dynamical behavior of the vehicles when
they are in the coupling set, i.e., when they operate under the
safe-following controller gsf in (8). The next result identifies
conditions under which the safety ratio remains constant and
the unsaturated controller exceeds the maximum acceleration.

Lemma IV.1. (Vehicle behavior in the coupling set). For
j ∈ {2, . . . , N}, let t ∈ R≥0 such that ζj(t) =
(vj−1(t), vj(t), σj(t)) ∈ Cs and uj−1(t) ∈ [um, uM ]. Then,
the following hold:

(a) gus(ζj , uj−1) ∈ [um, uM ],
(b) If vj < vM and gsf (t, ζj , uj−1) = gus(ζj , uj−1) or if

vj = vM and gsf (t, ζj , uj−1) = [gsf (t, ζj , uj−1)]0um =
gus(ζj , uj−1), then σ̇j = 0,

(c) If vj = vj−1 ≥ 0 and gsf (t, ζj , uj−1) = gus(ζj , uj−1),
then σ̇j = 0 and uj = uj−1,

(d) If vj = vM , then gus(ζj , uj−1) ≥ [gus(ζj , uj−1)]0um =
0 only if

vj−1 ≥ v ,
−umvM

−um + σ0uM
.

Proof. For the sake of conciseness, we drop the arguments of
the functions wherever it causes no confusion.

(a) For vj = 0, the claim readily follows from the definition
of gus. For fixed σj ≥ 1, vj ≥ vj−1 ≥ 0 and vj > 0, we see
that gus is maximized and minimized when uj−1 = uM and
uj−1 = um, respectively. The result then follows by observing,
after some computations, that gus(ζj , uM ) − uM ≤ 0 and
gus(ζj , um)− um ≥ 0.

(b) and (c) From (7) observe that

σ̇j =
vj−1 − vj − σjḊ(vj−1(t), vj(t))

D(vj−1(t), vj(t))

=
vj−1 − vj − σj

−um (vjuj − vj−1uj−1)

D(vj−1(t), vj(t))

where we have used the fact that vj ≥ vj−1 in the coupling
set Cs. Claim (b) now follows by substituting uj = gsf = gus
and using the definition of gus. A similar argument can be
used to show claim (c).

(d) Setting vj = vM in the definition of gus and using the
fact that gus ≥ 0, we have

vj−1 ≥
−umvM

−um + σjuj−1
.

To obtain the necessary condition on vj−1, we set uj−1 = uM
and σj = σ0, the maximum values for each.

Lemma IV.1 identifies conditions under which we can
describe the behavior of the vehicles when they are in the
coupling set. The unsaturated controller has been designed so
as to ensure that the safety ratio is maintained at a constant
level. We know from claim (a) that gus respects the control
constraints. Thus, in claim (b), we see that when vj < vM and
gsf = guc, the control action would not violate the velocity
constraints and hence ensures that the safety ratio remains
constant, i.e., σ̇j = 0. Similarly, when vj = vM , if the control
action gsf = guc and it happens to be non-positive, then again
the velocity constraints would not be violated and we have
σ̇j = 0. Claim (c) is a special case of (b) with vj = vj−1. In
this special case, we further have that the relative acceleration,
and hence also the relative velocity, are zero. Finally, claim
(d) is a necessary condition on the velocity of vehicle j − 1
for gus and the saturated [gus]

0
um to differ when vj = vM . In

other words, if vj−1 ≤ v, then from claims (d) and (b) we
have that σ̇j = 0. It is worth noting that, while considered
separately the conditions in each case of Lemma IV.1 might
appear restrictive, when considered all together they paint a
fairly general picture.

As we have seen in Lemma IV.1 and its interpretation, the
unsaturated controller gus has been designed with the aim of
ensuring that the safety ratio remains constant. Thus, it would
be interesting to determine conditions under which the use of
gus guarantees string stability. The next result states that, in
fact, this is the case in the absence of velocity constraints and
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assuming that the leading vehicle’s velocity is uniformly upper
bounded in time.

Proposition IV.2. (Unsaturated controller gus ensures string
stability in the absence of velocity constraints). Consider two
vehicles j − 1 and j, with vehicle j following j − 1. Suppose
that the velocity of the leading vehicle j − 1 is uniformly
lower and upper bounded in time by 0 and a constant V̄ ,
respectively. Further suppose that no bound on the velocity
of vehicle j is imposed. If the initial condition are such that
vj(0) ≥ vj−1(0) ≥ 0 and σj(0) ∈ [1, σ0], then the control
policy uj = gus ensures that:

(a) safety is guaranteed for all time t by ensuring σj(t) =
σj(0) ≥ 1,

(b) vj ≤
√

(vj(0))2 − (vj−1(0))2 + V̄2, for all t ≥ 0,
(c) vj asymptotically approaches vj−1,
(d) xj−1 − xj asymptotically converges to σj(0)L ≤ σ0L.

Proof. If there exists s such that vj(s) = vj−1(s) = 0, then
the result is trivially true because, by definition, uj(t) =
uj−1(t) for all t ≥ s. Thus, in the remainder of the proof
we assume that vj(t) > 0 for all t in addition to the fact
that vj(t) ≥ vj−1(t) ≥ 0. Lemma IV.1(b) directly guarantees
claim (a).

Now, let ej , vj − vj−1 and observe that

ėj = uj − uj−1 = gus − uj−1

= −
(
−um
σj

)(
ej
vj

)(
σjuj−1 − um
−um

)
= −

(
σj(0)uj−1 − um

σj(0)vj

)
ej , (11)

where in the last step we used σj = σj(0) ≥ 1. Based on the
discussion above, we exclude the case of vj = 0. Thus, under
such conditions, ej = 0 is invariant. This implies that ej ≥ 0
for all t ≥ 0 given the assumption on the initial condition.
Also note that um < 0, uj−1 ≥ um and vj ≥ 0. As a result
the following observations hold:
• ėj > 0 only if uj−1 ∈ [um, um/σj(0)),
• v̇j = uj > 0 only if uj−1 > 0 > um/σj(0),
• v̇j = uj > 0 only if ėj < 0.

The first observation follows from (11). The second is obtained
by setting gus > 0, which implies

uj−1 >
−umej
σj(0)vj−1

≥ 0.

The final observation follows from the first two. Thus, at any
given time, we have at least one of ej or vj non-increasing.
Motivated by this, we next show vj is bounded. Indeed,
from (7) and the fact σj(t) = σj(0),

σj(0)Ḋ(vj−1(t), vj(t)) = −ej ≤ 0,

which implies that D is non-increasing because ej ≥ 0. Then,
from (4) and the fact vj(t) ≥ vj−1(t) for all t,

(vj(t))
2 ≤ (vj(0))2 − (vj−1(0))2 + (vj−1(t))2,

from which claim (b) follows.
Since vj−1 ≤ vj for all t ≥ 0, the inter-vehicular distance

(xj−1 − xj) is monotonically non-increasing. Further, since

σj = σj(0), we see from (7) and (4) that (xj−1 − xj) is
uniformly lower bounded by σj(0)L. Thus,

xj−1(t)− xj(t) = −
∫ t

0

ej(s)ds+ xj−1(0)− xj(0)

must asymptotically converge to a finite constant. Now, notice
that |ėj | is uniformly upper bounded due to the bounds
on uj−1 and uj . Hence, ej is uniformly continuous. Then,
claim (c) follows from Barbalat’s Lemma, cf. [19].

Finally, we know that σj(t) = σj(0) ≤ σ0 for all t.
Further, as vj approaches vj−1, the safe-following distance
D(vj−1(t), vj(t)) approaches L (cf. (4)). Then, claim (d)
follows from the definition of the safety ratio (7).

As a consequence of Proposition IV.2, any string with a
finite number of vehicles can be stabilized using the controller
gus if each pair of consecutive vehicles is initially in the
coupling set and if the velocity of the first vehicle in the string
is uniformly upper bounded in time.

The next result states that if at any time instant the optimal
controller does not exist (because the vehicle has been slowed
down by preceding vehicles), then a vehicle not in the coupling
set moves at the maximum speed.

Lemma IV.3. (If the uncoupled optimal controller does not
exist then the vehicle exits the coupling set at maximum speed).
Let t1 be any time such that ζj(t1) ∈ Cs and ζj(t) /∈ Cs for
t ∈ (t1, t1 + δ) for some δ > 0. If @Fj at time t1, then
vj(t) = vM for all t ∈ [t1, t1 + δ).

Proof. Under the hypotheses of the result, and as a conse-
quence of Lemma IV.1(c), the only way vj(t1) = vj−1(t1)
is possible is if gsf = guc < uM at t1, i.e., ∃Fj . However,
by assumption @Fj at time t1, meaning guc = uM . Thus, it
must be that vj(t1) > vj−1(t1). By definition of t1, we then
conclude that σj(t1) = σ0. Next, at t1, since @Fj it means
guc = uM and thus gsf = gus. Then, from Lemma IV.1(b),
we see that vj(t1) < vM is not possible and that in fact
vj(t1) = vM and gsf = gus > [gsf ]0um = 0. During the
interval (t1, t1 + δ), we see from the second case of (10) that
uj = [guc]

0
um = [uM ]0um = 0, which proves the result.

This result is useful in our forthcoming analysis to bound
the arrival times of consecutive vehicles to the target region.

B. Guarantees on vehicle approach times to target region

In this section we provide guarantees on the vehicle ap-
proach times to the target region under the local vehicular

controller. Our main result states that the prescribed approach
time of a vehicle can be met provided it is sufficiently far from
the actual approach time of the previous vehicle in the string.
If this is not the case, then the result provides an upper bound
on the difference between the actual approach times.

To precisely quantify the upper bound, we introduce below
the quantity T iat. To justify its definition, we first need to
introduce some useful concepts. Let Dnom , D(νnom, vM ),
which has the interpretation of a safe inter-vehicle distance
given a vehicle is traveling at the maximum allowed speed vM

and the vehicle preceding it is traveling at a speed greater
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than or equal to νnom. Recall that we require that each vehicle
maintain a velocity of at least νnom as it approaches the target
region and subsequent to it. Given the monotonicity properties
of the safe-following distance function D defined in (4), we
see that Dnom is an upper bound on the safe-following distance
for any pair of consecutive vehicles j − 1 and j for all time
subsequent to the approach time of vehicle j − 1, i.e., for
all t ≥ T aj−1. Thus, if the following vehicle j is within the
coupling set with vehicle j − 1 at the time of its approach,
T aj , then we show in the proof of the next result that the inter-
approach time T aj −T aj−1 is upper bounded by σ0T

nom, where

T nom , Dnom/νnom, (12)

which we call the nominal safe inter-vehicle approach time.
If, instead, vehicles j−1 and j do not belong to the coupling

set at T aj , and T aj > τj , then from Lemma IV.3 we know that if
te is the moment when @Fj and vehicle j exits (never to enter
again) the coupling set with vehicle j−1, then vj = vM for all
t ∈ [te, T

a
j ]. Note also that, by definition, σj(te) = σ0. Thus,

letting xj−1(te) = −d and vj−1(te) = v, we see from (7) that
xj(te) = −(d+ σ0D(v, vM )). Hence,

T aj =
d+ σ0D(v, vM )

vM
,

and as a result T aj − T aj−1 ≤ L(d, v), with

L(d, v) ,
d+ σ0D(v, vM )

vM
− T (d, v), (13)

where T is as defined in (5) and gives the earliest possible
approach time given the distance to go and the current velocity.
With this discussion in place, we are ready to define

T iat , max{σ0T
nom, max

d≥ (νnom)2−v2
2uM

,

v∈[v,νnom]

L(d, v)}, (14)

where v is given in Lemma IV.1(d). This time also plays a key
role in uniformly upper bounding (independently of the initial
conditions) the difference between the actual approach times
of consecutive vehicles if they are not in the coupling set when
reaching the target region. The constraints on d and v in (14)
essentially constitute, as shown in the proof of the next result,
a sufficient condition for the occurrence of the case in which
the vehicles j − 1 and j do not belong to the coupling set at
T aj , and T aj > τj .

We are now ready to state formally the first result of this
section.

Proposition IV.4. (Inter-approach times of vehicles at the
target region). For any vehicle j ∈ {2, . . . , N}, suppose
that (6) holds, τj ∈ [τej , τ

l
j ], and vj−1(T aj−1) ≥ νnom. Then,

vj(T
a
j ) ≥ νnom and

(a) if τj − T aj−1 ≤ T iat, then T aj − T aj−1 ≤ T iat,
(b) if τj − T aj−1 ≥ T iat, then T aj = τj .

Proof. First note that initially at t = 0, Lemma III.4 guar-
antees that ∃Fj . Next, notice from the definition of the
controller (10) that uj(t) ≤ guc for all t ≥ 0. Further notice
that if at some time t1, @Fj , then it remains @Fj for all t ≥ t1
for otherwise it means there exists some control policy starting

from t = t1 such that T aj = τj and vj(T
a
j ) ≥ νnom and

Remark III.6 guarantees ∃Fj at t = t1. From this discussion,
we deduce that T aj ≥ τj for each vehicle j.

(a) There are two cases - either the uncoupled optimal
controller exists until the vehicle reaches the target region
or it becomes infeasible earlier. We consider each of these
cases separately. In the first case, notice that for any vehicle
j ∈ {2, . . . , N}, if ∃Fj at t = T aj , then it follows from the
definition of T aj that T aj = τj and vj(T

a
j ) ≥ νnom, which

means claim (a) is true in the first case.
Next, we consider the case when @Fj first occurs at some

time tf < T aj . Clearly, ζj(tf ) ∈ Cs. Now, there are two sub-
cases - either ζj(T aj ) ∈ Cs or ζj(T aj ) /∈ Cs. In the first sub-
case, we have by definition that σj(T aj ) ≤ σ0 and vj(T aj ) ≥
vj−1(T aj ). Then, the fact that vj−1(t) ≥ νnom for all t ≥ T aj−1

implies

xj−1(T aj )− xj(T aj ) = σj(T
a
j ) · D(vj−1(T aj ), vj(T

a
j ))

≤ σ0 · Dnom,

where we have used the definition of Dnom and the mono-
tonicity properties of the safe-following distance function D in
deriving the inequality. Now, imagine a virtual particle rigidly
fixed to vehicle j−1 at a distance of σ0Dnom behind it. Since
vj−1(t) ≥ νnom for all t ≥ T aj−1, we can then conclude that
T aj − T aj−1 ≤ σ0

Dnom

νnom = σ0T
nom ≤ T iat.

We are then left with the sub-case when ζj(T aj ) /∈ Cs. Thus,
suppose that there exists te ≥ tf such that ζj(t) /∈ Cs for all
t ∈ (te, T

a
j ] and ζj(te) ∈ Cs. From Lemma IV.3, it follows that

vj(t) = vM for all t ∈ [te, T
a
j ]. Thus, as we have seen in (13),

T aj − T aj−1 ≤ L(d, v) with xj−1(te) = −d and vj−1(te) = v.
Thus, now it remains to justify the constraints on d and v
in (14). Given the assumption that vj−1(T aj−1) ≥ νnom it
follows that d ≥ (νnom)2−v2

2uM
, which is the minimum distance

traversed as the velocity of a vehicle evolves from v to νnom.
Next, by the definition of te, note that σj(te) = σ0 and
σj(t) > σ0 for all t ∈ (te, T

a
j ], implying that σ̇j(te) > 0.

From Lemma IV.1(b)-(d), we then deduce that vj−1(te) ≥ v.
Finally, notice that

xj−1(T aj )− xj(T aj ) ≤ xj−1(te)− xj(te)
= σ0D(vj−1(te), vj(te)),

where the inequality follows from vj−1(t) ≤ vj(t) = vM for
all t ∈ [te, T

a
j ]. Consequently, if vj−1(te) = v ≥ νnom, then

D(v, vM ) ≤ D(νnom, vM ) and hence we deduce T aj −T aj−1 ≤
σ0T

nom, which justifies the final constraint in (14) and hence
proves claim (a).

(b) The main argument for the proof of this claim is that the
uncoupled optimal controller exists until the vehicle reaches
the target region, which we show by contradiction. Suppose
that @Fj at T aj . Then as in the proof of claim (a), we see that
T aj − T aj−1 ≤ T iat. However, Lemma III.4 guarantees that if
T aj = τa is feasible then so is T aj = τb for any τb ≥ τa. Using
this for the case τa = T aj and τb = τj , we would deduce that
T aj = τj is feasible, which is a contradiction. The rest of the
proof is the same as in the first case of the proof of (a).

Note that in (14), T iat is defined as the solution of a max-
imization problem. However, since the maximization problem
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involves only the parameters of the system, it could be solved
offline. In fact, we can give an analytical expression for T iat,
which we present in the next result.

Corollary IV.5. (Analytical expression for T iat).

T iat =

{
σ0T

nom, if v > νnom,

max{σ0T
nom, T fol(v)}, if v ≤ νnom,

(15)

where

T fol(v) ,
(νnom)2 − v2

2uMvM
+
σ0D(v, vM )

vM
+
νnom − v
uM

.

Proof. The case of v > νnom follows directly from the fact that
maximization L in (14) is infeasible. Thus, now we assume
v ≤ νnom. By direct computation, we see that

∂L(d, v)

∂d

{
< 0, 2uMd < (vM )2 − v2

= 0, 2uMd ≥ (vM )2 − v2.

Thus, it follows that

max
d≥ (νnom)2−v2

2uM
,

v∈[v,νnom]

L(d, v) = max
d=

(νnom)2−v2
2uM

,

v∈[v,νnom]

L(d, v) = max
v∈[v,νnom]

T fol(v)

= T fol(v),

where the final equality follows from the fact that T fol is a
decreasing function of v.

The next result summarizes the guarantees provided by the
local vehicular controller (10) regarding the satisfaction
of the constraints on safety and approach times.

Theorem IV.6. (Provably safe sub-optimal distributed control
under finite-time constraints). Consider a string of vehicles
{1, . . . , N} whose dynamics are described by (1) under the
local vehicular controller (10). Assume that x1(0) ≤
(vM )2/2um − (νnom)2/2uM , that τj ∈ [τej ,∞) and that the
vehicles are in a safe configuration initially, (σj(0) ≥ 1 for
all j ∈ {2, . . . , N}). Then,

(a) inter-vehicle safety is ensured for all vehicles and for
all time subsequent to 0 (i.e., σj(t) ≥ 1 for all j ∈
{2, . . . , N} and t ≥ 0),

(b) the first vehicle approaches the target region at τ1, each
vehicle travels with a velocity of at least νnom at the
time of approaching the target region and subsequent to
it and

(c) for each j ∈ {2, . . . , N}, if τj − T aj−1 ≤ T iat then
T aj − T aj−1 ≤ T iat. Alternatively, if τj − T aj−1 ≥ T iat,
then T aj = τj .

Proof. (a) Note that for σj ∈ [1, σ0], if ζj ∈ Cs, then σj either
stays constant, in the case of Lemma IV.1(c), or increases, in
the case of Lemma IV.1(d). If on the other hand ζj /∈ Cs, then
it means vj < vj−1 and xj−1−xj increases while D(vj−1, vj)
stays constant at L and thus σj increases. Thus σj(t) ≥ 1 is
guaranteed for all vehicles j ∈ {2, . . . , N} and for all t ≥ 0.

(b) Since there is no vehicle in front of vehicle 1, u1 = guc
for all t. Initial feasibility then guarantees that T a1 = τ1 and
v1(T a1 ) ≥ νnom.

Claim (c) follows directly from Proposition IV.4 and by
using induction.

Note that we have not guaranteed optimality of our proposed
solution and in general it is only suboptimal. However, the
uncoupled optimal control mode ensures that the overall
distributed controller is optimum seeking for each individual
vehicle.

C. Integration with intelligent intersection management

Here we elaborate on the application to intelligent intersec-
tion traffic management, cf. Remark II.2, of our distributed
control design for a string of vehicles under finite time
constraints. We envision a system where each vehicle or
groups of vehicles communicate their aggregate information
to a central intersection manager. The intersection manager
seeks to optimize the schedule of the usage of the intersection
by the vehicles. With the information received, the manager
schedules an intersection occupancy time interval to each
group of vehicles. The vehicles belonging to each group
then apply the local vehicular controller (10) in order to
satisfy the prescribed schedule while also maintaining safety.
The aggregate information required by the central intersection
manager from each group of vehicles has two pieces: con-
straints on the approach time τ1 of the first vehicle in the
group and a bound on the occupancy time τ̄ occ ≥ T exit

N − τ1
of the intersection that could be guaranteed by the local

vehicular controller (10). We discuss next how to compute
each element.

1) Constraints on approach time of the first vehicle: The
constraints on τ1 could be computed by ignoring other vehicles
in the group, as in Section III-B. However, in doing so,
ignoring the initial conditions of the other vehicles in the
group poses the risk of lengthening the guaranteed upper
bound τ̄ occ on the occupancy time. The reasoning for this
is better explained in terms of earliest times of approach at
the intersection of the vehicles. If τej for some j > 1 is
significantly greater than τe1 , then having the vehicle 1 slow
down to approach the intersection at a time later than τe1 will
allow the string of vehicles to meet a smaller guaranteed upper
bound τ̄ occ

i on the occupancy time.
Given this observation, we propose the following alternative

way of computing the constraints on the approach time of
the first vehicle. Recalling the interpretation of T nom as the
nominal inter-vehicle approach time of vehicles in the group,
we see that the earliest time of approach for vehicle j puts
a constraint on the earliest time of approach of the group,
i.e., vehicle 1, to be no less than τej − (j − 1)AT nom,
where A ∈ [0, 1] is a design parameter that determines the
aggressiveness with which the prescribed approach times for
the vehicles are spaced. The smaller the value of A, smaller
is the gap between the prescribed approach times and hence
greater is the aggressiveness with which the vehicles are forced
to enter the coupling set and use safe-following control. Hence,
we define the earliest time T e1 of approach for the group of
vehicles as

T e1 , max{τej − (j − 1)AT nom : j ∈ {1, . . . , N}}. (16)
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Similarly, we can also compute the latest time of approach
T l1 for the group of vehicles. Note that, under the assump-
tions of Lemma III.4, T l1 = ∞. Further, for each vehicle
j ∈ {1, . . . , N} in the group, we have the intersection manager
prescribe

τj , τ1 + (j − 1)AT nom, (17)

so that the only variable it must compute is τ1. Thus, we
see that the parameter A influences the aggressiveness with
which the vehicles are driven into the safe-following mode.
For example, A = 0 means that τj = τ1 for all j, which
necessarily means that the each vehicle must enter the safe-
following mode at least once. For higher values of A, there is
a greater chance of the uncoupled controller guc for vehicle j
being feasible until its approach time T aj . Given the constraints
that the scheduler takes into account, we have τ1 ∈ [T e1 , T

l
1].

This, together with (16), implies that τj ∈ [τej , τ
l
j ], i.e.,

the sequence {τj}Nj=1 of approach times prescribed by the
intersection manager is feasible ignoring the safety constraints.

2) Guaranteed bound on occupancy time of intersection:
Given the sequence of approach times prescribed in (17)
by the intersection manager, the following result builds on
Proposition IV.4 to provide a guaranteed upper bound on the
occupancy time of the target region by the group of vehicles.

Corollary IV.7. (Guaranteed upper bound on occupancy time
of the group of vehicles). For the string of vehicles {1, . . . , N},
suppose τ1 ≥ τe1 , where τe1 is given by (16), and τj for j ∈
{2, . . . , N} satisfies (17). Then, the occupancy time τ occ ,
T exit
N − T a1 is upper bounded as τ occ ≤ τ̄ occ, where

τ̄ occ = (N − 1)T iat + max

{
L+ ∆

νnom , T iat
}
. (18)

Proof. From Theorem IV.6, we know that T a1 = τ1. We also
know that T aj ≥ τj for each j ∈ {2, . . . , N}. Thus, as a
result of (17), we know that τj − T aj−1 ≤ T nom < T iat for
all j ∈ {2, . . . , N}. Hence, from Proposition IV.4, we see
that the last vehicle N approaches the target region at time
T aN satisfying T aN ≤ T a1 + (N − 1)T iat. Since each vehicle
travels with a velocity of at least νnom after approaching the
intersection, the vehicle N (and thus the group of vehicles)
exits the intersection no later than T aN + L+∆

νnom . That is,

T exit
N ≤ T aN +

L+ ∆

νnom ≤ T a1 + (N − 1)T iat +
L+ ∆

νnom ,

from which the result follows.

The reasoning for the inclusion of T iat in the second term
of (18) is as follows. There may be a second group of vehicles
that uses the intersection immediately after the first group.
Thus, we would like to have a safe-following distance between
the last vehicle of the first group and the first vehicle of the
second group even as it approaches the intersection at its
assigned time. The inclusion of the term T iat ensures that
if τN+1 ≥ τ1 + τ̄ occ then τN+1 − T aN ≥ T iat, where N + 1 is
the index of the first car in the second group of vehicles. Then,
from Proposition IV.4(b), it follows that T aN+1 = τN+1. This
helps in scheduling the intersection usage by several groups
of vehicles with just the aggregate data of τ1 and τ̄ occ for each
group.

V. SIMULATIONS

This section presents simulations of the vehicle string evolu-
tion under the proposed local vehicular controller. Table I
specifies the system parameters employed in the simulations
(T nom and T iat are computed according to (12) and (14), while
the remaining parameters are design choices or are typical of
cars and arterial roads ). All the units are given in SI units.
For better intuition, vM and νnom are equivalently 60km/h
and 48km/h, respectively. We present five sets of simulations,

TABLE I
SYSTEM PARAMETERS

Parameter Symbol Value
Car length L 4m
Target region length ∆ 12m
Max. speed limit vM 16.667m/s
Max. accel. uM 3m/s2

Min. accel. um −4m/s2
Nominal speed of crossing νnom 13.333m/s
Parameter in (9) σ0 1.2
Nominal inter-vehicle approach time T nom ≈ 1.24s
Upper bound on inter-vehicle approach time T iat ≈ 1.59s

labeled Sim1 to Sim5. In all of them, the number of vehicles is
N = 8. The initial conditions are randomly generated so that
initial safety, σj(0) ≥ 1, is satisfied for all j ∈ {2, . . . , N}
and (6) holds for all j ∈ {1, . . . , N}. In all simulations
but Sim5, the initial conditions are the same, with the only
distinguishing factor being how the prescribed approach times
τj are determined.

In Sim1, shown in Figure 3, the prescribed approach times
are randomly generated, with the only constraints being τj ≥
τej . The choice of random τj does not in general result in
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Fig. 3. Results for Sim1. (a) Prescribed and actual approach times of the
vehicles in the string. (b) Evolution of the position of the vehicles. The region
between the dotted lines is the target region. (c) Evolution of the safety ratios.
The dotted lines are at σ = 1 and σ0 = 1.2. (d) Evolution of the velocities.
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cohesion of the vehicles as they pass through the target region,
as can be clearly seen in Figures 3(b)-3(c). The occupancy
time in this case is τ occ = 10.88s. In this case, we do not
have either an analytical expression for the bound on the
occupancy time (which is why the prescribed approach times
must instead be constrained, for example as in (17), in the
context of intersection management).

In Sim2 to Sim4, τ1 = T e1 is chosen with T e1 as in (16) and
the remaining τj are determined according to (17). In Sim2,
shown in Figure 4, we choose A = 1. Figure 4(a) shows that
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Fig. 4. Results for Sim2. (a) Prescribed and actual approach times of the
vehicles in the string. (b) Evolution of the position of the vehicles. The region
between the dotted lines is the target region. (c) Evolution of the safety ratios.
The dotted lines are at σ = 1 and σ0 = 1.2. (d) Evolution of the velocities.

the prescribed and the actual approach times coincide for each
vehicle. In fact, for σ0 smaller than around 4, we have consis-
tently observed that T aj = τj for each vehicle j. Figures 4(b)-
4(c) demonstrate the moderate cohesion that is achieved as
vehicles cross the target region. The occupancy time and the
theoretical upper bound are τ occ = 9.72s and τ̄ occ = 12.72s,
respectively. While each vehicle approaching the target region
at its prescribed time is desirable, the occupancy time τ occ is
large.

In Sim3, shown in Figure 5, we demonstrate the utility of the
tuning parameter A in (16)-(17). We choose A = 0, resulting
in the prescribed approach times being all the same, τj = τ1
for all j. This necessarily forces vehicles to interact through
the coupling set and the safe-following controller aggressively.
While the actual approach times are no longer equal to their
prescribed values (cf. Figure 5(a)), this specification results in
high cohesion of vehicles as they cross the target region (cf.
Figures 5(b)-5(c)). An important feature we have observed
consistently in simulations with A smaller than 1 is the
synchronization of the velocities (cf. Figure 5(d)). By contrast,
the velocity synchronization in Figures 3(d) and 4(d) is an
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Fig. 5. Results for Sim3. (a) Prescribed and actual approach times of the
vehicles in the string. (b) Evolution of the position of the vehicles. The region
between the dotted lines is the target region. (c) Evolution of the safety ratios.
The dotted lines are at σ = 1 and σ0 = 1.2. (d) Evolution of the velocities.

artifact of the velocity saturation. We do not have analytical
proof of this phenomenon however. In Sim3, the occupancy
time is much smaller at τ occ = 3.3s, although our bound on
it still remains at τ̄ occ = 12.72s. Note also that the price of a
smaller A is a larger T e1 , the earliest time that vehicle 1 can
approach the intersection. This suggests an interesting trade-
off between intersection occupancy time and earliest time of
arrival. Figure 6 shows the control profile and the evolution
of the control mode of vehicle 8 in Sim3. As expected, the
evolution of the control trajectory takes a complex form.
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Fig. 6. Results for Sim3. (a) Control profile for vehicle 8. (b) Evolution of
the control mode of vehicle 8. m8 = 0 and m8 = 1 indicates vehicle 8 is
in the uncoupled mode and safe-following mode respectively.

Finally, we illustrate in Figure 7 the dependence of the
prescribed approach time of the first vehicle, the occupancy
time, and the time and fuel costs on the tuning parameter A. In
Sim4, the initial conditions are the same as in Sims 1-3, while
in Sim5 the initial conditions are different. The general trends
for τ1, τ occ and the time cost CT = τ1+τ occ are independent of
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Fig. 7. Results of Sim4 and Sim5. Each plot shows the dependence on the
tuning parameter A of the prescribed approach time of vehicle 1, τ1, the
occupancy time τ occ, the time cost CT = τ1 + τ occ, and the fuel cost C.

the initial conditions. However, we found the trend of the fuel
cost C to be dependent on the initial conditions, as illustrated
in Figure 7. Qualitatively, the earliest approach time for the
group of vehicles T e1 , which is also set as τ1 in the simulations,
is decreasing with increasing A, while the occupancy time
τ occ is increasing. An explanation for the high dependence
of the fuel cost C on the initial conditions is that these are
the main factor determining the fraction of time that vehicles
spend in the coupled or uncoupled mode. Thus, the value of
the parameter A giving the best performance in terms of C
depends on the vehicles’ initial conditions.

VI. CONCLUSIONS

We have studied the problem of optimally controlling a
vehicular string with safety requirements and finite-time spec-
ifications on the approach time to a target region. The main
motivation for this problem is intelligent management at traffic
intersections with networked vehicles. We have proposed a
distributed control algorithmic solution which is provably safe
(ensuring that even if there was a communication failure, the
vehicles could come to a complete stop without collisions)
and guarantees that the vehicles satisfy the finite-time spec-
ifications under speed limits and acceleration saturation. We
have also discussed how the proposed distributed algorithm
can be integrated into a larger framework for intersection
management for computer controlled and networked vehicles.
Finally, we have illustrated our results in simulation. Future
work will explore the derivation of tighter bounds on the
occupancy time of the intersection, optimizing the trade-off be-
tween arrival time of the vehicle string at the intersection and
occupancy time, obtaining bounds on the overall fuel cost of
the string, refining the design of the safe-following controller,
characterizing how the design parameters affect the optimality
of our design, exploring robustness guarantees against vehicle
addition and removal, and incorporating privacy requirements.
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